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EXPONENTIAL REPRESENTATION OF SOLUTIONS TO
AN ABSTRACT SEMI-LINEAR DIFFERENTIAL

EQUATION

G. F. W E B B

It is shown that the solutions to the abstract differential
equation u' = - (A + B)u,u(0)= x E X, where X is a Banach
space, — A is a linear analytic semigroup generator, and B is
Lipschitz continuous from the domain of a fractional power of A
to X, have the exponential representation u(t)-
limn_oo(/ + tin (A + B))'nx.

1. Introduction. Let X be a Banach space with norm
|| ||. We are concerned with the abstract semi-linear differential equa-
tion in X

(1.1) du(t)/dt= -(A+J3)κ(ί), * >0, u(0)=jcGX,

where - A is the generator of an analytic semigroup of linear operators
in X and B is Lipschitz continuous from the domain of a fractional power
of A to X. The objective of this paper is to obtain the exponential
representation of the solutions to (1.1) in the form

(1.2) ii (ί) = lim(/+ t/n(A + B))nx.

Exponential representations of the form (1.2) are very well known for the
case that A and B satisfy accretive type conditions (see, e.g., [1] and
[8]). In the accretive case the nonlinear resolvent (/ + t/n(A + B))~ι is
Lipschitz continuous with

\(I + t/n(A + B))-ι\Up^(l- tγ/n)-\ t g 0, n sufficiently large,

where γ is some real constant. In our case the main difficulty in
establishing (1.2) is that the nonlinear resolvent satisfies a more general
condition of the form

| ( / + ί M ( A + β ) ) " n | L i p g M ( l - ί γ M ) Λ ίgO, n sufficiently large,

where M and γ are real constants and M > 1.
We make the following assumption on A:
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(1.3) there exists ω < 0 such that A = A o - ωl, where Ao is a closed
densely defined linear operator from X to X, the resolvent set of
Ao contains the sector Sφ = {λ: λ ̂  0, π/2 - Φ < argλ <
3τr/2 + Φ}, Φ some constant in (0, ττ/2), and | (AJ - A0)~ι1 ^ M/| λ |
for A E Sφ, where M is a given constant ^ 1.

As a consequence of (1.3) we have (see [3]):

(1.4) - A is the infinitesimal generator of an analytic semigroup of
linear operators T{t), t^O in X, \T(t)\^Meωt for ί^O, and
I (/ + t/nA ) ' n I g M(l - ωίIn )~n for / ̂  0 and n a positive integer;

(1.5) if 0 < a < 1 then the fractional power A ~a is defined as a bounded

linear operator in X by A~a = (1/Γ(α)) ί έ Γ ' V ^ s , and D(A α )
Jo

is a Banach space with norm | |x \\a = \\Aax \\ for x G D(A α ) ;

(1.6) if 0 < α < 1 , then there exists C > 0 such that | A α Γ ( 0 l ^ CeωtΓa

for ί > 0 .

We make the following assumption on B:

(1.7) there exists α 6 ( 0 , l ) such that B is an everywhere defined

operator from D(Aa) to X and there exists L > 0 such that
||Bx - By \\£L\\x - y ||β for x, y E D(A*).

Under the assumptions (1.3) and (1.7) and the assumption that
x E D(Aa) the equation (1.1) can be integrated to yield the equivalent
integral equation

(1.8) u(t)= T{t)Aaχ- [ AaT(t- s)BA-au{s)ds, ίSO.
J
[
o

(see, e.g., [5], Chapter 3). The equation (1.8) is a singular Volterra
integral equation and has been subject of extensive study. The case in
which B: D (A a) -» X is locally Lipschitz continuous is treated in [5], the
case in which A ~1 is compact and B: D(Aα)—> X is Holder continuous is
treated in [3], and the case in which B is accretive and B: D(Aa)-^>X is
locally continuous is treated in [7], In our treatment of (1.8) the
following lemma (which is similar to GromwalΓs lemma) will play a
fundamental role (see also [3], Theorem 7.1.1):

LEMMA 1.1. Let w: [0, t0]-* [0,°o) be continuous, let α i O , b ̂  0,
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ω E JR, 0<a < 1, and let

(1.9) w(t)^aeωt + b[ eω('-s)(t - s)aw(s)dsy O^t^to.
Jo

Then, for all real y such that γ > ω and bΓ(ί - a)(γ - ω)a~ι < 1, we have
that

(1.10) w(ί) ̂  a(ί - bΓ(l - α ) ( γ - ω)"" 1 )"^ 7 1 , ° = t = *o.

