NOETHERIAN FIXED RINGS

DANIEL R. FARKAS AND ROBERT L. SNIDER

One of the basic questions of noncommutative Galois theory is the relation between a ring R and the ring S fixed by a group of automorphisms of R. This paper explores what happens when the group is finite and the fixed ring S is assumed to be Noetherian. Easy examples show that R may not be Noetherian; however, in this paper it is shown that R is Noetherian with some rather natural assuptions. More precisely we prove the Theorem 2: Let S be a semi-prime ring. Assume that G is a finite group of automorphisms of S and that S has no |G|-torsion. If S^G is left noetherian then S is left noetherian.

Theorem 2 answers a question raised by Fisher and Osterburg [4]. This result rests on calculations which can best be described as belonging to noncommutative Galois theory. The basic theorem here may be of independent interest.

THEOREM 1. Let R be a semisimple artinian ring. If G is a finite group of automorphisms of R and |G| is invertible in R then R is a finitely generated ring R^{G} -module.

The proof of Theorem 1 follows the spirit of Karchenko's work on polynomial identity rings ([6]).

- 1. A proof of Theorem 1. We will repeatedly need Levitzki's fixed ring theorem ([8]): Suppose R is a semisimple artinian ring. If G is a finite group of automorphisms of R with |G| invertible in R then R^{σ} is semisimple artinian.
- LEMMA 1. If Theorem 1 is true when G is a simple group then it is true for an arbitrary finite G.

Proof. By induction on the length of a composition series for G. If G is not already simple choose $H \Delta G$ with $1 \neq H \neq G$. By Levitzki's theorem R^H is semisimple artinian. G/H acts on R^H and R^H has no |G/H|-torsion; by induction R^H is a finitely generated right R^G -module. Again, induction shows that R is a finitely generated right R^H -module. The lemma follows.

We eventually assume that G is simple. In that case either G consists entirely of outer automorphisms or entirely of inner automorphisms.

LEMMA 2. Let B be a simple artinian ring and let G be a finite group of outer automorphisms of B. Then B is a finitely generated right B^{G} -module.

Proof. By [1], B^a is a simple ring and B is a free module over B^a of rank |G|. (Cf. [5] for the case of a division ring.)

LEMMA 3. Let B be a simple artinian ring and let G be a finite group of inner automorphisms of B. Assume |G| is invertible in B. Then B is a finitely generated right B^{G} -module.

Proof. Let F be the center of B.

For each $g \in G$ pick one $x \in B$ such that ${}^gb = xbx^{-1}$ for all $b \in B$. Call the finite set so chosen, \overline{G} . Then collection of sums, $F\overline{G}$, is a finite dimensional algebra over F. Since $1/|G| \in F$, Maschke's theorem for twisted group algebras ([9]) states that $F\overline{G}$ is a separable algebra. Thus there is a finite extension field K of F such that K is a splitting field for each simple constituent of $F\overline{G}$.

 $K \bigotimes_F B$ is a simple artinian ring with center K. G acts on $K \bigotimes_F B$ by

$$g(k \otimes b) = k \otimes gb$$
.

Obviously this action, too, is induced by inner automorphisms. A straight-forward calculation shows that $(K \otimes B)^{g} = K \otimes B^{g}$. Similarly, if $K \otimes B$ is a finitely generated right $(K \otimes B)^{g}$ -module then B is a finitely generated B^{g} -module.

Thus we replace B with $K \bigotimes_F B$ and assume each simple constituent of $F\bar{G}$ is a total matrix ring with entires in F. Let \mathscr{E} be the set of centrally primitive idempotents in $F\bar{G}$.

