UNBOUNDED REPRESENTATIONS OF *-ALGEBRAS

S. GUDDER AND W. SCRUGGS

Basic results on unbounded operator algebras are given, a general class of representations, called adjointable representations is introduced and irreducibility of representations is considered. A characterization of self-adjointness for closed, strongly cyclic *-representations is presented.

1. Introduction. Algebras of unbounded operators and unbounded representations of *-algebras have been important in quantum field theory [1, 3, 9, 10] and certain studies of Lie algebras [5, 7]. The present paper proceeds along the lines initiated and developed by Robert Powers [6, 7] and much of the notation and definitions follow [6]. In §2, we present some basic results concerning unbounded operator algebras, introduce a class of representations called adjointable representations, and consider irreducibility of representations. Section 3 characterizes the self-adjointness of closed, strongly cyclic *-representations.

2. Adjointable representations. Let M and N be subspaces (linear manifolds) in a Hilbert space H. Let L(M, N) and $L_{c}(M, N)$ denote the collection of linear operators and closable linear operators, respectively with domain M and range in N. For simplicity we use the notation L(M) = L(M, M) and $L_c(M) = L_c(M, M)$. Notice that $L_{c}(H)$ is the set of bounded linear operators on H. We denote the domain of an operator A by D(A) and if A is closable we denote the closure of A by \overline{A} . A collection of operators \mathcal{B} is an *op-algebra* if there exists a subspace M such that $\mathcal{B} \subseteq L(M)$ and $A, B \in \mathcal{B}$ implies $AB, (\alpha A + B) \in \mathcal{B}$ for all $\alpha \in \mathbb{C}$. A set $\mathcal{B} \subseteq L(M)$ is symmetric if M is dense and $A \in \mathcal{B}$ implies $D(A^*) \supseteq M$ and $A^* \mid M \in \mathcal{B}$. A symmetric op-algebra $\mathscr{B} \subseteq L(M)$ that contains $I \mid M$ is called an *op**-*algebra*. It is easy to see that if $\mathscr{B} \subseteq L(M)$ is an op*-algebra, then the map $A \rightarrow A^* | M$ is an involution so \mathcal{B} is a *-algebra. Also, if π is a representation of a *-algebra \mathcal{A} , then $\pi(\mathcal{A}) = \{\pi(A) : A \in \mathcal{A}\}$ is an op-algebra and if π is a *-representation of \mathcal{A} , then $\pi(\mathcal{A})$ is an op*-algebra (we always assume that a *-algebra contains an identity I).

A set $\mathscr{B} \subseteq L(M, N)$ is directed if for any $B_1, B_2 \in \mathscr{B}$ there exists a $B_3 \in \mathscr{B}$ such that $||B_1x||, ||B_2x|| \leq ||B_3x||$ for all $x \in M$. For example, if $\mathscr{B} \subseteq L_c(H)$ and $\{\lambda I: \lambda \geq 0\} \subseteq \mathscr{B}$, then \mathscr{B} is directed. Indeed, just let $B_3 = (||B_1|| + ||B_2||)I$. For an example of an unbounded directed set, let $\mathscr{B} \subset L(M, H)$ and suppose $B_1, B_2 \in \mathscr{B}$ implies $B_3 =$

 $I \mid M + B_1^* B_1 + B_2^* B_2 \in \mathcal{B}$. Then for any $x \in M$ we have

$$\|B_{3} x\|^{2} = \|x\|^{2} + \|(B_{1}^{*} B_{1} + B_{2}^{*} B_{2} x\|^{2} + 2\langle (B_{1}^{*} B_{1} + B_{2}^{*} B_{2})x, x \rangle$$

$$\geq 2(\|B_{1} x\|^{2} + \|B_{2} x\|^{2})$$

$$\geq \|B_{1} x\|^{2}, \|B_{2} x\|^{2}.$$

In particular, any op *-algebra is directed.

An extension \mathscr{B}_1 of $\mathscr{B} \subseteq L(M, N)$ is a set of operators $\mathscr{B}_1 \subseteq L(M_1, N_1)$ where $M \subseteq M_1, N \subseteq N_1$ and for which there exists a bijection $\phi: \mathscr{B} \to \mathscr{B}_1$ such that $\phi(B) | M = B$ for every $B \in \mathscr{B}$. If $\mathscr{B} \subseteq L(M, N)$, the \mathscr{B} -topology on M is the topology generated by the set of seminorms $\{||x||, ||Bx||: B \in \mathscr{B}\}$. The completion of M in the \mathscr{B} -topology is denoted by $\hat{M}_{\mathscr{B}}$ or simply \hat{M} if no confusion can arise. We say that $\mathscr{B} \subseteq L(M, N)$ is collectively closed if for any net $x_{\alpha} \in M$ satisfying $x_{\alpha} \to x \in H, Bx_{\alpha} \to y(B) \in H$ for every $B \in \mathscr{B}$, then $x \in M$ and Bx = y(B). Clearly if all $B \in \mathscr{B}$ are closed then \mathscr{B} is collectively closed; the converse need not hold.

THEOREM 1.

(1) $\mathscr{B} \subset L(M, N)$ is collectively closed if and only if $M = \hat{M}_{\mathscr{B}}$.

(2) If $\mathscr{B} \subseteq L_c(M, N)$, then the set $\mathscr{B}_1 = \{\overline{B} \mid M_1 : B \in \mathscr{B}\}$ where $M_1 = \cap \{D(\overline{B}) : B \in \mathscr{B}\}$ is collectively closed.

(3) If $\mathscr{B} \subseteq L_c(M, N)$, then the set $\overline{\mathscr{B}} = \{\overline{B} \mid \widehat{M}_{\mathscr{B}} : B \in \mathscr{B}\}$ is the minimal collectively closed extension of \mathscr{B} . Moreover, if $\mathscr{B} \subseteq L_c(M)$ and $A, B \in \mathscr{B}$ implies $A B \in \mathscr{B}$, then $\overline{\mathscr{B}} \subseteq L_c(\widehat{M}_{\mathscr{B}})$.