Proof. We will use the gamma function formula

(1.11) Γ(z)=βzί e-βssz-ιds for z > 0 , β>0
Jo

(see [9], p. 265). Let γ be as above, and let S = sup0^,oe~r'H>(0- For
O g ί ^ ί o (1.9) implies

e Ύtw(t) g ae{ω~y)t+ b ί' e

{ω-y){t-s\t - s)-ae'ysw(s)ds
Jo

Thus, S ̂  α + fe5Γ(l - α ) ( γ - ω ) α l , which implies (1.10).

2. E x i s t e n c e of so lut ions. It is well known that under the
assumptions (1.3) and (1.7) there exixts a solution to (1.8) for each
χED(Aa) (see, e.g., [5], Theorem 3.3.3). We will prove this fact
below, however, since our proof will be instructive for the techniques we
use to prove (1.2).

PROPOSITION 2.1. Let (1.3) and (1.7) hold and let x G
D{Aa). There exists a unique continuous function u: [0,oo)—>D(Aα)
satisfying

(2.1) u(t)= T(t)x- Γ T(t-s)Bu(s)ds, t^O.
Jo

Proof Let γ be real such that

(2.2) γ>ω and CLΓ(1 - α ) ( γ - ω)""1 < 1

and let t0 > 0. Let Y be the Banach space of all continuous functions u
from [0, to] to X with norm || u \\Y = sup0^t^toe~yt || w(ί)ll Define the
mapping F: Y—> Y by
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(Fu)(t)= T(t)Aax- P A°T{t-s)BA"u(s)ds, O^t^tn.
Jo

We will use (1.11) to show that F maps Y into Y and F is a contraction
on Y.

First, we see that (Fu)(t) is continuous in t for each u £ Y, since for

A T ( s ) (BA au(t{ - s)-BA-au{t2-s))ds\

^ f 2Ce"Vβ suρ ||βΛ""u(ί2-s)||ds

ί''
Jo

Next, we see that F is a contraction, since for w, t; E Y, 0 ^ t ̂  ί0

<ω-γχ»-s)̂  _ sy°e-v II u(s)-υ(s)\\ ds

- α ) ( γ - ω ) α - 1 ) l l « ~v\\Y.

By the contraction mapping theorem there exists a unique u0 E Y
such that Fw0 = Wo Define u{t) = A~au0(t) for 0 ^ ί-̂  ί0 and obviously
w(ί) satisfies (2.1) uniquely. Furthermore, u ( ί ) E D ( A α ) for 0 ̂  t ̂  ί0

and w(f) is continuous from [0, t0] to D(Aa) (here we have used the
continuity of A~a). Since t0 is arbitrarily large, the proof is finished.

DEFINITION 2.1. Define the family of operators C/(ί), ί ^ O in
D(Aa) by [/(ί)* = w(0> where w is the unique solution of (2.1) for a
given x E D ( A α ) . Then, C/(ί), ί ̂  0 is a strongly continuous semigroup
of nonlinear operators in D(Aa). In fact, we have the following:

PROPOSITION 2.2. Let (1.3) and (1.7) hold and for each t^O let
U(t): D(Aa)-*D(Aa) be defined as above. Then, U(t), t ̂  0 satisfies
the following:

(2.3) 1/(0) = / and U(t)X: [0,o°)-> D(Aa) is continuous in t for each
fixed x ED(Aa);
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(2.4) U(tι+t2)x = U{tx)U{t2)x for tut2^0, xED(Aa);

(2.5) \\U{t)x - U(t)y\\a^M{l- CLY{\- a)(y - ωy-ψ e*\\x-y\\a

for ^ 0 , x , y G D ( A α ) , and γ satisfying (2.2).

