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THE RANGE OF ANALYTIC EXTENSIONS

J. GLOBEVNIK

Denote by Δ, J, dΔ the open unit disc in C, its closure
and its boundary, respectively. Let X be a complex Banach
space and denote by s^{X) the class of all non-empty sets
P c X having the following property: given any closed set
FadΔ of measure 0 and any continuous function f:F-*P
there exists a continuous extension f: Δ —> X of /, analytic
on Δ and satisfying f(Δ — F) c Int P.

THEOREM. PeJ^(X) if and only if IntP is connected,
locally connected at every point of P and satisfies Pa closure
(IntP).

THEOREM. If PcC consists of more than one point then
PeJ^(C) if and only if given any F and / as above there
exists a continuous extension /: J —>Cof /, analytic on Δ and
satisfying/(I) c P.

This generalizes a theorem of Rudin which asserts that
such / exists if PcC is homeomorphic to Δ.

THEOREM. If P e ^ ( X ) then given any relatively open
set BadΔ, any relatively closed set FdB of measure 0 and
any continuous function f:F->P there exists a continuous
extension /: Δ\jB->X of /, analytic on Δ and satisfying
f~((Δ\jB)-F)czIntP.

()• Introduction* Throughout, we denote by zf, I and dΔ the
open unit disc in C, its closure and its boundary, respectively. If
I is a complex Banach space and r > 0 we write Br(X) = {xeX:
\\x\\ < r). Let xeX and S, Γ c l We wr i te x + S =_{# + u:ueS}

and S + T = {u + v: u e S, v e T}. We denote by Int S, S the interior
of S and the closure of S, respectively. If F is a compact Hausdorff
space we denote by C(F, X) the set of all continuous functions from
F to X and write C(F) for C(F, C). If B c dΔ is a relatively open
set we denote by HB(Δ, X) the set of all continuous functions from
Δ U B to X which are analytic on Δ. For HdΔ(Δ, X) we write A(Δ, X)
and for A(Δ, C), the disc algebra, we write A{A). We denote the
set of all positive integers by N. If α, b e R, a < b we write
[α, b] = {t 6 R: a ^ t ^ 6} and we denote [0, 1] by /.

The well known Rudin-Carleson theorem [3, 19, 22] states that
given a closed set FcdΔ of measure 0 and /6C(F) there exists an
extension feA(Δ) of / satisfying

max \f(z)\ = max | f(s) \ .
zeά seF
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Actually the following theorem was proved by Rudin: Given F as
above, let PaC be homeomorphic to I and let feC(F) satisfy
f(F) a P. There exists an extension fe A(A) of / satisfying f(I) a P.
An interesting consequence is that given any PaC homeomorphic
to A there exists feA(A) satisfying /(J) = f(dA) = P [2, 4]. '

The Rudin-Carleson theorem was generalized into several direc-
tions. A consequence of its generalization to the functions into a
Banach space [21, 18, 7] is that for any finite-dimensional complex
normed space X there exists feA(A, X) such that f(A) — B^X) [7].
Heard and Wells [12] generalized the Rudin-Carleson theorem as
follows: Let BadA be a relatively open set and FaB a relatively
closed set of measure 0. Given any bounded continuous function
f: F—+C there exists an extension feHB(A, C) of / satisfying

sup|/(s)| = sup |/(β)| .
Δ F

p
seF

The generalization of this result to the functions into a Banach space
X [8] makes possible, in the case when X is separable, to prove the
existence of a continuous function f: A — {1} —* X, analytic on A,
whose range is contained and dense in B^X) and whose cluster set
at 1 is TΪJX) [8].

The applications above seem interesting enough to consider the
following general problem.

PROBLEM. Let Xbe a complex Banach space, S c 3 J a relatively
open set, FaB a relatively closed set of measure 0 and let/: F~>X
be a continuous function. Assume that a subset P of X contains
f(F). Under what conditions on P does there exist an extension
fe HB(A, X) of / satisfying f(A U #) c P?

By the results mentioned above such an / exists if P c X is a
closed ball. To prove this one needs the fact that the subspace of
all bounded functions in HB(A, X) is a left A(zf)-module and the fact
that P is absolutely convex in order to make the necessary norm
estimations on the interpolating function / assuring that f(A\jB)αP
[8]. Nothing similar is true in general when we consider the func-
tions in HB(A, X) whose ranges are contained in other sets than balls.
Consequently one has to apply different techniques in the general
case. In [11] this was done in the special case when the set P was
open and it was proved that / above exists if P is (open and) con-
nected. Of course this was not a generalization of the Rudin-Carleson
theorem although it was enough to reprove the main result of [9]:
Given any open connected set P in a separable complex Banach
space X there exists a continuous function f: A — {1} -+ X, analytic
on A, whose range is contained and dense in P.
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In the present paper we study the general case when the set
P a X is not necessarily open. In the special case when X = C we
obtain a simple complete topological description of the sets PaC
having the following property: given any closed set FadA of
measure 0 and any feC(F) satisfying f(F)aP there exists an ex-
tension feA(A) of / satisfying f(Δ)aP. If PaC has such a pro-
perty and if P consists of more than one point we show that for
every relatively open set Bad A, every relatively closed set FaB
of measure 0 and every continuous function f: F—*P there exists a
"peak" extension of /, i.e. an extension feHB(A, C) of / satisfying
f((A U B) — F) a Int P. In the general case we study only the sets
PaX with the property that given any closed set FadA of measure
0, every function feC(F, X) satisfying f(F)aP admits a peak ex-
tension feA(A, X), and obtain their topological description.