(4) If $\mathscr{B} \subseteq L_c(M, N)$ is directed, then $\hat{M}_{\mathscr{B}} = \cap \{D(\bar{B}): B \in \mathscr{B}\}.$

(5) If $\mathscr{B} \subseteq L_c(M)$ is an op-algebra, then $\overline{\mathscr{B}}$ is an op-algebra. If $\mathscr{B} \subseteq L_c(M)$ is an op *-algebra, then $\overline{\mathscr{B}}$ is an op *-algebra and $\hat{M}_{\mathscr{B}} = \bigcap \{D(\overline{B}) : B \in \mathscr{B}\}.$

Proof.

(1) Suppose $\mathscr{B} \subseteq L(M, N)$ is collectively closed and $x_{\alpha} \in M$ is a Cauchy net in the \mathscr{B} -topology. Then x_{α} and Bx_{α} are Cauchy in H so there exist $x, y(B) \in H$ such that $x_{\alpha} \to x, Bx_{\alpha} \to y(B)$ in H for every $B \in \mathscr{B}$. Since \mathscr{B} is collectively closed, $x \in M$ and $Bx_{\alpha} \to Bx$, so $x_{\alpha} \to x$ in the \mathscr{B} -topology and M is complete in the \mathscr{B} -topology. Hence $M = \hat{M}_{\mathscr{B}}$. Conversely, suppose $M = \hat{M}_{\mathscr{B}}$, and x_{α} is a net in M such that $x_{\alpha} \to x$ and $Bx_{\alpha} \to y(B)$ in H for every $B \in \mathscr{B}$. Then x_{α} is Cauchy in the \mathscr{B} -topology. Since M is complete in the \mathscr{B} -topology there exists an $x' \in M$ such that $x_{\alpha} \to x'$ and $Bx_{\alpha} \to y(B)$ in H for every $B \in \mathscr{B}$. Then x_{α} is Cauchy in the \mathscr{B} -topology. Since M is complete in the \mathscr{B} -topology there exists an $x' \in M$ such that $x_{\alpha} \to x'$ and $Bx_{\alpha} \to Bx'$ in H for every $B \in \mathscr{B}$. Hence $x = x' \in M$ and Bx = Bx' = y(B).

(2) This is straightforward.

(3) It is clear that

 $\hat{M}_{\mathscr{B}} = \{x \in \cap \{D(\bar{B}) : B \in \mathscr{B}\} : M \ni x_{\alpha} \to x, Bx_{\alpha} \to \bar{B}x \text{ for all } B \in \mathscr{B}\}.$ We now show that $\hat{M}_{\mathscr{B}}$ is complete in the $\bar{\mathscr{B}} \mid \hat{M}_{\mathscr{B}}$ -topology. Suppose $x_{\alpha} \in \hat{M}_{\mathscr{B}}$ is Cauchy in the $\bar{\mathscr{B}} \mid \hat{M}_{\mathscr{B}}$ -topology. Then x_{α} and Bx_{α} are Cauchy in H for every $B \in \mathscr{B}$. Hence there exists an $x \in H$ such that $x_{\alpha} \to x$ and $\bar{B}x_{\alpha} \to \bar{B}x$ for every $B \in \mathscr{B}$. Since $x_{\alpha} \in \hat{M}_{\mathscr{B}}$ there exists a net $x_{\alpha\beta} \in M$ such that $x_{\alpha\beta} \to x_{\alpha}$ and $Bx_{\alpha\beta} \to \bar{B}x_{\alpha}$ in H for every $B \in \mathscr{B}$. Now $x_{\alpha\beta}$ is a net in M and $x_{\alpha\beta} \to x, Bx_{\alpha\beta} \to \bar{B}x$ in H for every $B \in \mathscr{B}$. Hence $x \in \hat{M}_{\mathscr{B}}$. It follows from (1) that $\bar{\mathscr{B}}$ is collectively closed. Clearly $\bar{\mathscr{B}}$ is an extension of \mathscr{B} . Moreover, $\bar{\mathscr{B}}$ is a minimal collectively closed extension since any collectively closed extension of \mathscr{B} must contain $\hat{M}_{\mathscr{B}}$ in its domain. Now suppose $\mathscr{B} \subseteq L_c(M)$ and $A, B \in \mathscr{B}$. If $x \in \hat{M}_{\mathscr{B}}$, then there exists a net $x_{\alpha} \in M$ such that $x_{\alpha} \to x$ and $Bx_{\alpha} \to \bar{B}x$ for every $B \in \mathscr{B}$. For fixed $A \in \mathscr{B}$ we have $Ax_{\alpha} \to \bar{B}Ax = \bar{B}\bar{A}x$. Hence $\bar{A} \times \hat{M}_{\mathscr{B}}$ and $\bar{\mathscr{B}} \subseteq L_c(\hat{M}_{\mathscr{B}})$.

