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FUNCTIONS ACTING IN WEIGHTED
ORLICZ ALGEBRAS

HORST BEHNCKE

Any complex valued function F with F(0) = 0, which is
Lipschitz continuous at 0 operates on all weighted Orlicz sequ-
ence algebras. If the weight increases sufficiently rapidly the
class of functions which operate is strictly larger than the above
class.

In this note we investigate the functional calculus of weighted Orlicz
sequence algebras. We show that such an algebra has non Lipschitz
continuous functions operating on it, if the weight increases sufficiently
rapidly. On the other hand one knows: Let i be a commutative
semisimple complex completely regular Banach algebra with identity and
hermitian involution. Assume a function F: (-1,1)—* R with F(0) = 0
and lim^0 |F(ί)/ί I = oo operates on si. Then si is the algebra of all
continuous functions on its spectrum [1, Corollary 8.5]. This note was
motivated by a paper of F. Gulick [2], who investigated the functional
calculus of commutative *-subalgebras of ^ ( $ 0 , 1 = p <°°, the algebra
of all compact operators x on some Hubert space DC with |x | p =
(Tr(jc*x)p / 2)1 / p < 0 0

Let si be a commutative *-subalgebra of ^(Sίf), 1 ̂  p < °°, for some
Hubert space ffl. By the spectral theorem the elements of d can be
diagonalized simultaneously, i.e. there exists a sequence of finite dimen-
sional projections (Pi)i(=h such that each x E si can be written as
x=Σλi(x)Pι and \x | = (Tφ*jc)p/2)1/p = (Σ|λf.(jc)|p dim Pi)"'. Clearly
the spectrum of si can be identified with /. The Gelfand representation
of si leads then to the following class of Banach algebras. Let / be a set
and e a real valued function on / with e(i) ^ 1, the weight function. Let
si = lP,e(I)> 1 = p < °° be the system of all complex (real) valued functions
x on / with \x \p = (Σ|jc(i)|pe(i))1/p <°°. Such an algebra one may call a
weighted lp-algebra. Hence in [2] Gulick actually studied the functional
calculus of weighted lp-algebras. It is natural to investigate the problem
of the functional calculus in the context of the larger class of Orlicz
sequence algebras, since it is essentially determined by the weight
(Lemma 4) and depends to a lesser extent on the Orlicz function. Our
results are considerable extensions of those in [2, §5], even in the case of
weighted lp-algebras.

Let M be a continuous nondecreasing convex function on [0, oo) with
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(1) M(0) = 0, M ( J C ) > 0 for x >0 and

We may normalize M by

(2) M ( l ) = l

because of {3, Prop. 1.4.2]. Moreover we shall assume that M satisfies
the Δ2-condition at 0 [3, prop. 1.4.1] i.e.

^ lim sup M(2x)/M(x)< oo.

It suffices to require the Δ2 condition at 0 only, because we only study
algebras of sequences. Because of (3) we may moreover require M to
be continuously differentiate, [3, Remark on p. 68]. A function M
satisfying these requirements we shall call an Orlicz function
henceforth. Let M be an Orlicz function. Then M' is

increasing. This and M(x)= M'(t)dt yields immediately
Jo

(4) M(kx)^kM(x) for k ^ 1.

Later we shall also need

(5) lim M~\hnrn)IM\rn) = oo fOΓ each sequence rn \ 0 and hn / oo.

By rn \ 0 we mean that rn is a sequence of positive numbers with
rn > rn+] and limrn = 0 .

If (5) were not true, choose a subsequence {rnk} with M~ι(hnkrnk) =
.SfeM^r^) and sk ^ K. To this apply M and set yk = M~\rnk). We get
hnkM(yk)^M(Kyk)^KfM(yk) by (3), a contradiction.

Let M be an Orlicz function and let / be a set. Further let e be a
real valued function on / with e(i) ^ 1. For a complex valued function x
on / we can then define

(6)

If such a function x satisfies φM,e(x) < °° one also has φM e(λx) < oo for all
complex λ because of (3). Similarly one shows with (3) that
φMe{x), φMe (y) < oo implies φM,e0 + y) < °° Hence the set ZMiί (/) of all
complex (real) valued functions x with φMe(x) < °° is a linear space. It
can be normed by

(7) | |x | | = in
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L e t x , y ε lMe(I) w i t h | | x || ^ 1 a n d | | y | | ^ l . T h e n | x ( i ) | ^ 1 for all ί a n d
φMe(xy) = ^M(\x(i)y(i)\)e(i)^ΣM(\y(i)\)e(i)^l or \\x y\\^l.
Thus lM,e(I) is even an algebra.