In §1 we state the main results. In §2 we give the complete
proofs; this section contains some lemmas and theorems which might
be of independent interest. In §3 we present some simple applica-
tions to the ranges and cluster sets of analytic functions.

1* Main results*

DEFINITION 1. [10, 11] Let Bad A be a relatively open set. A
subset P of a complex Banach space X is said to have the analytic
extension property (AEP) with respect to HB(A, X) if, given any
relatively closed s e t F c ΰ of measure 0 and any continuous function
f:F~>P there exists an extension feHB(A,X) of / which satifies
f(A[]B)aP. We say that PaX has AEP if it has AEP with
respect to HB(A, X) for every relatively open set B a dA.

DEFINITION 2. Let BadA be a relatively open set. A subset
P of a complex Banach space X is said to have the peak analytic
extension property (PAEP) with respect to HB(A, X) if, given any F
and / as above there exists an extension feHB(A, X) of / satisfying
f((A U B) — F) a Int P. We call every such extension a peak extension
with respect to P (whether P has PAEP or not). We say that PaX
has PAEP if it has PAEP with respect to HB{A, X) for every rela-
tively open set BadA.

Let 0 be an open subset of a complex Banach space X 0 is
called locally connected (LC) at a point x e X if given any ε > 0
there exists δ > 0 such that if (x + Bδ(X)) Π O is not empty it is
contained in a connected component of (x + Bε(X)) f] 0 [17]. Note
that 0 is LG at every point of 0.

Now we are able to state our main results.
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THEOREM 1. Let P be a nonempty subset of a complex Banach
space X. Then the following are equivalent

(A) there exists a closed set FadΔ of measure 0 with infinite-
ly many points such that every continuous function f: F'—+ P admits
a peak extension feA(Δ, X) with respect to P

(B) P has PAEP with respect to A{A, X)
(C) P has PAEP
(D) P has the following properties:

( i ) PcΐϊϊtfP.
(ii) I n t P is connected and locally connected at every point

of P.

THEOREM 2. Let P be a subset of C containing more than one
point. Then the following are equivalent

(A) there exists a closed set FczdJ of measure 0 with infinite-
ly many points such that every continuous function f: F-+P admits
an extension feA(J) satisfying / ( J ) c P

(B) P has AEP
(C) P has PAEP.

COROLLARY. Let P be a subset of C containing more than one
point. Then the following are equivalent

(A) given any closed set FadΔ of measure 0 and any feC(F)
satisfying f{F) c P there exists an extension f e A(Δ) of f satisfying
f(I)c:P

(B) given any closed set FadΔ of measure 0 and any f e C(F)
satisfying f(F)aP there exists an extension feA(Δ) of f satisfying
f(I- F)czIntP

(C) P has the following properties
( i) PcΊntP
(ii) Int P is connected and locally connected at every point

of P.

REMARK. The above Corollary gives a complete topological de-
scription of the sets P c C for which the Rudin theorem holds. If
(C) in the Corollary above is satisfied by a (nonempty) compact set
PaC whose interior is simply connected note that then Pis homeo-
morphic to Δ [17]. Finally, note that the main results of [7, 8, 9,
11] follow from Theorem 1 and Theorem 2 above.

2* Proofs*
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LEMMA 1. Let P be a nonempty subset of a complex Banach
space X and let FddΔ be a closed set of measure 0 containing in-
finitely many points. Suppose that given any continuous function
f:F—+P there exists an extension feA(Δ,X) of f such that

i ^ c Int P. Then

( i) P c Int P
(ii) I n t P is connected
(iii) Int P is locally connected at every point of P.

Proof. Let xeP. By the assumption there exists feA(Δf X)
satisfying f{F) = {x} and / ( I - F) c Int P. Let {zn} c Δ converge
to a point of F. By the continuity of / {f(zn)} converges to x.
Since f(zn) e Int P (neN) (i) is proved.

By the assumption F is nowhere dense on dΔ and contains more
than one point. Consequently F — Fι{} F2 where Flf F2 are nonempty
disjoint compact sets. Let x, y e Int P and define f(s) = x (s e Fx),
f(s) = y (seF2). Clearly feC(F,X) and by the assumption there
exists feA(Δ, X) satisfying f(Fλ) = {x}, f(F,) = {y} and / ( J - F)a
Int P. Let zt e F19 z2 e F2. Now t v-+ φ(t) = f{z1 + t(z2 — zt)) is a path
joining x and y. By the properties of / we have φ(I) c Int P which
proves (ii).