Proof. (2.3) follows immediately from Proposition 2.1. (2.4) fol-
lows from the uniqueness of solutions to (2.1) (see [7], Proposition
3.6). (2.5) follows immediately from Lemma 1.1, since

P
Jo

U(t)x - U{t)y \\a g M e ( ω " ^ | | x - y ||β

yH'-s)(t - s)aLeys || U(s)x - U(s)y \\ads.

COROLLARY 2.1. If L < ( - ω) l α /CΓ(l - α), then there exists a
uniquex0ED(Aa) such that l i m ^ | | U(t)x - x0\\a = 0 for allxED(Aa).

Choose γ < 0 satisfying (2.2) and by (2.5) we have that U(t)
is a strict contradiction for t sufficiently large, say t ^ tλ. Let JC, be the
unique fixed point of U(t) for each t ^ tλ. If s,t^ tu then U(t)xs =
U(t)U(s)xs = U(t + s)xs = U(s)U(t)xs, which implies xs = U{t)xs, and
which in turn implies xs = JC,. The conclusion follows immediately using
(2.5).

DEFINITION 2.2. Define the infinitesimal generator of U(t), t^Oto
be the nonlinear operator F : D(A α )—> D(Aa) given by

D(F)= ίx E D(Aa):lim(U(t)x - x)/t exists in D(Aa)\

Fx = lim (£/(0* " x)lt (where the limit is taken in D(Aa)).

PROPOSITION 2.3. D(F) = {x E D(A): (A + B)x E D(Aa)} and
Fx = - (A + B)x for all x E D(F).

Proof First, let xED(F). Then, X- limt^0(U(t)x - x)/t = Fx,
since the α-norm dominates the X-norm. Since X —

l imM [ T(t- s)BAaAaU(s)xds/t = BJC (for any x E D ( Λ α ) ) and
Jo

since (T(i)jc - x)/t = (1/(0^ - x)/t + | T(ί - s)BU(s)xds/t, we see that
Jo

JC E D(A) and X - lim,^0(U(t)x - x)/t = - (A + B)x. But then
a - ]imt-+o(U(t)x - x)/t = - (A + B)x as well, and therefore
(A+B)x ED(Aa) and Fx = -(A +B)JC.



274 G. F. WEBB

Now let xED(A) and let (A + B)x G D(Aa). Since
(Λ a + A α l β )JC = A '* A α (A + B )x, we have that

(2.6) (Aa +AalB)xED(A) and A(Aa + Aa~ιB)x = Aa(A +£)*.

Since(7X0-/)A-\B* = - Γ T(s)Bxds (see p. 481, [6]), we have that
Jo

(2.7) (Γ(ί)-/)Aβ"1JBjc = Aβ(Γ(O-/)A"1Bjc= - Γ AaT(s)Bxds.
JO

Next, we show

(2.8) there is a constant Cx depending only on x such that
|| U{t)x - x ||α g tCx for 0 ̂  / ̂  1.

To prove (2.8) let 0 < ί 0 ^ l and define w: [O,ίo]-»[O,«>) by w(t) =
|| U{t)x - x ||β, 0 ̂  ί ^ ί0. Using (2.6) and (2.7) we have for 0 ̂  t ^ t0

= \\(T(t)- I)(Aa + AalB)x - (T(t)- I)AalBx

- ί A
Jo

α + AaίB)x + [ AaT(t- s)[Bx - BU(s)x]ds\
Jo I

^ Mtoe
ίωlί\\Aa(A + B)JC | |+ f'

Jo

Then, (2.8) follows from Lemma 1.1 with a = Mto\\(A + B)x ||α, b = CL,
and ω = | ω |. To complete the proof it remains to show that

(2.9) lim||(C7(ί)jc - x)/t + (A + B)x ||β = 0.

For 0 < ί ^ 1

1(7X0* ~ *)/ί ~ [ T(t - s)BU(s)xds/t + (A + J3) J
II Jo I

= | ( ( Γ ( ί ) - / ) / f ) ( A " + AalB)x + A" (A + B)x

+ [ A°T(t - s)[Bx - BU(s)x)ds/t\\.
Jo II

Then, (2.9) follows using (2.6), (2.8), and the estimate
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A aT(t - s) [Bx - BU(s)x] ds/t\

ί(t~s)(t - s)~aCxds
Jo

^ const tλ~a.