LEMMA 1. Let M, e and si — lM,e(I) be as above. Then si is a
complex (real) semisimple Banach algebra with spectrum I. It is separa-
ble iff I is countable.

The proof of this lemma is rather easy and therefore omitted. Such
an algebra si - /M,eCO we shall call a weighted Orlicz sequence algebra
with weight e and Orlicz function M. Since any x E sέ satisfies: suppx
is countable and x(i)-*0 as i—»α>, the algebra si is generated by its
minimal projections. This holds also for each closed subalgebra Sδ of
si. Let 35 Csέ be such a subalgebra of si and let {/77}/ej be its system of
minimal idempotents. Then p} is the characteristic function of some
finite subset I}Cl. Hence we can write I = I0\JU]EJIn where ύ
denotes disjoint union. Thus έ$ is of the form lMf(J) with f(j) =
Σ ι e / |e(i).

Let 5 be an open set in R or C and let F be a real or complex valued
function defined on S. We say that F operates on the function algebra
d, if F ° a G si for each α E sA with range in S. The set of all functions
operating on si defines the functional calculus of si.

For the remainder of this paper we shall fix M and the weight e and
consider only complex algebras, though the results are true also in the
real case. Since lM,e(I) has the functional calculus of all complex
functions, if / is finite, we shall assume from now on that / is
infinite. Regarding the functional calculus of si = lM,e(I) one can easily
show.

LEMMA 2. (i) Let F operate on si then F is continuous at 0 and
F(0) = 0.

(ii) Let ££0 be the class of all functions F with F(0) = 0, which are
Lipschitz continuous at 0, i.e. \F(z)\ ^ KF\z\ for 0 < |z | ^ δF for some
δF > 0 and KF>0. Then 5£0 operates on M.

(iii) If F operates on d also the absolute value of F operates on si.
(iv) // F operates on si and if G is a function with \ G (z) | g | F(z) |

for all z, then also G operates on si.

Assume a function Fgi «S?0 operates on si. Then there exist znE. C
with \zn I \ 0 , such that \F(zn)/zn \ ̂  n. Because of Lemma 2 (iv) also
the function

r nzn z = zn

G(z) =
I 0 otherwise
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operates on d. Then also the function H with

r n I zn I z = I zn
H(z)=\

I 0 otherwise

operates on d. Hence we may assume without loss of generality that F
has the form

(8)

for some sequence zn with zn\0. Let {nk} be a strictly increasing
sequence of natural numbers. By Lemma 2 (iv) also the function G with

... z = znL

G(z) =

operates on si. Since we shall use this technique quite often in the
sequel we say that G is obtained from F by pruning. Though the
functions F (8) are rather discontinuous, the continuity of functions
operating in si is not an essential condition, with the exception of
continuity at 0.

LEMMA 3. Assume a function F £ S£o operates on d. Then there
exists a continuous G fέ £g0 operating on si.

Proof. We may assume that F has the form (8). Now let δn =
ΐmin(zn - zn+u zn-x - zn) and define the function G by

(
nzn z = zn

linear on In = {zn - δπ, zn + δn)

0 otherwise.

Then G is continuous and G £ J£o. Let x £ i We want to show
Gx E si. For this it suffices to assume jc(i) = O or x(i)E U/„. Now
define y by y( i ) = 0 if x ( i ) = 0 and y(i)=zn if x(i)eln. Then \x{i)^
y(i)^2x(i) and y G i . By assumption Gy = Fy E si. Since
(Gx)(i)^(Gy)(i) we see Gx E d.

By /p,e(/), 1 ̂  p < oo, we shall denote the algebra /M,*C0 with M = xp.

LEMMA 4. sέ = lMe(I) has the functional calculus of ϊ£Q only iff
l\e{I) has only £β{) operating on it.
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Proof, (a) Assume a function F £ <£Q operates on si. We may take
F to be of the form (8). Then the function G with

Γ M(nzn) z=M{zn)
G{z)=\

ί 0 otherwise

operates on /,,,(/). By (4) G fέ g0.
(b) For the converse replace M by M"1 and use (5).

This lemma will simplify our computations considerably.

LEMMA 5. (i) Let JCI and sί(J) = {x E si\ support x E J} then
sέ{J) is an ideal and each function operating on sέ also operates onsέ(J).