To prove (iii) assume that IntP is not LC at a point xeP.
This means that there exists ε > 0 such that for every d > 0 the
set (x + Bδ(X)) n Int P meets at least two connected components of
the set (x + Bε(X)) Π Int P. It follows that there exist two sequences
{xn}cIntP, {yn} c I n t P converging to x such that for every neN
xn and yn lie in different components of (x + Bε(X)) Π Int P. Assume
for a moment that there exist a sequence {tn} c dΔ converging to
t e dΔ and fe A(Δ, X) satisfying, f(Δ) c Int P and f(t2n^) = a?w,
/(t2n) = ̂ (w e N). By the continuity of / there exists a neighbour-
hood UaΔ oί t such that f(U)cx + Bε(X). Consequently there is
some neN such that the closed segment J joining ί2Λ-1 and t2n is
contained in U. Then by the properties of /, f(J) is a path joining
xn and yΛ in (x + Bε(X)) Π Int P, a contradiction.

It remains to prove the existence of / and {tn} above. By the
assumption F contains infinitely many points which implies that
there is some t e F which is a cluster point of F — {t}. Since F is
nowhere dense on dΔ there exists a decreasing sequence {Tn} of open
arcs in dΔ all of whose endpoints lie in dΔ — F and such that F c T19

Π:=i Tn = {«}. Define Fn = F Π (Tn - Tn+1) (n e N). Then Fn(n e N)
are disjoint compact sets infinitely many of which are not empty.
Passing to a subsequence if necessary we may assume that all sets
Fn (n e N) are nonempty. Define f: F—+X by
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f(s) = xn (se Fto-im, neN),

f(s) = ϊ,(βeF2 n; neN),

fit) = x.

It is easy to see that / is continuous. By the assumption there
exists an extension feA(d, X) of / satisfying /(I — F) c Int P.
Choose tneFn(neN).

An open subset 0 of a complex Banach space X is called uni-
formly locally connected (ULC) on a subset K of X if given any
ε > 0 there exists δ > 0 such that for every xeK the set
(α; + Bδ(X)) n 0, if not empty, is contained in a connected component
of the set (x + Bε(X)) Π 0 [17]. We call any such ε ι-> d(ε) a modulus
of ULC of 0 on K.

LEMMA 2. Let 0 be an open subset of a complex Banach space
X and let KaX be a compact set. Suppose that 0 is locally con-
nected at each point xeK. Then 0 is uniformly locally connected
on K.

Proof. Simple. For the idea see [17, p. 160],

LEMMA 3. [11] Let BadΔ be a relatively open set, GaB a
relatively closed set of measure 0, and HczB a compact set of
measure 0, disjoint from G. Let UdJUB be a neighbourhood of
H and let ε > 0. Assume that P is an open connected set in a
complex Banach space X which contains the point 0 and let f: H-+P
be a continuous function. There exists feHB{A, X) which satisfies

( i ) f\H = f
(ii) /((?) = {0}
(iii) | |/(z) | |<ε (ze(JUJ?)- U)
(iv) / ( J U B ) c P .

Lemma 3, which gives an approximate solution to our Problem,
is the most important tool in the present paper.

LEMMA 4. Let O be an open connected set in a complex Banach
space X. Let Fad A be a closed set of measure 0 and flf f2 two
continuous functions from F to O. There exists a homotopy
p: F x I—+O satisfying
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Proof. Choose soedJ — F and % e 0. By Lemma 3 there exist
g, e A(A, X) (i = 1, 2) satisfing

c 0 (i = 1, 2) .

Put

8 + 2ί(sc - s)) (s e F, 0 ̂  ί ^ 1/2)
•pi's, £) = .

'^(so ~ (1 - 2ί)(β - So)) (s 6 F , 1/2 :S ί ^ 1) .

It is easy to check that p has the required properties.

LEMMA 5. Let 0 be an open subset of a complex Banach space
and let FczdJ be a closed set of measure 0. Suppose that f:F—+O
is a continuous function and assume that 0 is ULC on f(F). Let
e M> δ(ε) be a modulus of ULC of 0 on f(F). Let R > 0 and assume
that g: F—+O is a continuous function satisfying

\\f(s) - g(s)\\ < d(R)/2 (seF).

Let ε > 0. There exists a homotopy π: F x I—+O satisfying
( i ) π(8,0) = g(8) (seF),
(ii) ||?r(βf l)-/(s)|j<ε ( s e n
(iii) \\π(s, t) - f(s)\\ <2R (s e F, 0 ̂  t ^ 1).

Proof. By the properties of F

m

F=\JFt
i = ί

where Fx{i — 1, 2, , m) are disjoint compact sets such that

(1.1) ||/(ί) - f(η)\\ < min {R, δ(R)/2, ε/2} (f, η e Ft; i = 1, 2, ..., m) .

Choose ζi e F^i = 1, 2, , m). Since f{F) c 0 there exist a .eO
(i = 1, 2, , m) such that

(1.2) ||/(ζ,) - α;, | | < min {5(i2)/2, e/2} (i = 1, 2, . ., m) .

Define h(s) — xt (s 6 ί7,; ΐ = 1, 2, , m). By the assumption and by
(1.1) we have

(1.3)
< δ(R) (seFz;i = 1,2,

and similarly by (1.1) and (1.2)
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and it follows that for each i = 1,2, , m both h(Fi) and #(i^) are
contained in the same connected component of (/(ζ,) + BR{X)) n 0.
Now Lemma 4 applies to show that for each i = 1, 2, , m there
exists a homotopy pt: Ft x /—>0 satisfying

p ^ l) = /φ)

and

(1.5) p,(8, ί) e

(8 e F,\ 0 ̂  t ^ 1; i = 1, 2, , m) .

