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EXPONENTIAL REPRESENTATION OF SOLUTIONS TO
AN ABSTRACT SEMI-LINEAR DIFFERENTIAL
EQUATION

G. F. WEBB

It is shown that the solutions to the abstract differential
equation u'= — (A + B)u, u(0) = x € X, where X is a Banach
space, — A is a linear analytic semigroup generator, and B is
Lipschitz continuous from the domain of a fractional power of A
to X, have the exponential representation u(t)=
lim,_.(I+t/n (A + B)) "x.

1. Introduction. Let X be a Banach space with norm
| Il. We are concerned with the abstract semi-linear differential equa-
tion in X

(1.1) du(t)ldt = — (A +B)u(t), t>0, u(0)=x€X,

where — A is the generator of an analytic semigroup of linear operators
in X and B is Lipschitz continuous from the domain of a fractional power
of A to X. The objective of this paper is to obtain the exponential
representation of the solutions to (1.1) in the form

(1.2) u(t)= !lig_! (I+t/n(A+ B))"x.

Exponential representations of the form (1.2) are very well known for the
case that A and B satisfy accretive type conditions (see, e.g., [1} and
[8]). In the accretive case the nonlinear resolvent (I +t/n(A + B))™'is
Lipschitz continuous with

[(I+t/n(A+B) ' ,=(1-ty/n)", t=0, n sufficiently large,

where y is some real constant. In our case the main difficulty in
establishing (1.2) is that the nonlinear resolvent satisfies a more general
condition of the form

[I+t/n(A+B) " |, =M(1~-ty/n)™", t=0, n sufficiently large,

where M and y are real constants and M > 1.
We make the following assumption on A':
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(1.3) there exists w <0 such that A = A,— wl, where A, is a closed
densely defined linear operator from X to X, the resolvent set of
A, contains the sector Se={1:A#0, w/2-P<arg<
37/2 + ®}, ® some constant in (0, 7/2), and [(Al — A,)' | = M/| A |
for A € S,, where M is a given constant = 1.

As a consequence of (1.3) we have (see [3]):

(1.4) — A is the infinitesimal generator of an analytic semigroup of
linear operators T(¢t), t=0 in X, | T(¢t)| = Me* for t =0, and
[(I+¢t/nA)™"|=M(1— wt/n)™" for t =0 and n a positive integer;

(1.5) if 0 < a <1 then the fractional power A " is defined as a bounded
linear operator in X by A™* = (l/F(a))j e *s*'ds,and D(A*)
0

is a Banach space with norm | x ||, < |A“x| for x € D(A®);

(1.6) if 0<a <1, then there exists C >0 such that | A°T(¢)| = Ce“t ™"
for t >0.

We make the following assumption on B:

(1.7) there exists a €(0,1) such that B is an everywhere defined
operator from D(A*) to X and there exists L >0 such that
[Bx—By|[=L]|x~y|. for x,y € D(A®).

Under the assumptions (1.3) and (1.7) and the assumption that
x € D(A*®) the equation (1.1) can be integrated to yield the equivalent
integral equation

(1.8)  u(t)=T()Ax - f "AT(t - s)BA~"u(s)ds, =0.

(see, e.g., [5], Chapter 3). The equation (1.8) is a singular Volterra
integral equation and has been subject of extensive study. The case in
which B: D(A*)— X is locally Lipschitz continuous is treated in [5], the
case in which A ' is compact and B: D(A *)— X is Holder continuous is
treated in [3], and the case in which B is accretive and B: D(A*)— X is
locally continuous is treated in [7]. In our treatment of (1.8) the
following lemma (which is similar to Gromwall’s lemma) will play a
fundamental role (see also [3], Theorem 7.1.1):

Lemma 1.1. Let w: [0, t]—[0,°) be continuous, let a=0, b =0,
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w€ER,0<a<l, and let
19)  w(t)=ae” + bf et — sy w(s)ds, O0=t=t
0