3. Exponential representation of solutions. Before
proving (1.2) we require the following lemmas:

LEMMA 3.3. Let 0 < a < 1. There exists a constant K such that if
β > 0, t > 0, and n is a positive integer, then

(3.1) (t/nY~aΣ Γ(fc - a)e-tβklΊY{k)< KT{\- a)βa'\
k = \

Proof. We will use the fact that there exists a constant K such that

(3.2) Γ(k-a)/Γ(k)<Kk" for fc = l,2, ,

which follows immediately from the fact that limk^S(k + 1
a)/Γ(k)kι-a = 1 (see [4], p. 195). Using (3.2) we have that

^ tlaK J (e-'βkln(k/nya)(l/n).
k = \

Since Σn

k=1(e~tβk/n(k/n)~a)(l/n) is a lower approximating sum to the

integral e~φxx~adx, (3.1) follows immediately using (1.11).
Jo

LEMMA 3.2. Let (1.3) /ιo/d and let a G (0,1). If x 6 X, ί g 0, and
n is a positive integer,

(3.3) | |(J+ ί/nA )-*JC ||β ̂  (n/ί)aCΓ(/c - a)( l - ωί/n)a-k ||

for k - 1, , n.

Proof. We will use the formula

(3.4) (λI + A)k = Γ eλsskίT(s)xds/(k-l)\
Jo
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for λ > ω, k = 1,2, (see [2], p. 623). From (3.4) we obtain

(n/tfί e^"sk']AaT(s)xds/(k-\)\
Jo

nltf Γ Ce(ω-n/t)ssk-1-a\\x\\ds/Γ(k)
Jo

and (3.3) follows immediately using (1.11).

LEMMA 3.3. Let (1.3) and (1.7) hold. If t > 0 and n is a positive
integer sufficiently large, then

(3.5) (I+t/nFy1 exists as an everywhere defined mapping
from (D(Aa) into D{Aa)\

( 3 . 6 ) for x E D(A a) and j = 1,2, •, n, (/ + tin) F)!x - (/ + ί / n Λ )"'"JC

Proof. Let Ϊ £ D ( A " ) , let ί >0, let n be a positive integer, and
define G: D(A") to D(Λ") by

G(y) = (I + tlnA)-\x - t/nBy), y E D(Aa)

(note that G maps into D(A)CD(Aa), see [3], p. 159). From (3.3) and
(1.11) we obtain for y,,y,ED(A")

||a ^ CΓ(1 - α)(l - ωt/nΓ\t/ny-L || y, - y2||α.

For n sufficiently large G is a contraction from D (Aa) to D (Aa) and has
a unique fixed point y which satisfies (/ + 11n{A + B))y = x. (3.5)
follows immediately and a simple induction argument proves (3.6).

REMARK 3.1. By virtue of (3.3), (3.6), and Corollary 2, p. 241 of [9]
we have that D{F) is dense in D(Aa), since

|| (/ 4- t/nF)ιx -x\\a^ || (I + t/nA YlA ax - A ax \\

+ (tin) (f| A a ( I + t/nA ) " ! ( J 3 ( / + t/nF)ιx - Bx)\\

LEMMA 3.4. Let (1.3) and (1.7) hold, let x <ΞD(Aa)y ί ( ) >0, and
e > 0. There exists a positive integer N such that if n ^ JV, 1 ̂  / ^ n,
0 g r ̂  ί0,



k = l

(3.7)
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In) Σ (I + t/nA)-kBU(t(j - k + l)/n)x

- ί"nT(s)BU((tj/n) s)xds\\
Jo \\a

e.