Define π:FxI-+0 by TΓIJP* x / = p t (i = 1, 2, -, m). Since jPf

(ί = 1, 2, , m) are disjoint compact sets it follows that Ft x I
(i = 1, 2, , m) are disjoint compact subsets of F x I and consequent-
ly π is continuous. Clearly π(s, 0) = #(s) (s e F). By (1.1) and (1.5)
we have

) - Λ«)ll ^ llft(β, t) - /(Qil
< 2R (s e F,; 0 ̂  t ^ 1; i = 1, 2, . , m)

which implies (iii). Finally, by (1.4) we have ||7r(s, 1) — /(s)|| < ε

THEOREM 3. Let 0 be an open subset of a complex Banach space
X and let Fad A be a closed set of measure 0. Let /: JF—>O be a
continuous function and assume that 0 is locally connected at each
point of f(F). Then there exists a homotopy p: F x I—*O satisfying

( i ) p(s, t) e 0 (s e F; 0 ̂  t < 1)
(ii) p(s,l)=f(s) (seF).

Proof. Observe first that f(F) being compact 0 is ULG on f(F)
by Lemma 2. Let ε H-> δ(ε) be a modulus of ULC of 0 on f(F.)
Choose a decreasing sequence {RJ of positive numbers converging
to 0 and a strictly increasing sequence {tn} of nonnegative numbers
converging to 1 where tx — 0.
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Assume for a moment that there exists a continuous function
p: F x (I — {1}) —> 0 satisfying

(2.1) || p(s, t) - f(s) || <2Rn (s e F; tn ^ t < 1; n e N).

Since {Rn} converges to 0 we have l i m ^ p(s, t) — f{s) uniformly for
s e F. Since / is continuous on F it follows that the extension
p: F x J—* 0 of p defined on F x {1} by p(s, 1) = f(s) (s e F) is con-
tinuous on F x I and satisfies (i), (ii) above.

To prove the existence of p satisfying (2.1) we first prove that
there exists a sequence of homotopies πn: F x I—>O(neN) satisfying

(2.2) πn+ί(8, 0) - π%(s, 1) (s e F, n e N)

(2.3) 11 πn(s, 1) - f(s) \ \ < δ{Rn+ι)l2 (seF,neN)

and

(2.4) \\πn(8, t) - /(s)|| < 2Rn (s e F, 0 ^ t ^ 1, n e N).

To define πx observe that F = \J?=1 Ft where Ft (ί = 1, 2, , m) are
disjoint compact sets such that

(2.5) \\ftξ)--M\\ <«(^)/4 (f, ^ e ^ , < = 1, 2, . . . , m)

Choose ζiβF, (i = 1, 2, -., m). Since f(F)aO there exist ^ e θ
(i = 1, 2, , m) satisfying

(2.6) 11 Xi - /(011 < 5(5^/4 (i = 1, 2, , m) .

Define g(s) = α?f (s e 2^, i = 1, 2, , m). Then g: F—>0 is a continu-
ous function which satisfies ||/(s) - g(s)\\ < δ{R^I2 (seF) by (2.5)
and (2.6). By Lemma 5 applied to f,g,R = Rx and ε = 3{R2)/2 there
exists a homotopy πx\ F x I—+O satisfying {{π^s, 1) — /(β)|| < δ(R2)/2
(s e F) and | |^(8, ί) - /(β)|| < 2 ^ (β e F, 0 ^ ί ^ 1).

Assume that there exist πn (n = 1, 2, •••, i) satisfying (2.2) for
1 ^ w ^ i - 1 and (2.3), (2.4) for l ^ n ^ l . By Lemma 5 applied
to /, teen #(s) = πt{s, 1) (s e ί7), to R = i2^+1 and ε = δ(Rι+2)/2 there
exists a homotopy πι+1: F x I-+O satisfying (2.2) for w = Z and
(2.3), (2.4) for n - I + 1 . Now the existence of {πn\ neN} satisfying
(2.2), (2.3) and (2.4) follows by induction.

Now define p(s, tn + t(tn+1 - tn)) = πn{s, t) (s e F, 0 ^ t ^ 1, w e N).
It is easy to check that p has all the required properties.

LEMMA 6. Let 0 be an open subset of a complex Banach space
X. Let BcdΔ be a relatively open set, HaB a compact set of
measure 0 and G c B a relatively closed set of measure 0, disjoint
from H. Suppose that π:HxI—+0 is a continuous function
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satisfying

diam {π(s, t): 0 ^ t ^ 1} £ M (seH)

for some M. Let Uc.A{jB be a neighbourhood of H and let e > 0
be arbitrary. Assume that h:ΔUB—*O is a continuous function
such that

( a ) h(s) = π(s, 0) (s e H)
(b) there exists τ > 0 such that

h{Δ \JB) + BT(X) c 0 .