(4) Suppose that $\mathscr{B} \subseteq L_c(M, N)$ is directed. We have seen that $\hat{M}_{\mathscr{B}} \subseteq \cap \{D(\bar{B}): B \in \mathscr{B}\}$. If $x \in \cap \{D(\bar{B}): B \in \mathscr{B}\}$, then for each $B \in \mathcal{B}$ \mathscr{B} there exists a sequence $x(B,i) \in M$ such that $x(B,i) \to x$ and $Bx(B, i) \rightarrow \overline{B}x$. For each $B \in \mathcal{B}$ and for each integer n > 0 there exists such that $||x(B, n_B) - x|| < n^{-1}$ integer $n_{B} > 0$ and an $||Bx(B, n_B) - \overline{B}x|| < n^{-1}$. For A, $B \in \mathcal{B}$, define the order $(A, n_A) < \beta$ (B, m_B) if $||Az|| \leq ||Bz||$ for every $z \in M$ and n < m. Since \mathcal{B} is directed, $\{(B, n_B)\}$ is a directed partially ordered set and $x(B, n_B)$ is a net. Notice that if $||A z|| \le ||B z||$ for every $z \in M$ then $||\bar{A} y|| \le ||\bar{B} y||$ for every $y \in \cap \{D(\overline{B}) : B \in \mathcal{B}\}$. Indeed let $z_i \in M$ be a sequence such that $z_i \rightarrow y$ and $B z_i \rightarrow \overline{B} y$. Since $||A z_i - A z_j|| \le ||B z_i - B z_j||$, $A z_i$ is Cauchy and hence $A z_i \rightarrow \overline{A} y$. Therefore,

$$\|\bar{A}y\| = \lim \|Az_i\| \le \lim \|Bz_i\| = \|\bar{B}y\|.$$

Clearly, $x(B, m_B) \rightarrow x$ and to show that $A x(B, m_B) \rightarrow \overline{A} x$ let $\epsilon > 0$ and let n > 0 be an integer such that $n^{-1} < \epsilon$. Then for $(B, m_B) > (A, n_A)$ we have

$$\|A x (B, m_B) - \bar{A} x\| = \|\bar{A} x (B, m_B) - \bar{A} x\|$$

$$\leq \|\bar{B} x (B, m_B) - \bar{B} x\|$$

$$< m^{-1} < n^{-1} < \epsilon.$$

It follows that $x \in \hat{M}_{\mathcal{B}}$.

(5) This is a straightforward consequence of (2) and (3).

In the work of R. Powers [6] only hermitian representations are considered. But there are important representations that are not hermitian. For example, even if π is hermitian, π^* need not be. We therefore treat a larger class of representations, which we call adjointable, that includes π^* whenever π is hermitian.

Let \mathscr{A} be a *-algebra and let π , π_1 be two representations of \mathscr{A} with domains $D(\pi)$, $D(\pi_1) \subseteq H$. We say that π and π_1 are *adjoint* and write $\pi a \pi_1$, if $\langle \pi(A) x, y \rangle = \langle x, \pi_1(A^*) y \rangle$ for every $A \in \mathscr{A}$ and $x \in D(\pi)$, $y \in D(\pi_1)$. Notice that a is a symmetric relation; that is $\pi a \pi_1$ if and only if $\pi_1 a \pi$. Also, $\pi a \pi$ if and only if π is hermitian. Furthermore, if $\pi a \pi_1$ and $\pi_1 a \pi_2$ then $\pi(A) = \pi_2(A)$ on $D(\pi) \cap D(\pi_2)$ for every $A \in \mathscr{A}$ and if $D(\pi) = D(\pi_2)$ then $\pi = \pi_2$. We say that a representation π is *adjointable* if there exists a representation π_1 such that $\pi a \pi_1$.

If π is a representation of a *-algebra \mathcal{A} , we define $D(\pi^*) = \cap \{D(\pi(A)^*): A \in \mathcal{A}\}$ and $\pi^*(A) = \pi(A^*)^* | D(\pi^*)$ for all $A \in \mathcal{A}$. (To save parentheses we use the notation $\pi(A)^* = [\pi(A)]^*$.) In general, π^* need not be a representation since, for one thing, $D(\pi^*)$ need not be dense. If π is hermitian, then π^* is a representation [6]. Hence, if π is hermitian, then

$$\langle \pi(A) x, y \rangle = \langle x, \pi(A)^* y \rangle = \langle x, \pi^*(A^*) y \rangle$$

for every $A \in \mathcal{A}$ and $x \in D(\pi)$, $y \in D(\pi^*)$ so $\pi a \pi^*$ and each is adjointable.

THEOREM 2.

(1) π is adjointable if and only if $D(\pi^*)$ is dense.

(2) If π is adjointable, then π^* is a closed representation and is the largest representation adjoint to π .

(3) Suppose $\pi \subset \pi_1$. If $\pi_1 a \pi_2$, then $\pi a \pi_2$. If π_1 is adjointable, then so is π and $\pi_1^* \subset \pi^*$.

(4) If π is adjointable, then there exists a smallest closed representation $\bar{\pi}$ which extends π . If $\pi a \pi_1$, then $\bar{\pi} a \pi_1$.

(5) If π is adjointable, then π^* , $\bar{\pi}$ are adjointable, π^{**} is a closed representation and $\pi \subset \bar{\pi} \subset \pi^{**}$, $\pi^{***} = \pi^*$, $\bar{\pi}^* = \pi^*$.

(6) If π is hermitian and π_1 is an hermitian extension of π , then $\pi \subset \pi_1 \subset \pi^*$.

(7) If π is hermitian, then π^{**} and $\bar{\pi}$ are hermitian and $\pi \subset \bar{\pi} \subset \pi^{**} \subset \pi^*$.

Proof.