Then, for all real y such that y > w and bT(1 — a)(y — w)* ' <1, we have
that

1.10) w@)sSa(l-bI(1-a)(y—w))'e", 0st=t,

Proof. We will use the gamma function formula
(1.11) F(z)=Bzf e Ps'ds for z>0, B>0
0

(see [9], p- 265). Let y be as above, and let S = supy=,;=,e "w(t). For
0=t=1t, (1.9) implies
e "w()= ae“ M+ bJ;[ e“ NNt —s) e " w(s)ds
Sa+bSTA-a)(y —w)* .
Thus, S = a + bST(1— a)(y — w)*"', which implies (1.10).

2. Existence of solutions. It is well known that under the
assumptions (1.3) and (1.7) there exixts a solution to (1.8) for each
xED(A®) (see, e.g., [5], Theorem 3.3.3). We will prove this fact
below, however, since our proof will be instructive for the techniques we
use to prove (1.2).

ProposITION 2.1. Let (1.3) and (1.7) hold and let x €
D(A®). There exists a unique continuous function u: [0,2)— D(A*®)
satisfying '

@.1) u(t)= T(t)x - f T(t - s)Bu(s)ds, =0,

Proof. Let y be real such that
(2.2) Yy>w and CLI[(1-a)(y —w)'<1
and let t,>0. Let Y be the Banach space of all continuous functions u

from [0,%)] to X with norm |ully = supo=.s,e ™| u(t)||. Define the
mapping F: Y —> Y by
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(Fu)(t)=T(t)Ax —f A°T(t—s)BA “u(s)ds, 0=t=1,
0

We will use (1.11) to show that F maps Y into Y and F is a contraction
on Y.
First, we see that (Fu)(¢) is continuous in ¢ for each u € Y, since for

O=t=n=1,

| (Fu) (1)) — (Fu) (t,)] = lU.:z A°T(s)BA*u(t,— s)ds

+ ’UO A°T(s) (BA “u(t,— s)— BA“u(t,— s))ds

+[(T(t)~ T() Ax ||

éfz Ce*s™ sup-| BA “u(t,— s)| ds

n=s=n

+ J’“ CLe“s™ |lu(t,— s)— u(t,— s)|ds + ||[(T(t,)— T(t)) Ax]|.

Next, we see that F is a contraction, since for u,v € Y, 0=t =1,
e [|(Fu) (1) = (Fv) (1)
=CL L[ e (=) e |u(s)—v(s)| ds
=(CLT(1-a)(y — o) Du-v].

By the contraction mapping theorem there exists a unique u,€ Y
such that Fu,= u,. Define u(t)= A “uy(t) for 0 = +=t, and obviously
u(t) satisfies (2.1) uniquely. Furthermore, u(t)€ D(A°) for 0=t =1,
and u(t) is continuous from [0, #] to D(A*) (here we have used the
continuity of A™®). Since ¢, is arbitrarily large, the proof is finished.

DEerFINITION 2.1. Define the family of operators U(t),t=0 in
D(A*) by U(t)x = u(t), where u is the unique solution of (2.1) for a
given x € D(A®). Then, U(t),t =0 is a strongly continuous semigroup
of nonlinear operators in D(A®). In fact, we have the following:

ProrosiTioN 2.2. Let (1.3) and (1.7) hold and for each t =0 let
U(t): D(A*)— D(A*) be defined as above. Then, U(t),t =0 satisfies
the following :

(23) U@©)=1I and U(#)X: [0,0)— D(A*) is continuous in ¢ for each
fixed x € D(A°);
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24) Ul+t)x=U@)U(t)x for t,,,=20, x ED(A*);
25 lu@®x-U@®)yl.=MA-CLT(1-a)(y —o))" e"|x -yl
for t=0,x,y € D(A®), and y satisfying (2.2).