Then there exists g e HB(Δ, X) satisfying
( i ) (h + g)(8) = π(8,l) (seH)
(ii) g(s) = O (seG)
(Hi)
(iv)
(v) there exists δ > 0

(Λ + g)(Δ U 5) + B,(X) c 0 .

Proof. By the assumption π:HxI—+0 is continuous hence
TΓ(JH" x J) is a compact set contained in 0. Consequently by (b) there
exists d > 0 which satisfies

(3.0) δ < e/3

(3.1) Λ(Λ U 5) + £2δ(X) c 0

and

(3.2) π(iϊ x J) + B5δ(X) c 0 .

By the properties of H

H=\JHό

where Hj (j = 1, 2, , m) are disjoint compact sets such that

||ττ(ί, 0) - π(η,

Since h is continuous on J U ΰ there exist disjoint neighbourhoods
V$ a U oί the sets Hβ (j = 1, 2, , m), respectively, such that

(3.4) \\h(ξ) - λ(7)ll < δ (ft 7 € F,: i = lf 2, , m).

Let 1 ^ i ^ m. Choose f,- 6 H^ and consider the set

P3 = -ττ(£if 0) + {τr(fyf ί): 0 ^ ί ^ 1} + B2δ(X) .
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By the continuity of π, p3 is an open connected set in X containing
the point 0. By (3.3) we have

and it follows that π(s, 1) — π(s, 0) e P3 (s e H3). Hence s ι-* π(s, 1) —
π(s, 0) is a continuous function from H3 into P3. By Lemma 3 there
exists g3 e HB{A, X) satisfying

(3.5) gό{s) = π(s, 1) - π(s, 0) (

(3.6) g3(s) = 0 (seGΌ(H- H3))

(3.7) \\gs(z)\\<Slm (ze{/l{jB)-\

(3.8) gi(J\jB)dPj.

Define

Q = Σ ^i

By (3.7) we have

(3.9) Il0(s)ll<« (ze(JΌB)-\J

Since F . c Z / (i = 1,2, •••, m) it follows that ||flr(z)||<δ
(z e (Δ U B) - U) and by (3.0) (iii) is satisfied.

If ze Vj for some j, 1 ̂  j ^ m then 2 ί F t (k Φ j, 1 ̂  k ̂  m).
Consequently we have by (3.7) and (3.8)

g(z) = 9j{z)
(3.10) 4 ^

6 P, + B,(X) (z e F 3 , j = 1, 2, , m)

By the assumption diam {π(s, ί): 0 SΞ ί ^ 1} ̂  M (s e -ff) which implies
that

By (3.0), (3.9) and (3.10) (iv) follows.
Now, (3.9) implies that

h(z) + g(z) e h(Δ Uδ) + Be(X) {zz(Δ\jB)-\J Vά)
3 = 1

and by (3.1) it follows that

(3.11) h(z) + g(z) + Bδ(X) aθ {ze{Δ\jB)-\J V3) .
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I f z e Vj f o r s o m e j , 1 ̂  j ^ m t h e n z £ Vk {h Φ j , l tS-k ̂  m ) s o
by (a), by (3.4) and by (3.10) it follows that

K(z) + g(z) e h{ξ5) + Bδ(X) + Pd + Bδ(X)

= Λfo) + Bδ(X) - τr(ί,, 0) + {π(ξSf

aπ(Fx Q +

Now (3.2) implies that h{z) + #(z) + Bδ(X) aθ (ze U*=i ?y)» which,
together with (3.11) gives (v).

By the properties of g^ (1 ̂  j ^ m) it is easy to see that (i) and
(ii) are also satisfied.

THEOREM 4. Let 0 be an open connected subset of a complex
Banach space X. Let BcdΔ be a relatively open set and FezB a
relatively closed set of measure 0. Assume that p:F x I—+O is a
continuous function satisfying p(s, t) eO (s e F, 0 ̂  t < 1).

There exists feHB{Δ, X) such that

( a ) f(s) = p(s,l) (seF)
(b) f(z)eθ {ze{AΌB)~ F).

REMARK. In particular, Theorem 4 implies the following: Let
0, B and F be as above and let u: F-+O be a continuous function.
If there exists a peak continuous extension of u, i.e., a continuous
extension v: Δ U B—> 0 of u satisfying v((Δ U B) — F) c 0 then there
exists a peak analytic extension of u, i.e. a continuous extension
w: A U B —> 0 of u, analytic on Δ and satisfying w((Δ U B) — F)aO.
To see this, put p(s, t) = v(sfc) (s e F, 0 ̂  £ ̂  1) and apply Theorem 4.

Proof of Theorem 4. We consider only the case when F is not
compact. It is easy to see how to simplify the proof below in the
case of compact F; note that in the latter case the proof is consider-
ably simpler.

Part 1. With no loss of generality we may assume that 0 e 0.
As in [8] write

F = U Fj
3=1

where F3 c Δ U B (j e N) are compact sets infinitely many of which
are not empty, such that there exist disjoint open sets 0, c Δ U B
(j e N) with the property that Fά c Ô  (j e N) and such that every
compact subset of Δ U B misses all but a finite number of the sets
0j. Passing to a subsequence if necessary we may assume that all
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sets Fj (j e N) are nonempty. Passing to a smaller 0x if necessary
we may assume that 0x is contained in a compact subset of Δ\J B.