Proof. Let {yi, , ym} be a finite set in (D(Aa) such that if
0^s^to, then there exists some integer ΐ E [ l , m ] such that
\\BU(s)x - y< || < 6 (here we use the fact that D(Aa) is dense in X and
BA aAaU(s)x is continuous in s from [0, t0] to X and hence has
compact range). Choose N such that if n ^ N, then both of the
following conditions hold:

(3.8) I(ί/n)έ((/+ί/nA)- fc-Γ(ί/c/n))yJ| <e for all ί G [0, ί0],

7 = 1, , n, and / = 1, , m (here we use the fact that for z G X,

lim||(/ + s/nΛ)""z - T(s)z || = 0 uniformly for 0 ^ s ̂  ί0, see [6],

p. 481);

< e for all(3.9) \\(t/n)iτ(tk/n)zKi,n- [T(s)BU((tj/n)- s)xds

t G [0, ί0] and / = 1, , n, where z k > 7 > n= BU(t(j - k + 1)M)JC.

Using Lemma 3.1 we can find a constant K Ί such that for all n = 1,2, ,
and 0 ̂  ί ^ ί0

(t/ny-*Σ CΓ(k - α)(l - ωt/n)a-k/T{k)^ Kλ.

Also, there exists a constant K2 such that for all n = l,2, •••, and

Now let n ̂  N, let 0 ̂  t ^ ί0? let 1 ̂  / ' ^ n, and for each k = 1, , j
choose an integer ί ( / c ) G [ l , m ] such that || zKhn- yi{k)\\ < e. Then, using
Lemma 3.2 and (3.8) we have

(3.10) (tln)i((I + t/nA)-k - T(tk/n))zkΛ

^ (t/ny-«± (CΓ(/c - a)(1 - ωί/n)-VΓ(fc))|| zKhn- ym\\

IIv-
( ί / n j ^ C e \tκ In) \\yi(k)~

k = \
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Then, (3.7) follows immediately from (3.9) and (3.10).

THEOREM. Let (1.3) and (1.7) hold and let xED(Aa). Then,
uniformly in bounded intervals of t

(3.11) lim|| (J+ t/nF)~nx - U(t)x ||β = 0.
n—>°°

Proof. Let ί o >0. Let K be a constant as in Lemma 3.1 and
observe that

(3.12) (l-ωt/n)"-k£l for n § 1, k = 1, , n, Osi t S /„.

Let /3 > 0 such that CL£T(1 - a)βa~ι< 1/4. Let e >0 and choose N
such that if n ^ N then (3.7) holds, as well as the following:

(3.13) ||(I + t/nA )~iχ - T(tj/n)x ||β < e for / = 1, , n, 0 S t g ίo;

(3.14) e""" < 2 for 0 s ί ^ ίo Now fix n g N, 0 < t ^ t0, and define

w, = ||(/ + ί/ιιF)-'x - U(tj/n)x ||α, j = 1, , n, S.(ί) = sup e-*""*,.

Using (3.12), (3.13), (3.14), and Lemmas 3.1, 3.2, 3.3, and 3.4 we have for
j = l, ,n

(3.15) w, = 1(1+ tlnA)-iχ + {tin) J (7 + t/nA)-"B(I+

- T(tj/n)x - { T(s)BU(tj/n - s)xds\
JO I
{

O

U - T(tj/n)x

!)x+ \\(t/n)i(I+t/nA)'k(B(I+t/nF)-<i-k

II k = \

-BU(t(j-k + l)/n)x\\

+ \(t/n) ί(I+ t/nA YkBU(t(j -k + ί)/n)x

-j"'nT(s)BU((tj/n)-s)xdsj

< e + {tiny-" ί (CΓ(k - α)/Γ(k))Lw;.t+1 + e.
k = l

From (3.15) we obtain for / = 1, , n
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< 2e + (t/ny-aΣ (CLΓ(fc - a)e-tβk/n/Γ(k))(etβ/n)(e'tβ(j-k+ι)/nw^k+1)
( 3 1 6 ) <2e+2CLKΓ(l-a)βalSn(t)

<2e + Sn(t)/2.

Then, (3.16) implies Sn(t)< 2e + Sn(t)/2 or, equivalently, Sn(t)<
4e. (3.11) follows immediately and the proof is complete.

In conclusion we remark that our methods can be used to treat the
existence and exponential representation of local solutions to (1.1) in the
case that B satisfies a local Lipschitz continuity condition from D(Aa) to
X. Also, our methods can be used in the numerical study of (1.1), a
program which we will carry out elsewhere.
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