Proof. (2.3) follows immediately from Proposition 2.1. (2.4) fol-
lows from the uniqueness of solutions to (2.1) (see [7], Proposition
3.6). (2.5) follows immediately from Lemma 1.1, since

e [U@x ~U@)y . = Me“ ™| x ~y |l

+f Ce@ )t —s)y*Le || U(s)x — U(s)y [.ds.
0

CoRrROLLARY 2.1. If L <(—®)"*/CI'(1— a), then there exists a
unique x, € D (A ) such that lim,_..| U(t)x — xo|. =0 forallx € D(A*®).

Proof. Choose y <0 satisfying (2.2) and by (2.5) we have that U(t)
is a strict contradiction for ¢ sufficiently large, say t = ¢,. Let x, be the
unique fixed point of U(t) for each t=1¢,. If s,t=1¢, then U(t)x, =
U@)U(s)x, = U(t+ s)x, = U(s)U(t)x, which implies x, = U(t)x,, and
which in turn implies x; = x,. The conclusion follows immediately using
(2.5).

DEerFINITION 2.2. Define the infinitesimal generator of U(¢),t =0 to
be the nonlinear operator F: D(A*)— D(A®) given by

D(F)= {x €ED(A): l‘i_r)rol (U(t)x — x)/t exists in D(A")}

Fx =lim (U(t)x — x)/t (where the limit is taken in D(A*)).

ProrosiTiON 2.3. D(F)={x € D(A):(A+B)x€D(A*)} and
Fx = — (A + B)x for all x € D(F).

Proof. First, let x € D(F). Then, X —lim,_o(U(t)x — x)/t = Fx,
since  the a-norm dominates the X-norm. Since X —

lim,ﬁoj T(t—s)BA“A°U(s)xds/t = Bx (for any x € D(A®)) and
0

since (T(t)x —x)/t = (U(t)x — x)/t + f’ T(t — s)BU(s)xds/t, we see that

x€D(A) and X —lim_o(U(t)x —x)/t=—(A +B)x. But then
a—lim_(U@#)x —x)/t=—(A+B)x as well, and therefore
(A+B)x€D(A°) and Fx = — (A + B)x.
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Now let x€D(A) and let (A+B)x€D(A®). Since
(A“+A“'B)x = A"'A*(A + B)x, we have that

(2.6) (A°+ A B)xeD(A) and A(A“+A“'B)x=A"(A+B)x.

Since (T(t)~I)A'Bx = — f T(s) Bxds (see p. 481, [6]), we have that
0

2.7) (T(t)-I)A*"'Bx = A*(T(t)-I)A'Bx = — f A“T(s)Bxds.

Next, we show

(2.8) there is a constant C, depending only on x such that
JUOx—x|.=tC, for 0=t=1.

To prove (2.8) let 0<t,=1 and define w: [0, ]—[0,0) by w(t)=
JU@)x —x|l., 0=t=t,. Using (2.6) and (2.7) we have for 0=t =1,

w(t)=|(T(t)~ I)(A= + A="'B)x — (T(t)— I)A*"'Bx

- f A“T(t ~ 5)BU (s) xds |

= 'UO T(s)A(A" + A 'B)x + fo A“T(1 - 5)[Bx - BU(s)x]ds

= Me"|A*(A + B)x ||+ f Ce'*'=)(t — s)*Lw(s)ds.
0

Then, (2.8) follows from Lemma 1.1 with a = Mg||(A + B)x ||, b = CL,
and w = | w|. To complete the proof it remains to show that

(2.9) lim [[(U(t)x = x)/t + (A + B)x || = 0.
For0<t=1

”(T(t)x — Xt - L T(t — s)BU (s) xds/t + (A + B)x

a

= “((T(t)— I)/t)(A*+ A“'B)x + A*(A + B)x

+j‘ A°T(t—s)[Bx — BU(s)x]ds/t

Then, (2.9) follows using (2.6), (2.8), and the estimate
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” f A“T(t - 5)[Bx — BU(s)x] ds/t