By Lemma 4 there exists for each j e N a homotopy pά: F x I—>0
satisfying p3(s, 0) = 0, p3(s, 1) = p(s, 0) (s e F5). With no loss of
generality we may assume that p(s, 0) = 0 (s e F) (otherwise we
replace p by π defined as follows

π(8f t) = pfa 2ί) (0 ^ t ^ 1/2, β e Fy > j e N)

π(s, t) = p(s, 2ί - 1) (1/2 ^ t ^ l , s 6 f ) ;

by the properties of the sets F3 (j e iV) it is easy to see that
π: F x I—*O is continuous).

By the compactness of the sets F3 (j e N) and by the continuity
of p there exists for each j e N an increasing sequence {ί̂  : i e N},
0 < ί̂  < 1 (i e iV), converging to 1 and satisfying

(4.1) diam {p(s, t): tid ^ t ^ 1} < l/2ί+2 (β 6 F y, jeN,ieN).

Part 2. In the sequel we will prove the following:

(A) for each j e N there exists a decreasing sequence Ui3 c J U 5
(ieN) of neighbourhoods of F3 contained in Ô  and satisfying

(B) there exists a decreasing sequence {εj of positive numbers
where

(4.2) BH(X) c O

such that

(C) there exists a sequence {̂ J c iϊB(z/, X) satisfying
( i ) ( Σ U 0.)(β) = 3>(β, «iί) (β e F / f l^j^i,ieN)

gt(s) = 0 (s 6 JPj , j > i, jeN,ie N)
(ii) | | f f i(s) || < 1/2* (z e (J U £ ) - Di<f i e N)
(iii) | | Λ ( 2 ) | | < εJ2ι (ze(JΌB)- UU Ui3; i6N)
(iv) { Σ U f ^ U S ) + e w ( I ) c 0 (ieN).

Assume for a moment that we have proved (A), (B), (C) above.
Define

/ΐ«0 = Σ Cite) (zeJΌB).
ί=l

We show that / has all the required properties.
Since each compact of Δ U B misses all but a finite number of

the sets Ô  , (C) (ii) implies that the series converges uniformly on
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each compact subset of Δ U B. Consequently feHB{Δ, X). By (C) (i)
and by the continuity of p we have for all j eN and for all s e F5

f(s) = lim Σ 9t(s) = lim Σ s φ ) = lim p(s, tnj) = p(s, 1) .

Consequently f(s) = p(s, 1) (s e i*7) SO (a) is satisfied.
To check (b), let zeΔΌ B - F. Let first ze(A\J B) - U~=i Uu.

Now (C) (iii) implies that \\f(z)\\ < εx and by (4.2) it follows that
f(z) e 0. Now, let z e U13- for some j e N. Then z $ Ulk (k Φ j , k e N).
Further, since z $ Fd it follows that there exists i e N such that
z e Uiίf z $ Ui+lt3: Consequently ze(J {J B) — \JJ=ι Ui+U3-, so that
ze(4U B) - UΓ=i Uki f o r e v e r y keN, h^i + l. B y (C) (iii) i t
f o l l o w s t h a t

Σ
k i

Qk(z)\\<ei

which, by (C) (iv) implies that f(z) e 0.

Part 3. I t remains to prove (A), (B), (C) above and we do this
by induction.

First, choose εx > 0 such that (4.2) holds and put Un = 0lβ

Choose a decreasing sequence {Uu} of neighbourhoods of F1 in Δ U B
contained in 0: and satisfying ΠΓ=i Utί = Fλ. By Lemma 3 there
exists gx e HB(Δ, X) satisfying gx{s) = p(s, tn) (s e ί\), g^s) = 0
(seF - F,), g[{Δ UB)aO and

(4.3) 11 ffl(z) 11< min {1/2, eJ2} (ze(Δ\jB)~ Un) .

Now 0x is contained in a compact subset of Δ {J B. Consequently
9i( Un) is contained in a compact set contained in 0 by the continuity
of gx. I t follows by (4.2) and (4.3) that there exists ε2, 0 < ε2 < ει

satisfying g^Δ U B) + Bε2(X) c 0. So we have proved the existence
of a sequence {Ukl, keN} sίf ε2 < εx and c/i e JTg(^, X) satisfying (A)
and (C) (i)-(iv) for i = 1.

Assume that we have proved the existence of the sequences
{Ukj, keN} (1 5g j ^ π), of a decreasing sequence {εfc, l<^ k ̂  n + 1}
of positive numbers and of a sequence {(7;, 1 ̂  i ^ ^} c HB(Δ, X) such
that (A) is satisfied for 1 ̂  j ^ n and (C) (i)-(iv) is satisfied for
1 ^ ί ^ n. We show below how to choose a sequence {Ϊ7Λ>Λ+1, keN}
to satisfy (A) for j = n + 1 and then how to choose εn+2: 0 < εn+2 <
εn+1 and gn+1eHB(Δ, X) to satisfy (C) (i)-(iv) for ί = n + 1.

