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POSITIVE DEFINITE FUNCTIONS WHICH VANISH
AT INFINITY

ALESSANDRO FIGA-TALAMANCA

Let G be a separable noncompact locally compact group.
Let A(G) and B(G), respectively, be the Fourier algebra and
the Fourier-Stieltjes algebra of G as defined by P. Eymard.
We prove that if G is unimodular and satisfies an additional
hypothesis, which implies noncompactness, there exists an
element of B(G), indeed a positive definite function, which
vanishes at infinity but is not in A(G). This function actually
belongs to B° (G), that is, it defines a unitary representation
of G which is weakly contained in the regular representation.

We refer to [3] for the definitions and properties of A(G), B(G),
B,(G) and of the related spaces VN(G), C*(G@) and C}(G).

We recall only that C}(G) and VN(G) are, respectively, the C*-
algebra and the von Neumann algebra, generated by LY(G) acting
by left convolution on L*G). While C*(G) is the C*-algebra of the
group obtained by completing the algebra LYG) with respect to the
norm || f||C*(G) = sup.cs||7(f)||, where X is the space of all x-re-
presentations of LYG) as an algebra of operators on a Hilbert space.
We also recall that B(G) is, in a natural fashion, the dual of C*(G),
while B,(G) is the dual of C*(@) which is a quotient algebra of
C*(@). Finally VN(G) is the dual of A(G);

When G is commutative and G is the character group of G,
A(G) and B(G), respectively, coincide with the algebra of Fourier
transforms of elements of L‘(@) and the algebra of Fourier-Stieltjes
transforms of bounded regular measures on G.

Thus for G commutative our result reduces to the classical
theorem which asserts that on any nondiscrete locally compact abelian
group (;', one can construct a singular measure with Fourier-Stieltjes
transform vanishing at infinity. This classical result was proved
for the first time, for the case G = T and G = Z, by M. D. Menchoff
[10].

When G is noncommutative the situation may be quite different:
I. Khalil proved in [6] that if G is the affine group of the line, i.e.,
the group of transformations z —ax + b of R into R, then B(G)N
C(G) = A(G).

Therefore some other hypothesis, in addition to noncompactness
of G, is needed for our result to be true. In this paper we show
that A(G) == B(G)N C(G) provided that G is unimodular and in addition
satisfies the following condition:

355



356 ALESSANDRO FIGA-TALAMANCA

(H) The von Neumann algebra V.IN(G) is not purely atomsic.

This same hypothesis, which implies noncompactness, was used
in [2] for another construction. A list of groups satisfying (H) is
given in [2]. An example of a noncompact unimodular group which
does not satisfy (H) is given in [1] and [7]. This example, as shown
in [9] and in [13] does not satisfy the conclusion of the theorem.
It seems possible that, for unimodular groups, (H) is necessary as
well as sufficient for the existence of functions of B, which vanish
at infinity and are not in 4. We also do not know whether, for
nonunimodular groups condition (H) is sufficient and/or necessary to
yield the conclusion of the theorem.

The techniques used in this paper are related to those developed
in [2] which in turn are related to the techniques of [4].

2. Preliminaries. The main device in proof of the theorem
consists in transferring certain techniques of the theory of Fourier
series on commutative compact groups to the present context. The
simplest commutative infinite compact group is the Cantor group D
which we define as the product D = I, {—1, 1};, of countably many
multiplicative groups of two elements. The character group D of
D can be simply described: first we have the Rademacher functions
7;(t) = ¢; for t = {¢;} € D, which are simply the projections of an ele-
ment into its j-th coordinate. The functions 7; are of course char-
acters of D and also independent random variables with zero mean.
All characters w of D may be obtained then as finite products of
Rademacher functions. The characters of D are called the Walsh
functions and are numbered (according to R.E.A.C. Paley) as follows:
wy=1, w,=7r; -or; ifn=20"" 400 4257 with j, <j, < < j.
We shall indicate by w a generic element of the character group
D of D. We shall summarize in the following lemma a few well
known technical results concerning Fourier series on D.

LEMMA. Let —1 < 8; <1 be a sequence of real numbers. Let
6.(t) = [17=. U + Biri(t)), for t€D. Then there exists a probability
measure [t defined on the Borel subsets of D, such that

(1) 6.(t) = S50 Aw)wy()

(2) f(w,)=By--B;, of n=2"""4.. 4257, s0 that lim, f(w,)=0
if and only if lim; B; =0

(3) o ts absolutely continuous vf and only vf ¥Bi<co. Thus
if 2B% = co, no subsequence of @, can converge imn the norm of
LY(D).