(1) If π is adjointable and $\pi a \pi_1$ then $\pi_1(A^*) \subset \pi(A)^*$ for every $A \in \mathcal{A}$ so $D(\pi_1) \subseteq D(\pi^*)$ and $D(\pi^*)$ is dense. Conversely, suppose

 $D(\pi^*)$ is dense. For $x \in D(\pi)$, $y \in D(\pi^*)$ we have

$$\langle \pi(A^*) x, \pi^*(B) y \rangle = \langle \pi(A^*) x, \pi(B^*)^* y \rangle$$

= $\langle \pi(B^*) \pi(A^*) x, y \rangle$
= $\langle \pi(B^*A^*) x, y \rangle$
= $\langle x, \pi(B^*A^*)^* y \rangle .$

Hence $\pi^*(B) y \in D(\pi(A^*)^*)$ and $\pi(A^*)^* \pi^*(B) y = \pi(B^*A^*)^* y$ for every $A, B \in \mathcal{A}$. If follows that $\pi^*(B): D(\pi^*) \to D(\pi^*)$ and $\pi^*(A) \pi^*(B) = \pi((AB)^*)^* = \pi^*(AB)$. Moreover, π^* is linear since for $x \in D(\pi), y \in D(\pi^*)$ we have

$$\langle \pi^*(\alpha A + B)y, x \rangle = \langle \pi(\bar{\alpha}A^* + B^*)^* y, x \rangle$$

= $\langle y, \bar{\alpha}\pi(A^*)x \rangle + \langle y, \pi(B^*)x \rangle$
= $\langle [\alpha \pi^*(A) + \pi^*(B)] y, x \rangle.$

It follows that π^* is a representation and $\pi a \pi^*$.

(2) It was shown in (1) that π^* is a representation if π is adjointable. It follows from Theorem 1 (2) that π^* is closed. If $\pi a \pi_1$ then $\langle \pi(A) x, y \rangle = \langle x, \pi_1(A^*)y \rangle$ for all $x \in D(\pi)$, $y \in D(\pi_1)$. Hence, $D(\pi_1) \subseteq D(\pi^*)$ and $\pi_1(A^*) \subset \pi(A)^* = \pi^*(A^*)$ for every $A \in \mathcal{A}$ so $\pi_1 \subset \pi^*$.

(3) Suppose $\pi \subset \pi_1$ and $\pi_1 a \pi_2$. Then for every $x \in D(\pi)$, $y \in D(\pi_2)$ we have $\langle \pi(A)x, y \rangle = \langle \pi_1(A)x, y \rangle = \langle x, \pi_2(A^*)y \rangle$. Hence $\pi a \pi_2$. For all $x \in D(\pi)$, $y \in D(\pi_1^*)$ we have $\langle \pi(A)x, y \rangle = \langle x, \pi_1^*(A^*)y \rangle$. Hence $\pi a \pi_1^*$ and by (2) we have $\pi_1^* \subset \pi^*$.

(4) If π is adjointable, then by (1), $D(\pi^*)$ is dense. Then $D(\pi(A)^*)$ is dense so $\pi(A)$ is closable for every $A \in \mathcal{A}$. Define $D(\bar{\pi}) = \hat{D}(\pi)_{\mathcal{B}}$ where $\mathcal{B} = \{\pi(A): A \in \mathcal{A}\}$ and $\bar{\pi}(A) = \pi(A) | D(\bar{\pi})$. It follows from Theorem 1 (3) that $\{\bar{\pi}(A): A \in \mathcal{A}\}$ is the minimal collectively closed extension of \mathcal{B} . It is straightforward to show that $\bar{\pi}$ is a representation and that $\pi a \pi_1$ implies $\bar{\pi} a \pi_1$.

(5) If π is adjointable then so is π^* and from (2) π^{**} is a closed representation. If $x \in D(\pi)$, $y \in D(\pi^*)$ then for all $A \in \mathcal{A}$ we have $\langle \pi^*(A^*)y, x \rangle = \langle \pi(A)^*y, x \rangle = \langle y, \pi(A)x \rangle$. Hence $x \in \cap \{D[\pi^*(A^*)^*]: A \in \mathcal{A}\} = D(\pi^{**})$ and $\pi^{**}(A)x = \pi^*(A^*)^*x = \pi(A)x$ so $\pi \subset \pi^{**}$. Since $\pi \subset \overline{\pi}$ we have by (3) that $\overline{\pi}^* \subset \pi^*$. Since $\pi a \pi^*$ from (4) we have $\overline{\pi} a \pi^*$. Hence by (2) $\pi^* \subset \overline{\pi}^*$ so $\pi^* = \overline{\pi}^*$. By (3) $\pi^{***} \subset \pi^*$. Since $\pi^* a \pi^{**}$, by (2) we have $\pi^* \subset \pi^{***}$ so $\pi^{***} = \pi^*$.

(6) For all $x \in D(\pi)$, $y \in D(\pi_1)$, $A \in \mathcal{A}$ we have

$$\langle \pi(A) x, y \rangle = \langle \pi_1(A) x, y \rangle = \langle x, \pi_1(A^*) y \rangle.$$

Hence $\pi_1 a \pi$ and by (2) $\pi_1 \subset \pi^*$.

(7) It is shown in [6] that $\bar{\pi}$ is hermitian if π is hermitian. Since π is hermitian we have $\pi \subset \pi^*$. Applying (3) twice gives $\pi^{**} \subset \pi^{***}$ so π^{**} is hermitian. Since π^{**} is closed we have from (2) that $\pi \subset \bar{\pi} \subset \pi^{**}$ and from (6) $\pi^{**} \subset \pi^*$.

We now show that the extensions in (7) can be distinct. Let \mathscr{A} be the free commutative *-algebra on one hermitian generator A. Define the representation π of \mathscr{A} on the Hilbert space $H = L^2[0,1]$ as follows: $D(\pi) = \{f \in C^{\infty}[0,1]: f^{(n)}(0) = f^{(n)}(1) = 0, n = 0, 1, 2, ...\} \pi(A) = -i d/dt.$ It is straightforward to show that π is hermitian and that $\pi = \overline{\pi} = \pi^{**} \cong \pi^* [\mathbf{8}]$. Now let π_1 be the representation of \mathscr{A} on H defined by:

$$D(\pi_1) = \{ f \in C^{\infty}[0, 1] : f(0) = f(1), f^{(n)}(0) = f^{(n)}(1), n = 1, 2, \dots \}$$

$$\pi_1(A) = -i d/dt .$$

It is straightforward to show that π_1 is hermitian and that $\pi_1 = \bar{\pi}_1 \subsetneq \pi_1^{**} = \pi_1^*$ [8].