By the compactness of the set p(Fn+1 x [0, tn+ltn+1]) there exist
δ > 0 and ε > 0 satisfying

(4.4) p(Fn+1 x [0, tn+1,n+1]) + B4δ(X) c 0
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(4.5) 4δ < εn+1

(4.6) δ + ε < 1/2M+1 - 1/2K+2

(4.7) δ + ε < eK+1/2K+1 .

We choose {Uk,n+1, keN} as follows: Σ«=iΰm is continuous on i U 5
and by (C) (i) (Σ»=i flϋ(s) = 0 (s e Fn+1). Consequently there exists
a neighbourhood Un+Un+1 c 0K+1 of Fn+1 in J\J B such that

(4.8) II(Σ £.)(*)IK « («6 t7K+1>B+1) .
m = l

Now choose a decreasing sequence Uk,n+1 c 0Λ+1 (A; e N) of neighbour-
hoods of Fn+1 in J U B satisfying Uktn+1 = J7"w+1,^+1 (keN,k^n) and
Π?=i ϋ*,n+i = ^n+i» s o that (A) is satisfied for j = n + 1.

By Lemma 3 there exists e e HB{A, X) satisfying

(4.9) φ ) = p(β, tΛ + l i Λ + 1) («e Fn+1)

(4.10) β(s) = 0 (β 6 Fk, k 6 JV, k Φ n + 1)

(4.11) 11 e(z) \\<δ (ze(JΌB)- Un+1,n+1)

and

(4.12) e(Δ U B ) c p ( F n + ι x [0, ίΛ+li.+1]) + Jff,(X)

since p(Fn+1 x [0, tn+1>n+1]) + J5δ(X) is an open connected set which
contains 0 and the set {p(s, ίn + l f Λ + 1), 8 6 Fn+1).

Consider the function h = Σ£=i m̂ + β. Since (G) (iv) holds for
i = n it follows by (4.5) that ( Σ ϊ - i gJ(Λ U B) + 54δ(X) c 0 which,
by (4.11) implies that

(4.13) h(z) + £2δ(X) c 0 ( « e ( J U ί ) - D^+i,»+i) .

Now let z e Un+1>n+1. By (4.8) and (4.12) we have h(z) e p(Fn+1 x
[0, tn+un+1]) + J?2δ(X) which, by (4.4) implies that h(z) + B2δ{X) c O
(2 e Un+Un+1) and by (4.13) it follows that

(4.14) h{Δ ΌB) + B2δ(X) c O .

Now, put

e F
s, l g j ^
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Observe that by (C) (i), (4.9) and (4.10) π(s, 0) = h(s) (s e H). Note
also that by (4.1) diam {π(s, t), 0 ^ t ^ 1} < M (s e H). Now Lemma
6 applies to show that there exists g e HB(Δ, X) with the following
properties:

^ « + 1)(4.15)

(4.16)

(4.17)

(4.18)

(h + g)(s) = π(s

g(s) = 0

HιK*)ll<

110(2)11

(s

s

<l/2'!

ί>(s,

eF,

(ze<

,+ 2 +

^w + 1,

ε

y)

S ) -

( S e

(s e F Λ

^ » +

J\JB)

- 1

2)

>

and that there exists eκ+2, 0 < εκ+2 < ε«+i such that

(4.19) (Λ + g)(Δ U £) + ££%+2(X) c 0 .

Define </%+1 - e + g. Clearly ^ + 1 e HB(Δ, X). By (4.15) and (4.16)
it follows that (C) (i) is satisfied for i = n + 1. Further, by (4.19)
(C) (iv) is satisfied for i — n + 1.

Let ze{Δ\jB)- Un+ίt%+1. By (4.11), (4.18)-and (4.6) we have
||flr +i(«)ll ^ ίiΦ)ll + \\g(z)\\ <δ + e + l/2%+2 < l/2*+1 which implies
that (C) (ii) is satisfied for i = n + 1. Finally, let z e {Δ U B) —
U"ίί ϋ»+i,i. By (4.11), (4.17) and (4.7) it follows that

which implies that (C) (iii) is also satisfied for i — % + 1.

Proof of Theorem 1. Clearly (C) => (B) => (A). By Lemma 1,
(A)=>(D). To show that (D) implies (C) assume that P c Int P and
that I n t P is connected and locally connected at every point of P.
Let BczdΔ be a relatively open set, F c B a relatively closed set of
measure 0 and f:F—>P a continuous function. In the case of non-
compact F write F = UΓ=i F$ where F3 (j e N) are nonempty compact
subsets of Δ [j B such that there exist disjoint open sets Ô  c Δ U B
(jeN) satisfying i ^ cO,- (jeN) ([8], see also Part 1 of the proof
of Theorem 4). For each jeN, f5 = f\Fβ is a continuous function
from Fj to P. Now Theorem 3 applies to show that by the proper-
ties of P there exists for each jeN a homotopy pό: Fό x I—+P
satisfying p^s, t) e Int P (s e Fjf 0 ^ t < 1) and p5(s, 1) = fό{s) (s e Fd).
Define p: F x I—>P by p\F3 x I = pd (jeN). By the properties of
2̂ - and i ^ (i G JV) p is continuous and satisfies p(s, t) e Int P (seF,
0 ^ ί < 1) and p(s, 1) = f(s) (seF). In the case when F is compact
the existence of such a p is immediate by Theorem 3. Now by
Theorem 4 there exists feHB(Δ,X) satisfying f\F = f and
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Proof of Theorem 2. Clearly (C) => (B) => (A). It remains to
prove that (A) implies (C). Assume that there exists a closed set
FadΔ of measure 0 with infinitely many points such that every
continuous function f: F—+P admits an extension feA(Δ) satisfying
f{2)cP.