The crux of this lemma is to show that if $e \in \mathcal{E}$ then eBe is a finitely generated right B^{σ} -module. An element of B^{σ} commutes with elements of $F\bar{G}$ so it certainly commutes with e; hence eBe is a right B^{σ} -module. Let ε_{ij} be a set of matrix units for $eF\bar{G}$. If x is in eBe, set

$$\pi_{ij}(x) = \sum_{k} \varepsilon_{ki} x \varepsilon_{jk}$$

 $\pi_{ij}(x)$ commutes with each of the matrix units. Since F is the center of B, it commutes with $eF\bar{G}$. Thus it commutes with $F\bar{G}$. In other words, $\pi_{ij}(x)$ is in B^{σ} . The map $\pi_{ij}: eBe \to B^{\sigma}$ is a right B^{σ} -module map by the argument at the beginning of this paragraph. We claim that the map

$$\sum_{i,j} \pi_{ij}$$
: $eBe \longrightarrow \bigoplus_{i,j} \sum B^{G}$

is injective. For if $\sum_{k} \varepsilon_{ki} x \varepsilon_{jk} = 0$ for all i and j, multiple on the right by ε_{ij} :

$$\varepsilon_{ii}x\varepsilon_{jj}=0$$
 for all i and j .

Hence exe = 0. But $x \in eBe$ implies exe = x. We finish this paragraph by noticing that Levitzki's theorem says that B^{G} is right noetherian. Since eBe is isomorphic to a submodule of a finitely generated B^{G} -module, eBe is finitely generated.

Next we show that if e and f are different elements of $\mathscr E$ then fBe is a finitely generated right B^{σ} -module. (Of course it is a B^{σ} -module as above.) Since B is simple, BeB=B. Thus we can choose $v_i \in fBe$ and $u_i \in eBf$ so that

$$f = \sum_{i} v_i u_i$$
 .

Define $\varphi: fBe \to \bigoplus \sum_i eBe$ by $\varphi(y) = (u_iy)$, a right B^c -module map. $\varphi(y) = 0 \to u_iy = 0$ for each $i \to (\sum v_iu_i)y = 0 \to fy = 0$. But fy = y. Hence φ is injective. Finish the argument as before.

Because $B = \sum_{e,f \in \varepsilon} fBe$, B is a finitely generated right B^{G} -module.

Proof of Theorem 1. Induct on the order of G. Assume G is simple.

Let e be a centrally primitive idempotent in R. eR is a simple artinian ring. Moreover the stabilizer $H = \operatorname{Stab}_{G}(e)$ acts on eR and $1/|H|e \in eR$. By Lemmas 2 and 3, eR is a finitely generated right $(eR)^{H}$ -module.

Claim.
$$(eR)^H = e(R^G)$$
.

Certainly $e(R^{\sigma}) \subseteq (eR)^{H}$. Let $G = \bigcup_{\gamma \in \Gamma} \gamma H$ be a coset decomposition of G with $1 \in \Gamma$. G permutes the centrally primitive idempotents of R and for $\alpha \neq \beta$ in Γ , ${}^{\alpha}e \neq {}^{\beta}e$. Equivalently, if $\gamma \neq 1$ is in Γ , $e({}^{\gamma}e) = 0$. If $x \in (eR)^{H}$ define $t_{\Gamma}(x) = \sum_{\gamma \in \Gamma} ({}^{\gamma}x)$. If $g \in G$, $\{g\gamma \mid \gamma \in \Gamma\}$ are also coset representatives for H. Thus ${}^{\sigma}t_{\Gamma}(x) = t_{\Gamma}(x)$. That is, $t_{\Gamma}(x) \in R^{\sigma}$. But $et_{\Gamma}(x) = x$ by the remarks above about multiplying idempotents. Thus $(eR)^{H} \subseteq (eR^{\sigma})$.

We now know that eR is a finitely generated right $e(R^a)$ -module. That means eR is a finitely generated R^a -module. Since $R = \sum_e eR$, we are done.

2. Theorem 2 and its relatives.

LEMMA 4. Let A be a semiprime ring. Assume G is a finite group of automorphisms of A and A has no |G|-torsion. Then tr_G does not vanish on any nonzero right ideal of A.

(Here
$$tr_G(a) = \sum_{g \in G} (ga)$$
.)

Proof. Suppose I is a right ideal of A with $tr_G(I) = 0$. If $J = \sum_{g \in G} {}^g I$ then J is a G-invariant right ideal of A with $tr_G(J) = 0$. By [2], J is nilpotent. But the only nilpotent right ideal in a semi-prime ring is 0.

Proof of Theorem 2. S^G is left Goldie, so according to [6], S is (semiprime) left Goldie. Let R be the left quotient ring for S; R is semisimple artinian. By Theorem 1 we can find a finite set of generators x_1, \dots, x_n for R as a right R^G -module. Choose a regular t and s_i both in S such that $x_i = t^{-1}s_i$.