We now consider commutants and irreducibility. If $\pi a \pi_1$, define $C(\pi, \pi_1)$ to be the set of operators $C \in L_c(H)$ satisfying $\langle C \pi(A) x, y \rangle = \langle Cx, \pi_1(A^*) y \rangle$ for every $x \in D(\pi)$, $y \in D(\pi_1)$, $A \in \mathcal{A}$. The proof of the following lemma is straightforward.

LEMMA 3. (1) $C(\pi, \pi_1)$ is a weakly closed subspace of $L_c(H)$ containing I. (2) $C(\pi, \pi_1)$ $= \{C \in L_c(H): C: D(\pi) \rightarrow D(\pi_1^*), C\pi(A) = \pi_1^*(A)C | D(\pi) \}.$ (2) $C \subseteq C(-\infty)$

(3) $C \in C(\pi, \pi_1)$ if and only if $C^* \in C(\pi_1, \pi)$.

The commutant of a *-representation π is defined as $\pi(\mathcal{A})' = C(\pi, \pi)$. It follows from Lemma 3 that $\pi(\mathcal{A})'$ is a weakly closed, symmetric subspace of $L_c(H)$ containing I. However, $\pi(\mathcal{A})'$ need not be a von Neumann algebra [6]. If π is self-adjoint then $\pi(\mathcal{A})'$ is a von Neumann algebra [6]. If π is a *-representation, the strong commutant is defined by

$$\pi(\mathscr{A})'_{s} = \{ C \in \pi(\mathscr{A})' \colon C \colon D(\pi) \to D(\pi) \}.$$

Hence

UNBOUNDED REPRESENTATIONS OF *-ALGEBRAS

$$\pi(\mathscr{A})'_{s} = \{ C \in L_{c}(H) \colon C \colon D(\pi) \to D(\pi), C\pi(A) \\ = \pi(A)C | D(\pi), \forall A \in \mathscr{A} \}.$$

It is easy to see that $\pi(\mathscr{A})'_s$ is an op-algebra in $L_c(H)$ containing I and if π is closed, then $\pi(\mathscr{A})'_s$ is weakly closed [1]. Again $\pi(\mathscr{A})'_s$ need not be a von Neumann algebra but if π is self-adjoint, then $\pi(\mathscr{A})'_s$ is a von Neumann algebra and $\pi(\mathscr{A})'_s = \pi(\mathscr{A})'$.

LEMMA 4. A *-representation π is self-adjoint if and only if $\pi(\mathcal{A})' = \pi(\mathcal{A})'_s$ and $D(\pi^*) = \bigcup \{Cx : x \in D(\pi), C \in \pi(\mathcal{A})'\}.$

Proof. Necessity follows from our previous observations. For sufficiency, if $\pi(\mathcal{A})' = \pi(\mathcal{A})'_s$ then $C: D(\pi) \to D(\pi)$ for all $C \in \pi(\mathcal{A})'$. Hence $D(\pi^*) = \bigcup \{Cx: x \in D(\pi), C \in \pi(\mathcal{A})'\} \subset D(\pi)$.

For a bounded *-representation π of a *-algebra \mathcal{A} on a Hilbert space H the following conditions are equivalent [2, 4].

(i) $\pi(\mathscr{A})' = \{\lambda I : \lambda \in C\}.$

(ii) The only invariant closed subspaces of H are $\{0\}$ and H.

(iii) Every nonzero vector in $H = D(\pi)$ is cyclic.

A bounded *-representation π is said to be *irreducible* if π satisfies any one (and hence all) of these three conditions.

For unbounded self-adjoint representations one can give examples [6,8] which show that no two of the above conditions are equivalent. Also, there is more than one natural way to extend some of the above conditions for unbounded self-adjoint representations. Let π be a self-adjoint representation. We say that a subspace M is a self-adjoint invariant subspace for π if M is invariant and $\pi | M$ is self-adjoint. The following are natural conditions that one might use to define irreducibility for a self-adjoint representation π of a *-algebra \mathcal{A} with domain $D(\pi) \subseteq H$.

(1) $\pi(\mathscr{A})' = \{\lambda I : \lambda \in C\}.$

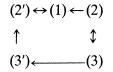
(2) The only invariant subspaces for π which are complete in the $\pi(\mathcal{A})$ -topology are $\{0\}$ and $D(\pi)$.

(2') The only self-adjoint invariant subspaces for π are $\{0\}$ and $D(\pi)$.

(3) Every nonzero vector in $D(\pi)$ is strongly cyclic.

(3') Every nonzero vector in $D(\pi)$ is cyclic.

THEOREM 5. If π is self-adjoint representation of the *-algebra \mathcal{A} on the Hilbert space H, then



Proof. $(2) \rightarrow (3)$. Suppose (2) holds, $0 \neq \phi \in D(\pi)$ and $M = \{\pi(A)\phi \colon A \in \mathcal{A}\}$. Clearly, $M \neq \{0\}$ and M is an invariant subspace of H for π . Let \hat{M} be the completion of M in the $\pi(\mathcal{A})$ -topology. Since π is closed, $\hat{M} \subseteq D(\pi)$ and clearly \hat{M} is a subspace of H. We now show that \hat{M} is invariant under π . If $x \in \hat{M}$, then there exists a net $x_{\alpha} \in M$ such that $x_{\alpha} \rightarrow x$ in the $\pi(\mathcal{A})$ -topology. Fix an $A \in \mathcal{A}$. Then for every $B \in \mathcal{A}$ we have

$$\pi(B) \pi(A) x_{\alpha} = \pi(BA) x_{\alpha} \rightarrow \pi(BA) x = \pi(B) \pi(A) x.$$

Hence $\pi(A) x_{\alpha} \to \pi(A) x$ in the $\pi(\mathcal{A})$ -topology so $\pi(A) x \in \hat{M}$ and $\pi(A) \hat{M} \subseteq \hat{M}$. Since (2) holds, $\hat{M} = D(\pi)$. Hence M is dense in $D(\pi)$ in the $\pi(\mathcal{A})$ -topology so ϕ is a strongly cyclic vector for π .