(ii) Let e and f be weight functions with (1/K)e ^ / ̂  Ke for some
K > 0. Then /Mιβ (/) = lM,f(I) and both norms are equivalent. In particu -
lar both algebras have the same functional calculus.

(iii) // e is bounded lM,e(J) has only the functional calculus vf «S?0.
(iv) Every nonseparable lMe(J) has only the functional calculus

Proof, (i) and (ii) are trivial (see also [3], p. 68) (iii) has been shown
by Gulick [2] for lp,e(N) but this proof extends easily to this case. It is
also possible to adapt the proof of Theorem 1 below to this situation.

(iv) Since e ( / ) S l and because of (ii) we can replace e by an
equivalent weight function with integer values only. Hence there is not
loss of generality to assume that e has only integer values. If lM,e(I) is
nonseparable / is uncountable. Now let /„ = {/ E I\e(i) = n). Then
I = U /„ and some Im must be infinite. By (iii) only i?() acts on *$$(/„,,),
hence by (i) only ££0 operates on si.

Because of this lemma we shall assume from now on:
/ is countably infinite.
e is integer valued.
Each In = e~\n) is finite,

since otherwise si has only the functional calculus of 5£Q. Thus we may
identify / with N. Moreover this identification may be constructed such
that the sets J b J2, are mapped onto successive intervals on N. In this
way e is mapped onto an increasing function on N with values in N. For
the remainder we shall make these assumptions on / and e and denote
M N ) b y lM,e.

Let eu e29" - be the values of ein increasing order. By assumption
there exist a strictly increasing sequence nf of natural numbers with

(9) e(n) = ek for nk^ι^n<nk, k = 1,

where n0 = 1.



24 HORST BEHNCKE

The number mk = nk - n ^ we shall call the multiplicity of
ek. Clearly the set {(ek, mk)} determines e uniquely. For this we write

k, mk)}.

LEMMA 6. (i) Let e ~ {(ek, mk)} and f ~ {(ek, 4)} // only % oper-
ates on lMe and mk ^ lk for all fc, only ££Q operates on lMJ.

(ii) If K~ι ̂  mk I lk ^ K for some K > 0 and all k, then lM,e and lMf

have the same functional calculus.

Proof, (i) Follows immediately from Lemma 5(i).
(ii) We may assume mk g 4, otherwise we use {(eh min(rak, 4)} as

an intermediate weight. By Lemma 5(i) any F operating on lMf also
operates on lM,e- Conversely let F operate on lMe and let x E lMf. Since
lk/mk ^ K we can write x = xι + + xr with JC. x,= 0 for ιV / and
suppxt Π e~ι(en) has less than mn elements. Then Fx - Fxx + +
Fxr 6 lMtf since each JC. belongs to a subalgebra of /M,/, which is of the form

With these preparations we can now show

THEOREM 1. Let e ~ {(ek, mk)} be a weight. Then d = lMe has only
the functional calculus of J£o, if these exist a constant K > 0 with
ek+]/ek ^ K for all k.

Proof. The proof is indirect and divided into two steps. In the first
step we modify the weight and the function and in the second we
construct a suitable x €Ξ si.

(a) Without loss of generality, we may assume d = lu with mk = 1
for all k (Lemma 5, 6). Assume a function Fg: £βQ operates on si. We
may take F to be of the form (8) for some positive sequence zn\0 with
zn/zn+ι^2K even. Since ek+ι/ek^K for all fc, there exist a strictly
increasing sequence of natural numbers l(n) with 1 ̂  zn e7"(n) =
K. Then also the function F with zn = eκ

ι

n) operates on si. By using
the pruning procedure if necessary we can even achieve l(n)^ n2 and

^ n\
(b) Since efc+1/e*.= J^ there exists for each n ^ K a natural number

r(n) with l(n) g r(n) < l(n + 1) and

If we choose r(n) maximal with this property, r(n) is even unique. Now
let x E ^ be defined by

( eT(n+\) rn = r(n), n = 1,2,

0 otherwise.
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Then |x | 1 = Σer(n)βΓ(L+i)<
00 but \Fx |, = Σ(n + l)eΓ(n)eΓ(Ui) = °°, which

gives the desired contradiction.
This result is a considerable extension of Theorem 5.4 of [2].
Above we had already considered the normalization of the weight

e. This normalization can be carried further. In fact one can easily
show that for any weight e and constant K > 1 there exist a weight
/ - {(Λ, 4)} with ( l/2ίQ/<e<2Kf and fk+ι/fk ^ K for all k.