 $R=\sum_{i=1}^n t^{-i}s_iR^g \Rightarrow tR=\sum_i s_iR^g$. But tR=R since t is invertible. Thus we assume $x_i \in S$.

Define $T: S \to \bigoplus \sum_{i=1}^n S^G$ by $T(a) = [tr_G(ax_i)]_{i=1}^n$. T is clearly a left S^G -module map. We will be done once we prove that T is injective.

T(a)=0 implies $tr_{\sigma}(ax_{i})=0$ for all i. But tr_{σ} is a right R^{σ} -module map. Thus $tr_{\sigma}(aR)=0$. By the previous lemma, a=0.

We have actually proved that S is a finitely generated S^a -module! One might well ask whether the requirement that S have no |G|-torsion can be dropped. Consider the following counterexample. Let F be a field of characteristic p>2 and let Φ be the free group on x and y. If S denotes the ring of two-by-two matrices over the group algebra $F[\Phi]$ then S is semiprime but not noetherian. Let G be the multiplicative subgroup of S generated by

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix}, \text{ and } \begin{bmatrix} 1 & y \\ 0 & 1 \end{bmatrix}.$$

G is isomorphic to the semidirect product of $Z/p \oplus Z/p \oplus Z/p$ with Z/2. Since char $F \neq 2$, $S^{\begin{bmatrix} 1 & 0 \end{bmatrix}}$ is the collection of diagonal matrices. The only diagonal matrices fixed by $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ are the scalar matrices. Now a simple calculation shows that S^a consists of those scalars in the center of $F[\Phi]$. But it is well known that the center is F, a patently noetherian ring.

However, the |G|-torsion restriction is not needed when S is (semiprime) commutative or, more generally, when S has no nilpotent elements. There are several difficulties in proving the last statement along the lines of Theorem 2. First, there are division rings on which tr_{σ} vanishes. Even if this objection is met, our induction and restriction techniques all ignore the question of fidelity of action. Reconsider, for instance, Lemma 4. The Bergman-Isaacs theorem states that if H is a group of automorphisms of J and $tr_{H}(J) = 0$

then J=0. Thus implicit in our argument is the proposition that $tr_G(J)=0 \Rightarrow tr_{G/K}(J)=0$ where K is the kernel of the action of G on J. The implication is true because J has no |K|-torsion.

We avoid these complications (and, of course, replace them with other complications) by refining the notion of trace. Let G be a finite group acting on a ring R. If \wedge is a subset of G define t_{\wedge} : $R \to R$ by

$$t_{\wedge}(r) = \sum_{i \in \wedge} (^{i}r)$$
.

 t_{\wedge} is an R^{g} -bimodule map. Notice that $tr_{g} \equiv t_{g}$.

Lemma 5. Let G be a finite group acting on the division ring D. Then there is a subset $\wedge \subseteq G$ such that t_{\wedge} is a mapping from D onto D^{G} .

Proof. Suppose we can find \wedge such that t_{\wedge} is a nonzero function from D into D^{σ} . Say $d \in D$ such that $t_{\wedge}(d) = w \neq 0$. If $x \in D^{\sigma}$, $t_{\wedge}(dw^{-1}x) = t_{\wedge}(d)w^{-1}x = x$. Thus t_{\wedge} is surjective.

We argue by induction on the length of a composition series for G. If G is simple and does not act faithfully then G acts trivially; choose $\wedge = \{1\}$. If G is simple group of automorphisms, a result of Faith ([3]) shows that t_G is not identically zero.

When G is not simple choose $H \Delta G$ with $H \neq 1$ and $H \neq G$. By induction there is a subset $A \subseteq H$ such that $t_A \colon D \to D^H$ is surjective. G/H acts on D^H , so we can find $C \subseteq G/H$ such that $t_C \colon D^H \to D^C$ is surjective. If B consists of representatives in G for elements of C then $t_C = t_B$. Now $t_{B \cdot A} = t_B \cdot t_A$ is the desired map.