 $(3) \rightarrow (2)$. Suppose (2) does not hold. Then there exists a $\pi(\mathcal{A})$ complete invariant subspace M of H with $M \neq \{0\}$, $D(\pi)$. If $0 \neq \phi \in M$,
then clearly ϕ is not a strongly cyclic vector for π

 $(1) \rightarrow (2')$. Suppose (2') does not hold. Then there exists a nontrivial self-adjoint invariant subspace M for π . Now M is not dense in H since otherwise $\pi \mid M$ is a *-representation of \mathcal{A} on $\overline{M} = H$ with domain $M \subseteq D(\pi)$. Then $\pi \mid M \subset \pi = \pi^* \subset (\pi \mid M)^*$. Since $\pi \mid M$ is self-adjoint, $\pi \mid M = \pi$ and $D(\pi) = M$ which is a contradiction. By Theorem 4.7 [6] the projection E on \overline{M} satisfies $E \in \pi(\mathcal{A})'$. Since $E \neq 0$, I, (1) does not hold.

 $(2') \rightarrow (1)$. Suppose (1) does not hold. Since π is self-adjoint, $\pi(\mathcal{A})'$ is a von Neumann algebra so there exists a nontrivial projection $E \in \pi(\mathcal{A})'$. By Theorem 4.7 [6], $ED(\pi)$ is a nontrivial self-adjoint invariant subspace for π . Thus (2') does not hold.

 $(3') \rightarrow (1)$. Suppose (3') holds. Let $0 \neq E \in \pi(\mathscr{A})'$ be a projection. By Theorem 4.7 [6], $ED(\pi) = M$ is a self-adjoint invariant subspace for π . Let $0 \neq \phi \in M$. Since ϕ is cyclic and $\{\pi(A)\phi : A \in \mathscr{A}\} \subseteq M, M$ is dense in H. As in $(1) \rightarrow (2')$ above, $M = D(\pi)$ and hence E = I. Since 0 and I are the only projections in $\pi(\mathscr{A})'$, we have $\pi(\mathscr{A})' = \{\lambda I : \lambda \in C\}$.

 $(3) \rightarrow (3')$. This is trivial. $(2) \rightarrow (1)$. Since $(2) \rightarrow (2')$ trivially, this follows from $(2') \rightarrow (1)$ above.

3. Closed strongly cyclic *-representations. In this section we shall mainly be concerned with characterizing self-

adjointedness for closed strongly cyclic *-representations. Let π be a *-representation of a *-algebra \mathscr{A} with domain $D(\pi) \subseteq H$. The *unbounded commutant* $\pi(\mathscr{A})^c$ of π is defined as the set of operators $C \in L(D(\pi), H)$ such that $\langle C\pi(A)x, y \rangle = \langle Cx, \pi(A^*)y \rangle$ for all $x, y \in D(\pi)$ and $A \in \mathscr{A}$. The strong unbounded commutant is defined by $\pi(\mathscr{A})^c_s = \{C \in \pi(\mathscr{A})^c \colon CD(\pi) \to D(\pi)\}$. Notice that $\pi(\mathscr{A})' | D(\pi) \subset \pi(\mathscr{A})^c$ and $\pi(\mathscr{A})'_s | D(\pi) \subseteq \pi(\mathscr{A})^c_s$. In fact,

$$\pi(\mathscr{A})' = \{ \overline{C} \colon C \in \pi(\mathscr{A})^c, \ C \text{ bounded} \}$$
$$\pi(\mathscr{A})'_s = \{ \overline{C} \colon C \in \pi(\mathscr{A})^c_s, \ C \text{ bounded} \}.$$

We say that a net $B_{\alpha} \in L(M, N)$ converges weakly to $B \in L(M, N)$ if $\langle B_{\alpha}x, y \rangle \rightarrow \langle Bx, y \rangle$ for every $x, y \in M$. Moreover, $\mathcal{B} \subseteq L(M, N)$ is weakly closed if for any net $B_{\alpha} \in \mathcal{B}$ which converges weakly to some $B \in L(M, N)$ we have $B \in \mathcal{B}$. The proof of the next lemma is straightforward.

Lemma 6.

- (1) If π is self-adjoint, then $\pi(\mathcal{A})^c = \pi(\mathcal{A})^c_s$.
- (2) $\pi(\mathscr{A})^{c} = \{ C \in L(D(\pi), D(\pi^{*})) \colon C\pi(A) = \pi^{*}(A)C, \forall A \in \mathscr{A} \}.$

(3) $\pi(\mathscr{A})_s^c = C \in L(D(\pi)): C\pi(A) = \pi(A)C, \forall A \in \mathscr{A}\}.$

(4) $\pi(\mathcal{A})^c$ is a weakly closed subspace of $L(D(\pi), D(\pi^*))$ containing $I \mid D(\pi)$.

- (5) $\pi(\mathscr{A})_s^c$ is an op-algebra in $L(D(\pi))$.
- (6) $\pi(\mathcal{A})^c = \pi(\mathcal{A})^c_s$ if and only if $\pi(\mathcal{A})^c$ is an op-algebra.

Let \mathscr{A} be a *-algebra and let π, π_1 be *-representation of \mathscr{A} on Hilbert spaces H, H_1 , respectively. We say that π and π_1 are *equivalent*, and write $\pi \cong \pi_1$, if there exists a unitary transformation V from H onto H_1 such that $VD(\pi) = D(\pi_1)$ and $\pi(A) = V^*\pi_1(A)V$ for every $A \in \mathscr{A}$.