THEOREM 2. Let e ~{(ek,mk)} be a weight and assume ek+]/ek ^
K > 1 and mkek e~k\λ ^ K' for some K and K' for all k and
liminf mkeke~k\λ = 0. Then there exists a continuous but not Lipschitz
continuous function F operating on si = /Me.

Proof Define inductively a sequence rn of natural numbers by

(0 Ό = l
(ii) rn+ι>rn

(iii) mrn-λern-X'e-χ

n^2-\
If rn is defined in this fashion, let for each Z E N p, denote the smallest
number in {rn | n G N} Π {/ + 1, / + 2 , }. Then the series

converges, since for rk ^ / < rfc+1 we have the estimate

^ K'K~{rk+ι~ι~2)2~k.

Hence there is a positive sequence h{ / ™ such that Σ π m t o ^ con-
verges and such that

(10) T ^ l f 1 * = 1,2, --; Λ, = l

(b) With {/•„} and {/ιn} determined as above let now F be defined by

Γ Λ r • < ? ; ' i f z = β r '
F(2) =

ί 0 otherwise

then Fg : i?0. If F operates on ^ = Zltβ, there exists also a continuous,
not Lipschitz continuous, function operating on sέ. Now let x =
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(xn) E lXe. We want to show Fx E lle. For this it suffices to assume that
xn E suppF U {0}. Hence we may write xn = en e~l} with en = 0,1.
Then we have

/ = 1 n = n/ -

This is only possible if en^0 implies rt(n)> I for almost all n with
n,-ι^ n < nb Neglecting this exceptional set, we may thus assume
r / ( π )> / for all n{-x ^ n < nb Then however we can estimate

\x |i = Σ Σ enβ^e^

Moreover we have

Σ enhΠ(n)e~n\n)(

n,-l

Σ

l—\

e e
Pi Γ ' (« )

^ Σ Σ *hpe-p]e> by (10)
/ 1

l=\ n-nι^\

Hence Fx E lle and the proof is completed.

Theorem 2 shows that the results in [1, Chapter 8] are close to
optimal. In fact the algebra lMe with identity adjoined is a normal
conjugate closed function algebra on which a continuous non
Lipschitz continuous function operates. (I thank the referee for point-
ing this out.)

This result also covers the last example in [2]. The conditions of the
theorem are not necessary for an F ^ 5£Q to operate. For the proof one
only needs the existence of a sequence rn such that Σmkeke~ι

k<
oo. Nevertheless Theorem 2 is close to optimal, because

T H E O R E M 3. Let e ~ {(ek, mk)} with eke~k\x->0 and mkeke~k\x^ e >

0. Then only ££{) operates on lMtt, 1 ̂  p < <».

Proof, (a) Because of Lemma 6 (ii), we may take 6 = 1 and because
of Lemma 4 we may take sέ - lu. Assume F of the form (8) operates
on si. Now we have to distinguish two cases regarding F.
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n) if nl{n)-x^m ^ n l { n y ι
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(b) Assume there exist a K > 1 and subsequences l(n) and fc(n) of
natural numbers, such that K~ι ^ el(n)zk{n)^ K, then the function

nej{

ι

n) x = ej(

ι

n)

otherwise

operates on si. G can be obtained from K F by pruning. Applying
the pruning procedure again if necessary, we may assume in addition that
el{nyX - e Γ(L) ̂  2"π. Now define

x(m)=

where ^n is a natural number with qn ^ ml{n)-{ such that qn - e^n)eι{n)-λ is
approximately 1/n2 with an error of less than 2~n. By our assumptions
this is possible. Clearly x E st, but Fx 0. sέ a contradiction.

(c) Assume now F as above. For every zπ, there exists a natural
number ί(n) with ej^n)+ι ^ zn < e^n). By applying the pruning procedure
again, if necessary, we may assume even that each interval [e^n)+h ej(

ι

n))
contains only zn. Because of (b) we may assume that {zne,(n)+i} and
{Znl^7(n)} contain no bounded subsequences. Hence in particular z~ιej{

]

n)

diverges. By using the pruning procedure again if necessary we may
even assume znet{n)^2'n. Now define

( zn if nί{n)^m < n/(n) + ̂ π

0 if nί{n)+qn ^ m g n r ( n ) + 1 - 1

where the natural number qn is chosen such that qnznetn is approximately
1/n2 with an error of less than 2~". Because e^n)+]<zn and
e^n)+letin)mt(n)^ 1 this is possible. Then x E si but Fx £ si.
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