= CLf e“'(t - s5)*Cds
0
=constt'™"
3. Exponential representation of solutions. Before
proving (1.2) we require the following lemmas:

LEmMMA 3.3. Let 0<a <1. There exists a constant K such that if
B>0,t>0, and n is a positive integer, then

n

(3.1) (t/n) > T(k —a)e ™" T(k)< K[(1—a)B=".

k=1

Proof. We will use the fact that there exists a constant K such that
(3.2) I'k —a)T(k)<Kk™ for k=1,2,---,

which follows immediately from the fact that lim,_.I'(k +1—
a)/T(k)k'™* =1 (see [4], p. 195). Using (3.2) we have that

(t/n)"* kzl T(k — a)e *mT(k)
=K kz (e~ (kn)*) (1/n).

Since Z;_,(e ®(k/n)*)(1/n) is a lower approximating sum to the
1

integral f e ®x *dx, (3.1) follows immediately using (1.11).
0

LEmMA 3.2. Let (1.3) hold and let « € (0,1). Ifx € X,t=0, and
n is a positive integer,

(B3) I+ t/nAY*x|l. = (n/t)*CT(k — @) (1 — wt/n)=" || x | /T (k)

for k=1,---,n

Proof. We will use the formula

(3.4) AT+ AY* = f " e Mg 1T (s)xds/(k —1)!
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for A > w, k =1,2,--- (see [2], p. 623). From (3.4) we obtain

I+ 2/nA) .

(n/t)kﬁx e ™'s*TA“T(s)xds/(k —1)! ”

= (n/t)kf Cel gk~ x || ds /T (k)
0
and (3.3) follows immediately using (1.11).

Lemma 3.3. Let (1.3) and (1.7) hold. Ift >0 and n is a positive
integer sufficiently large, then

(3.5) (I+t/nF) "' exists as an everywhere defined mapping
from (D(A®) into D(A“);

(36) for X ED(AL') and}——— 1’2’-. - n,(1+t/n)F)_’x :(I+[/nA)7lx
= (t/n) 2 (I+1t/nAY*B(I +t/nF) ™.

Proof. Let x € D(A®), let t >0, let n be a positive integer, and
define G: D(A“) to D(A“) by

G(y)=(I+1t/nA)'(x —t/nBy), yE€D(A®)

(note that G maps into D(A)CD(A“), see [3], p. 159). From (3.3) and
(1.11) we obtain for y, y,€ D(A®)

IG(y) =Gyl = CT(A=a)( = wt/n)'(t/n)""L|ly, = y:|..

For n sufficiently large G is a contraction from D(A“)to D(A®) and has
a unique fixed point y which satisfies (I +¢t/n(A +B))y =x. (3.5)
follows immediately and a simple induction argument proves (3.6).

REmARK 3.1. By virtue of (3.3), (3.6), and Corollary 2, p. 241 of [9]
we have that D(F) is dense in D(A ), since
I+ ¢t/nF)y'x —x|. =[|(I+t/nA)"Ax — Ax ||
+(t/n)(JA“(I+1t/nA)Y ' (B(I+t/nF) 'x — Bx)||
+|A*(I+t/nA)'Bx||).
Lemma 3.4. Let (1.3) and (1.7) hold, let x € D(A“), t,>0, and

€ >0. There exists a positive integer N such that ifn Z N, 1= = n, and
0=t=1t, then



EXPONENTIAL REPRESENTATION OF SOLUTIONS 277

l(t/n)i([«f-t/nA)’"BU(t(j —k+1)/n)x
(3.7) _

—fwT(s)BU((tj/n) s)xds| <e

Proof. Let {y,,---,y.} be a finite set in (D(A®) such that if
0=s=t, then there exists some integer i€ [l,m] such that
[BU(s)x — y:|| < € (here we use the fact that D(A*) is dense in X and
BA*A“U(s)x is continuous in s from [0,%] to X and hence has
compact range). Choose N such that if n= N, then both of the
following conditions hold: ~