Let ω be a state on \mathscr{A} . Then by the GNS construction for *-algebras [6], there exists a closed, strongly cyclic *-representation π_{ω} of \mathscr{A} with strongly cyclic vector x_0 such that $\omega(A) = \langle \pi_{\omega}(A) x_0, x_0 \rangle$ for every $A \in \mathscr{A}$. Moreover, if π is any closed, strongly cyclic *-representation of \mathscr{A} with strongly cyclic vector y_0 such that $\langle \pi(A) y_0, y_0 \rangle = \omega(A)$ for every $A \in \mathscr{A}$ then $\pi \cong \pi_{\omega}$ [6].

We now characterize states ω such that π_{ω} is self-adjoint. A linear functional $F: \mathcal{A} \to C$ is ω -bounded if for every $B \in \mathcal{A}$ there exists an $M_B \ge 0$ such that $|F(BA)| \le M_B \omega (A^*A)^{1/2}$ for every $A \in \mathcal{A}$. For example, if $A_{\alpha} \in \mathcal{A}$ is a net such that $\omega (A^*_{\alpha}A^*AA_{\alpha})$ is Cauchy for every $A \in \mathcal{A}$, then the functional $F(A) = \lim \omega (A^*_{\alpha}A)$ is ω -bounded. Indeed, for every $B \in \mathcal{A}$ we have

$$F(BA)| = \lim |\omega(A^*_{\alpha}BA)| = \lim |\omega(A^*B^*A_{\alpha})|$$
$$\leq \omega(A^*A)^{1/2} \lim \omega(A^*_{\alpha}BB^*A_{\alpha})^{1/2}.$$

If every ω -bounded linear functional has the above form, then we call ω a *Riesz state*.

THEOREM 7. Let ω be a state on the *-algebra \mathcal{A} . Then π_{ω} is self-adjoint if and only if ω is a Riesz state.

Proof. Recall that π_{ω} is constructed as follows. Let \mathscr{I} be the left ideal $\mathscr{I} = \{A \in \mathscr{A} : \omega(A^*A) = 0\}$ and let H_0 be the inner product space consisting of equivalence classes [A] in \mathscr{A}/\mathscr{I} with inner product $\langle [A], [B] \rangle = \omega(B^*A)$. Let H be the Hilbert space completion of H_0 . Define a *-representation π_0 of \mathscr{A} with domain $D(\pi_0) = H_0$ by $\pi_0(A)[B] = [AB]$. If $\pi_{\omega} = \overline{\pi}_0$, then π_{ω} is a closed, strongly cyclic *-representation with domain $D(\pi_{\omega}) = \hat{H}_{0\pi_0(\mathscr{A})}$ and strongly cyclic vector [I]. Now suppose π_{ω} is self-adjoint and $F : \mathscr{A} \to C$ is ω -bounded. If $\omega(A^*A) = 0$, then F(A) = 0 so $F : \mathscr{I} \to 0$. Hence F can be considered as a linear functional on H_0 . Since $|F([A])| \leq M_1 ||[A]||$, F is a continuous linear functional on H_0 and by the Riesz theorem there exists a $z \in H$ such that $F([A]) = \langle [A], z \rangle$ for every $[A] \in H_0$. Now for every $B \in \mathscr{A}$ we have

$$egin{aligned} &\langle \pi_0(B)[A],z
angle | = |\langle [BA],z
angle | = |F([BA])| \ &= |F(BA)| \leq M_B \, \| [A] \|. \end{aligned}$$

Hence $z \in D(\pi_0^*) = D(\pi_\omega^*) = D(\pi_\omega)$, so there exists a net $[A_\alpha] \in H_0$ which converges to z in the $\pi_0(\mathcal{A})$ -topology. Thus $[AA_\alpha]$ is Cauchy for every $A \in \mathcal{A}$. Finally, for every $A \in \mathcal{A}$ we have

$$F(A) = \lim \langle [A], [A_{\alpha}] \rangle = \lim \omega (A_{\alpha}^*A).$$

Conversely, suppose ω is a Riesz state and $x \in D(\pi_{\omega}^*)$. Define the linear functional $F: \mathcal{A} \to C$ by $F(A) = \langle [A], x \rangle$. Then for every $A, B \in \mathcal{A}$ we have

$$|F(BA)| = |\langle \pi(B)[A], x \rangle| \le M_B ||[A]|| = M_B \omega (A^*A)^{1/2}$$

so F is ω -bounded. Hence there exists a net $A_{\alpha} \in \mathcal{A}$ such that $\omega(A_{\alpha}^*A^*AA_{\alpha})$ is Cauchy for every $A \in \mathcal{A}$ and $F(A) = \lim \omega(A_{\alpha}^*A)$ for every $A \in \mathcal{A}$. It follows that $[A_{\alpha}]$ is Cauchy in the $\pi_0(\mathcal{A})$ -topology and hence there exists a $y \in D(\pi_{\omega})$ such that $[A_{\alpha}] \rightarrow y$. Furthermore, for every $A \in \mathcal{A}$ we have $F(A) = \lim \omega(A_{\alpha}^*A) = \lim \langle [A], [A_{\alpha}] \rangle = \langle [A], y \rangle$. Hence $x = y \in D(\pi_{\omega})$ and π_{ω} is self-adjoint.

COROLLARY. A closed, strongly cyclic *-representation π with strongly cyclic vector x_0 is self-adjoint if and only if the state $A \rightarrow \langle \pi(A) x_0, x_0 \rangle$ is a Riesz state.