Proof. The measure p is obtained as a weak* limit of the posi-
tive functions ¢, which have all integral one. Statements (1) and



POSITIVE DEFINITE FUNCTIONS WHICH VANISH AT INFINITY 357

(2) are verified immediately. For (3) one proves that if 38} < oo,
¢, € LA(D), with bounded norms, and that if 38} = + o, 4,(f) con-
verges to zero almost everywhere. For a more detailed proof cfr,
[5, Th. 3.2. and Th. 4.1.].

We shall describe now the machinery which will allow us to
bring to bear upon our problem ideas, results and techniques per-
taining to Fourier analysis on the Cantor group. An analogous
machinery was used in [2]. First of all, since we assume that G is
unimodular, we can make use, as in [2], of the canonical gace space
I = (LAQ), VN(®), tr), defined for a unimodular group G, by L. E.
Segal [11], and extensively studied by R. A. Kunze [8] and W. F.
Stinespring [12]. We refer to the cited papers and to [2] for the
statements of the results needed here. We recall only that A(G)
is the image under an “inverse Fourier transform” of the space
LY(I') of the operators which are measurable with respect to VN
and “absolutely integrable” with respect to the trace tr. The trace
is defined as tr(P) = ||f|/%2@, Wwhen P is a projection and P = L,
(left convolution by f), with fe L¥G), and tr(P) = o, otherwise.
The fact that G satisfies property (H), which will be always assumed
from now on, implies that there exists a projection P, of finite
positive trace, which contains no minimal projections of VN. By
choosing an appropriate multiple of the Haar measure on G, we may
assume that tr(P) =1. (If G is discrete we may take P to be the
identity and thus keep the usual normalization for the Haar measure
of G). Since P contains no minimal projections, for each 4, 0 <8< 1,
there exists a subprojection Q, & P such that tr(Q,;) = ¢. This is
proved just as in the commutative case when instead of projections
one deals with measurable sets containing no atom for a given
measure (cfr. [2]). Using this fact we construct a sequence of
partitions of P as indicated in [2]. That is, we let =, = {P,, +--,
P}y P=P, + +-+ + P, P, € VN(G), tr(P,,) = 1/2". We also re-
quire that =,,, partitions each of the projections of =, into two
projections of equal trace.

We define now the Rademacher operators {R,}7., and the Walsh
operators {W,};_, as in [2], starting from the partitions {r,}. Reecall
that R, = 3i%, (—1)**'P,,, where n, = {P,,, -+, P,,»}, and the projec-
tions of 7, are indexed so that P,_,, = P,,_, + P,z for k=1, -+-,
2", Recall also that W, =P and the Walsh operators W, are
finite products of the Rademacher operators R,, in such a way that
n=2"" 4 ees £ 2670 if 5, < 5, < o0 J, and W, =R; -+ R;. The
sequence {W,};_, is an orthonormal system in L") which will be
referred to as the Walsh system.

We define then the operators &, mapping L'I") into L'I") as
follows:
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s (T) = ijtr(WkT)Wk , for TeL{I).
We notice that if n, = {P,, ***, Py}, then

uT) = S mTIP.
where
m(T) = 2"tr(P,;T) .
Therefore, since >, [tr(P,;T)| = || T'|lsvr» We also have
N &EAT) e = [Tl pay -

We shall define now an operator & of L)(I") into L'(I") which is
the limit in the strong operator topology of the sequence &,. We
start by defining &(VN) to be the commutative ». Neumann sub-
algebra of VN generated by the projections {P,;}. Since Z(VN)
is commutative, it is isomorphic to L“(Y, _#, m) where Y is a set,
A a oc-algebra of subsets of Y and m a positive measure of total
mass one.! Let FE,; be the elements of _#Z corresponding to P,;.
Then m(E,;) = tr(P,;) and the sets {E,;} generate _#Z Now if Te
LY(I") we can define a measure /¢t on .2 by letting (E,;) = tr(P,;T)
and p(A) = tr(@T) where Ae. . and Qe & (VN) is the projection
corresponding to A. The Radon-Nikodym derivative of g with
respect to m is a function in LY(X, _#, m) which will be denoted by
& (T). It is clear that & (T) can be identified with an element of
LYI"). Furthermore & (& (T)) = &(LAT)) = L(T). Since &(T)
is a limit in L'(I") of linear combinations of the projections P,;, we
also have

” gn(T) - g(T)Ille —0.