<e for all r€]0,1),

(3.8) “(:/n)i((nt/nA)k T(tk/n))y,

j=1,---,nandi =1, --, m (here we use the fact that for z € X,
lim|/(I+s/nA) "z = T(s)z | = 0 uniformly for 0= s = 1, see [6],
p. 481);

< e for all

(3.9 "(t/n) 2 T(tk/n)z,j.— j T(s)BU((tj/n)— s)xds
t €0, to] and j=1,---,n, where z,,,= BU(t(j — k+1)/n)x
Using Lemma 3.1 we can find a constant K, such that foralln =1,2,-- -,
and0=r=1¢
(t/n)=> CT(k —a)(1- wt/n)**/T(k)= K,.

k=1
Also, there exists a constant K, such that for all n=1,2,---, and
0=st=14,

(t/n) Y, Ce™(tk/n) = < K,.

k=1
Now let n =N, let0=t=t,let 1=j=n,and foreach k =1, ---,j

choose an integer i(k) € [1, m] such that || z«,,~ yis)[| < €. Then, using
Lemma 3.2 and (3.8) we have

(3.10) H(z/n)é((lﬂ/m)-*—T(zk/n))zk,,,n a

= (t/n)' ™ 3 (CT(k = ) (1= 0t/n)" * (D] 200 s |

+ H (t/n)kgl((IJr HnAY* = T(k )y |

+ (t/n)ki Ce™/'"(tk | n) || Yic = Zijm | < Ki€ + € + Kse.
=1
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Then, (3.7) follows immediately from (3.9) and (3.10).

THEOREM. Let (1.3) and (1.7) hold and let x € D(A®). Then,
uniformly in bounded intervals of t

(3.11) lim|[(I + t/nF)™"x = U(t)x |, = 0.

Proof. Let t,>0. Let K be a constant as in Lemma 3.1 and
observe that

(3.12) (1-wt/n)**=1 for nz=1, k=1,---,n 0=t=¢t,

Let B >0 such that CLKT(1-a)B*'<1/4. Let € >0 and choose N
such that if n = N then (3.7) holds, as well as the following:

(3.13) l(I+t/nA)Yx — T(tj/n)x|. <€ for j=1,---,n0=t=t;
(3.14) e*"<2for0=t=t, Now fix n= N, 0<t =1, and define

=T+ t/nFYix = UG [n)x [ j =1, m, S,(t)= sup e w,

1=j=n

Using (3.12), (3.13), (3.14), and Lemmas 3.1, 3.2, 3.3, and 3.4 we have for
| = 1’ ‘e n )

G139 w = ”(I T HnAYx +(t/n) 2 (I +t/nAY*B(I + t/nF) 0~y

- T({j/n)x — J;W" T(s)BU(tj/n — s)xds

a

=||(I+t/nA)7x — T(tj/n)x|.
+|[(¢/n) 2 (I+¢t/nA)Y*(B(I+t/nF) U+

—BU(t(G—k +1)/n)x

a

; (t/n)zl (I + t/nA)Y*BU(t(j — k + 1)/n)x

" rs)BU ] In) - 5)xds

a

<e+ (t/n)""z (CT(k = a)T(k)) LW, + €.

From (3.15) we obtain for j=1,---,n
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e iy, .

<26+ (t/n) S (CLT(k — a)e ™I (k)) (™) (e 50~ Dmw , )
<26 +2CLKT(1— a)B*"S,(1)

<2e+S,(t)/2.

(3.16)

Then, (3.16) implies S,(t)<2e + S,(t)/2 or, equivalently, S,(¢)<
4e. (3.11) follows immediately and the proof is complete.

In conclusion we remark that our methods can be used to treat the
existence and exponential representation of local solutions to (1.1) in the
case that B satisfies a local Lipschitz continuity condition from D (A“) to
X. Also, our methods can be used in the numerical study of (1.1), a
program which we will carry out elsewhere.
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