Let f:F—+P be a nonconstant continuous function. By the
above assumption there exists a necessarily nonconstant extension
feA(Δ) of / satisfying f(Δ)dP. Since every nonconstant complex-
valued analytic function is an open map [20] we have / ( J ) c I n t P .
Consequently (s, t) ι-> p(s, t) = f(st) is a continuous function from
F x / to P satisfying

p(s,t)elntP (seF,O^t<l)

P(s,l)=f(s) (seF).

In the case when f:F~~>P is a constant, say f(s) = α? ( S G F )
write F = Fil) F2 where i^, JP2 are disjoint compact sets. By the
assumption P consists of more than one point so that there is a
y eP, y Φ X. Further, by the above assumptions there exist
necessarily nonconstant functions f19 f2 e A{A) satisfying fJJF^ =
Λ(F2) = {x}, A(F2) = fJtFJ = {y} and f(I) c P, /2(1) c P. Now define
p: F x I—+P as follows

Since f and /2 are open maps p is a continuous function satisfying
(5.1).

Having proved the existence of a continuous function p: Fxl-+P
satisfying (5.1) Theorem 4 applies to show that there exists g e A(Δ, X)
satisfying g\F — f and g(I — F)aIntP. Since / was arbitrary it
follows that (A) in Theorem 1 is satisfied for our F and P. Con-
sequently (C) follows by Theorem 1.

3* Application and remarks* Given any set PdC home-
omorphic to I there exists / e A{Δ) satisfying f(Δ) = f(dΔ) = P. This
is a consequence of Rudin's theorem. Below we present some
generalizations of this result. The existence of feA(Δ) such that
f(3Δ) fills some square had been proved before Rudin's theorem and
had raised certain interest [16]. Church [5] gave a complete topo-
logical description of the sets f(dΔ), feA(Δ).

APPLICATION 1. Given any nonempty compact set PaC satisfy-
ing P = I n t P and such that Int P is connected and locally connected
at every point of P, there exists / e A(Δ) satisfying /(Δ) — f(8Δ) = P.
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Proof. Let Fad A be a Cantor set of measure 0. By the com-
pactness of P there exists feC(F) satisfying f(F) = P [13]. Now
by Corollary 1 there exists an extension feA(Δ) satisfying

APPLICATION 2. Given any nonempty set P c C satisfying P =
Int P and such that Int P is connected and locally connected at every
point of P, there exists a continuous function /: I — {1} —• C, analytic
on A and satisfying

- {l}) n E7) = f{{dA - {l}) n IT) = P

for every neighbourhood UdC of the point 1.

Proof. Let {Fw:^eiV} be a sequence of disjoint open arcs in
dΔ such that for every neighbourhood U of the point 1 there exists
nπeNsuch that Vna. U(neN, n > nσ). For each neN let Fna V%

be a Cantor set of measure 0. It is easy to construct a function
a: N—+N satisfying

Naa({n,n + 1, •••}) (neN).

Write P = U*=i-Pn where Pn are compacut sets. For each neN
there exists Λ e C(Fn) satisfying fn(Fn) = Pβ(H) [13]. Put J?7 = U =i ^
and define /: F-+P by f\Fn=fn (ne N). Clearly / is a continuous
function. By Theorem 1 there exists a continuous extension f:Δ —
{1} —» X, analytic on A and satisfying / ( I — {1}) c P. It is easy to
see that / has all the required properties.

The following application to vector-valued functions is perhaps
more interesting. Its proof is the same as the proof of Appli-
cation 1.

APPLICATION 3. Given any nonempty compact set P in a finite
dimensional complex normed space X satisfying P = Int P and such
that I n t P is connected and locally connected at every point of P
there exists feA{Δ, X) such that f(Δ) = f(dA) = P.

REMARK. Note that in Application 2 we can replace C by any
finite-dimensional complex normed space.

Note that in the case when X is infinite-dimensional one can not
fill a subset of X having nonempty interior with f(A U B) for some
feHB(Δ,X) since f(Δ U B) is always a countable union of compact
subsets of X and consequently its interior is empty. For the results
about cluster sets in this case see [8, 9].
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REMARK. If X = C then by Theorem 2 a set P e l containing
more than one point has AEP if and only if it has PAEP. If
dim X ^ 2 this is no longer true since there exist subsets P of X
having AEP whose interior is empty. An example is P = Δx where
xeX, x Φ 0.

PROBLEM. Give an example of a nonempty set PaC2 satisfying
P = ΊntP which has AEP but not PAEP.

REMARK. The results of the present paper give a partial solu-
tion to Problem 3 in [10].
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