3. The main theorem. We now have all the ingredients for
the proof of our result.

THEOREM. There exists a positive definite function fe B(G)
which is not in A(G) and such that lim,_. f(x) = 0

Proof. Let {a;} be a decreasing sequence of positive real num-
bers, bounded by one, and satisfying lima; = 0 and >, @} = . Let
D be the Cantor group. For each ¢ = {¢;}€ D we shall construct
inductively a sequence f% of positive definite elements of A(G), which
converge uniformly to an element f'e B,. We shall prove that for

1 Y can be chosen to be D, the Cantor group with its Haar measure as shown in
footnote 2).
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some teD, fi¢ A(G). We construct f% as the Fourier transform
(Fi) (x) = tr(L¥F:) of operators FicZ(VN)< L'(I'). We refer
to [11, p. 47] for properties of the transform T~ of an element T
of L(I'). Welet F, = F'! = P for each t ¢ D. The operators F', will
have the form
Fi=T(P+r0O%R,,), for t={r@)eD,

where the sequence j, will be determined inductively. Together
with the sequence F'’, we shall construct a sequence of compact sets
K,, which will be used in the induction procedure. We let K, =
{xeG:|F (x)] = «,/2}. Suppose that, for each ¢, F¢ ..., F: and
K, ---, K,_,, have been defined. We let K, = {x € G: |(F})"(z)| = «,/2,
for some te D} U K, _..

Notice that because of the form of F, as ¢ varies in D, we
only have finitely many, in fact 2"*, different operators F!. Thus
K, is the union of finitely many compact sets and it is compact.
Let v(z) = D37, [tr(LXW;)|*. Then, as proved in [2], v is a con-
tinuous function of x. Therefore, by Dini’s theorem, for some posi-
tive integer h,.

Zh‘, [tr(LwW)F<2*, for z€kK,.

JZhy

Let j, be such that j, > j,_,, and 2»™* > h,, and define
Ft, = F: + frjn(t)%Rj”F; , where t={rjt)leD.

We notice that R; = W,j,—i. Therefore all the Walsh operators ap-
pearing in the expansion of R; F; have indices greater than #,.
As a consequence, if W is any such Walsh operator,

[tr(L;W)| < 27, for xzeckK,.

Since the number of terms appearing in the expansion of R; F; is
exactly 2", we deduce that

- : 1 n+1
|[tr(L¥R; F})| < <E> , for xzekK,.
Now,

(Fia) (@) = tr(L2FY) + 73, () S-tr(LIR;, FY) .

Therefore, for z ¢ K,,

[(FLo) (@) < ‘;” +% —q,.
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On the other hand, if z¢ K, \K,._,, with m < n, then

(R, FY) (@) < —, for m<k<n.

2k+1

Therefore, if z¢ K, \K,._,,

(FLy @) = | Lo, ()R, FL) (@)

2
ek “;—1rj-mﬂ(t)(ij_lF;l,;)A(m) + (Fi) ()
a, 1 1) «.
< Zmol 4 e ) LIl Xy
= 2 <2n+1. a om 2 = 1

(we have used the fact that the sequence «; is decreasing). We have
proved therefore that

[(Fr) (@] sa; for zeK; j=n.

Since K,., 2 {z: |(FL, ) ()] = «,../2}, we can say that for all » and
Jj=mn,

|Fuey] = [(Fo) (@) = ; for zekK;.
Since for ¢ = {r;(t)} € D,

F, = E <P + 'Tjk(t)%ﬁRjk) )

it follows that F is a positive element of the commutative algebra
Z(VN) and tr(Ff) = tr(P) =1. We show now that f! converges
uniformly (and hence weak*) to a positive definite function f*e B,.
Let ¢ >0 and n be such that 2, <e¢. Then for all positive in-
tegers p,

[Fi@) — i@ =2, <e for z¢K,.
On the other hand if xe K, and 4 = 0, then z € K,,;,, and hence