Let S be a ring without nilpotent elements. Suppose G is a finite group of automorphisms of S such that S^a is left noetherian. By [7] S is a semiprime left Goldie ring. By the Faith-Utumi theorem the quotient ring, R, of S has no nilpotent elements. Let e be a centrally primitive idempotent of R.

LEMMA 6. $S \cap eR$ is a finitely generated left S^{G} -module.

Proof. We first observe that the left quotient ring of $S \cap eR$ in eR is the entire division ring eR. Choose z and s in S with z regular such that $e = z^{-1}s$. Then $s = ze \in S \cap eR$. If $x \in eR$ choose q and w in S with q regular such that qx = w. Then (sq)x = sw. But sq and sw are in $S \cap eR$ with sq regular when considered as an element in eR.

 $H = \operatorname{Stab}_{\sigma}(e)$ is a group which acts on $S \cap eR$. Pick a transversal, $G = \Gamma \cdot H$. As in Theorem 1, if $a \in S^H \cap eR$ then

$$t_{\Gamma}(a) \in S^{G}$$
 and $e \cdot t_{\Gamma}(a) = a$.

Thus t_{Γ} is an injective left S^{G} -module map from $S^{H} \cap eR$ into S^{G} .

The Galois theory for division rings ([5]) as applied to eR implies that eR is a finite dimensional right $(eR)^H$ -vector space. As in the proof of Theorem 2 we can choose a basis x_1, \dots, x_n in $S \cap eR$. Use Lemma 5 to find $\bigwedge \subseteq H$ so that t_{\wedge} is nondegenerate on eR. Define $T: S \cap eR \longrightarrow \bigoplus \sum_{i=1}^n S^G$ by

$$T(a) = [t_{\Gamma \cdot \wedge}(ax_i)]_{i=1}^n$$
.

It is easy to check that T is a well defined left S^a -module map. The lemma is completed by showing that T is injective. Suppose $a \neq 0$ and T(a) = 0. Then $t_r \cdot t_{\wedge}(ax_i) = 0$ for each i. Since t_r is injective, $t_{\wedge}(ax_i) = 0$ for each i. That is, $t_{\wedge}(a \cdot eR) = 0$. But eR is a division ring: $a \cdot eR = eR$. We have contradicted the nonvanishing of t_{\wedge} .

THEOREM 3. Let S be a ring without nilpotent elements. If G is a finite group of automorphisms of S and S^c is left noetherian then S is left noetherian (in fact, is finitely generated as an S^c -module).

Proof. So far we have proved that $\sum_{e} (S \cap eR)$ is a finitely generated left S^{σ} -module, where the sum is taken over the centrally primitive idempotents of R.

As observed in the first paragraph of Lemma 6, $S \cap eR$ contains an element invertible in eR. Consequently there is an element $d \in \Sigma(S \cap eR)$ which is invertible in R. Define $f: S \to \Sigma(S \cap eR)$ by f(s) = sd. Since f is an injective left S^{σ} -module map, S is a finitely generated left S^{σ} -module.

REFERENCES

- 1. G. Azumaya and T. Nakayama, On irreducible rings, Ann. of Math., 48 (1947), 949-965.
- 2. G. M. Bergman and I. M. Isaacs, Rings with fixed-point-free group actions, Proc. London Math. Soc., 27 (1973), 69-87.
- 3. C. Faith, Galois subrings of Ore domains are Ore domains, BAMS, 78 (1972), 1077-1080.
- 4. J. W. Fisher and J. Osterburg, Semiprime ideals in rings with finite group actions, to appear.
- 5. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ., 37 (1964).
- 6. V. K. Kharchenko, Galois extensions and quotient rings, Algebra and Logic (transl.), Nov. 1975, 265-281.
- 7. V. K. Kharchenko, Generalized identities with automorphisms, Algebra and Logic (transl.), March 1976, 132-148.
- 8. J. Levitzki, On automorphisms of certain rings, Ann. of Math., 36 (1935), 984-992.

9. D. S. Passman, Radicals of twisted group rings, Proc. London Math. Soc., (3), 20 (1970), 409-37.

Received October 13, 1976. Farkas was partially supported by NSF grant MCS76-06010 and Snider by NSF grant MCS76-05991.

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY BLACKSBURG, VA 24061