Fo@) — Fo@)] = i‘i’;—im

~ a,., 1
Pl @) < T

Thus for ze K,
£4®) = Fas@)] £ 51 F50) = Fhor@)| = S2

We conclude that f% is uniformly Cauchy and converges, uniformly
and weak*, to a positive definite function f*€ B,. Since 1 = tr(F}) =
t(1) converges to fi(1), we have that || f’f}!BP =1.
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It remains to prove that for at least some te D, fi¢ A(G).
Suppose that for all ¢, fte A(G). We let F'* be the element of L'(I")
such that tr(L¥F*) = f'(z). We consider now an application ® mapping
Z(VN) onto L*(D) and & (L') onto L'(D). We simply define ® W, =
w,(t), where the w,(t) are the Walsh functions and extend € linearly
and by continuity (weak* continuity for VN).? We denote by X the
subspace of L~(D) which is the image under O of {&(T): T € C¥*(G)}.
Let 8;, = a,/2 and B8, = 0 if h = j,, and construct the functions ¢,
as in the Lemma. Then

Binis + 8 = IL (1 + Sry, (o) ) = OFG) ,
k=1 2
and ¢, = ¢;, for j, <k < jup.
Let T be an arbitrary element of C)(G), then

tr(F*T) = lim tr(F:T) = lim tr(Fe (T))
= lim S 6.t + )yu(s)ds = lim g, *u(t) ,

where u € X is the element w = @ (T). On the other hand (cfr.
the Lemma) the functions ¢, converge weak* (with respect to C(D))
to the measure g#. Thus z is a singular measure, because 3 («,/2)’ =
+ oo, and lim, #(w,) = 0. Since ¢, is a partial sum of the series of
¢ lim, ||, — Z]l. = 0. This means that the operator on L*D) of
convolution by ¢, approaches in norm the operator of convolution
by . This implies that

lim || g, xu — (|2 = 0
n

It follows that
tr(F'T) = lim ¢,xu(t) = p=u(t) ,

the last equality holding for almost every t € D. Since G is separable
the unit sphere of VN is metrisable in the strong operator topology.
Therefore given one of the Walsh operators W, there exists a
sequence T', of elements of C}, of norm less than or equal to one,
which converges to W in the strong operator topology. Let u, =
0% (T,), then u, converges to w in the weak* topology of L~(D),

2 Consider the gage space I' = (L¥ @), VN(G), tr) mentioned after the proof of the
Lemma, and let 52 be the closed linear span of the Walsh operators (W,)n-o in L¥(G).
Then the gage space (5%, & VN), tr), where &(VN) acts on £ by multiplication is
unitarily equivalent to the commutative gage space (L¥D), L*(D), m), where D is the
Cantor group and m is its Haar measure. It follows from this that © has the asserted
properties.

8 This is the only place where separability of G is used.
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because T, converges to W weak*, and & is weak* continuous from
VN to &(VN) (it is the adjoint of a continuous map between their
respective pre-duals). For each te D

tr(F*W) = lim te(F'T,) .

But tr(F'T,) = p+u,(t) a.e., and convolution by a bounded measure
is a weak* continuous map of L“(D) into L*(D). Thus lim, gxu, =
p=w in the weak* topology of L*. On the other hand pxu,(f) con-
verges pointwise to tr(F*'W), except for those ¢ which belong to the
set {teD:tr(F'T,) + p=u,(t) for some n}. Since this set is the
countable union of sets of zero measure, p=u,(t) — tr(F*T) a.e., and
hence pxu, — tr(F'T) in the weak* topology of L=, from which it
follows that tr(F*W) = p=w(t), a.e., and, since the Walsh functions
are denumerable,

tr(F'W,) = prw,(t) = f(w,)w,(t) , for all =,

except for a negligible set of te D. We fix teD so that the above
identity holds. It follows that tr(F*W,) = ¢, (w)w,(t) if n < 2in
and &; (F') = F;. This means that lim, F; = &(F*) in L'(I), but
if this were the case the functions ¢!, would converge in L'(D) which
is impossible because they are the partial sums of the Fourier-
Stieltjes series of the singular measure £, defined by p'(E) = (E + t).
We conclude that for at least one ¢ the function f* cannot be in
A(G) and the proof is complete.

Aknowledgement. In several earlier versions of this paper the
proof that the positive definite function constructed was not in A(G),
was incomplete. We are grateful to the referee and/or to Bernard
Russo for carefully detecting missing steps and hidden hypothesis.
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