A state ω is faithful if $\omega(A^*A) = 0$ implies A = 0. A vector $x_0 \in D(\pi)$ is separating if $\pi(A)x_0 = 0$ implies $\pi(A) = 0$. If ω is faithful then the strongly cyclic vector x_0 for π_{ω} is separating. Conversely, if x_0 is separating, then $\omega(A^*A) = 0$ implies $\pi_{\omega}(A) = 0$. A representation π of \mathcal{A} is ultra-cyclic if there exists an $x_0 \in D(\pi)$ such that $D(\pi) = \{\pi(A)x_0: A \in \mathcal{A}\}$. We then call x_0 an ultra-cyclic vector. Ultra-cyclic representations are important because of the following result.

LEMMA 8. π is a closed, strongly cyclic *-representation if and only if π is the closure of an ultra-cyclic *-representation π^0 .

Proof. Suppose π is a closed, strongly cyclic *-representation of \mathscr{A} with strongly cyclic vector x_0 . Define $D(\pi^0) = \{\pi(A)x_0: A \in \mathscr{A}\}$ and $\pi^0(B)\pi(A)x_0 = \pi(BA)x_0$. Then π^0 is an ultra-cyclic *-representation and $\bar{\pi}^0 = \pi$. Conversely, if π is the closure of an ultra-cyclic *-representation π^0 with ultra-cyclic vector x_0 , then π is a closed *-representation. Moreover, since $D(\pi)$ is the completion of $D(\pi^0)$ in the $\pi(\mathscr{A})$ -topology, x_0 is a strongly cyclic vector for π .

We call π^0 in the proof of Lemma 8 the *underlying* ultra-cyclic *-representation for π . We can obtain information about π by studying the simpler representation π^0 . For example, a condition characterizing the essential self-adjointness of π^0 characterizes the self-adjointness of π . Moreover, $\pi^{0*} = \pi^*$ and $\pi^0(\mathcal{A})' = \pi(\mathcal{A})'$.

Let π be an arbitrary ultra-cyclic *-representation of \mathscr{A} with a separating ultra-cyclic vector x_0 . For $x \in D(\pi^*)$ define $\pi^c(x) \in L(D(\pi), D(\pi^*))$ by $\pi^c(x)\pi(A)x_0 = \pi^*(A)x$. This is a well-defined operator since $\pi(A)x_0 = \pi(B)x_0$ implies $\pi(A) = \pi(B)$. Then for every $y, z \in D(\pi)$ we have

$$\langle \pi(A^*)y, z \rangle = \langle y, \pi(A)z \rangle = \langle y, \pi(B)z \rangle = \langle \pi(B^*)y, z \rangle.$$

Hence $\pi(A^*) = \pi(B^*)$, so $\pi(A^*)^* = \pi(B^*)^*$ and finally

$$\pi^*(A) = \pi(A^*)^* | D(\pi^*) = \pi(B^*)^* | D(\pi^*) = \pi^*(B).$$

It is straightforward to see that $D(\pi)$ is a *-algebra with identity x_0 under the product $(\pi(A)x_0)\circ(\pi(B)x_0) = \pi(AB)x_0$ and involution $(\pi(A)x_0)^* =$ $\pi(A^*)x_0$. Moreover, for every $x, y, z \in D(\pi)$ we have $\langle x \circ y, z \rangle = \langle y, x^* \circ z \rangle$.

THEOREM 9. Let π be an ultra-cyclic *-representation of \mathcal{A} with a separating, ultra-cyclic vector x_0 .

(1) π^{c} is a weakly continuous linear bijection from $D(\pi^{*})$ into $\pi(\mathcal{A})^{c}$.

- (2) The following statements are equivalent.
 - (a) $Cx_0 \in D(\pi)$ for every $C \in \pi(\mathcal{A})^c$.
 - (b) $\pi(\mathscr{A})^c$ is an op-algebra.
 - (c) π is self-adjoint.

(3) $\pi(\mathcal{A})^c$ is an op *-algebra if and only if π is self-adjoint and there exists an involution b on the *-algebra $D(\pi)$ satisfying

$$(3.1) \qquad \langle x^*, y \rangle = \langle y^b, x \rangle$$

for every $x, y \in D(\pi)$.

(4) If $\pi(\mathcal{A})^c$ is an op*-algebra, then π^c is a weakly continuous ^b-anti-isomorphism of $D(\pi)$ onto $\pi(\mathcal{A})^c$.

Proof.

(1) Clearly, π^c is linear. To show that π^c maps $D(\pi^*)$ into $\pi(\mathscr{A})^c$, for $x \in D(\pi^*)$, $A \in \mathscr{A}$, $z \in D(\pi)$ and $y = \pi(B)x_0 \in D(\pi)$ we have

$$\begin{split} \langle \pi^{c}(x)\pi(A)y,z\rangle &= \langle \pi^{c}_{\cdot}(x)\pi(AB)x_{0},z\rangle \\ &= \langle \pi^{*}(AB)x,z\rangle = \langle \pi^{*}(B)x,\pi(A^{*})z\rangle \\ &= \langle \pi^{c}(x)\pi(B)x_{0},\pi(A^{*})z\rangle = \langle \pi^{c}(x)y,\pi(A^{*})z\rangle. \end{split}$$

To show that π^c is surjective, let $C \in \pi(\mathscr{A})^c$. Then $Cx_0 \in D(\pi^*)$ and for any $y = \pi(A) x_0 \in D(\pi)$ we have

$$\pi^{c}(Cx_{0})y = \pi^{c}(Cx_{0})\pi(A)x_{0} = \pi^{*}(A)Cx_{0}$$
$$= C\pi(A)x_{0} = Cy.$$

To show that π^{c} is injective, suppose that $x, x_{1} \in D(\pi^{*})$ and $\pi^{c}(x) = \pi^{c}(x_{1})$. Then

$$x = \pi^{*}(1)x = \pi^{c}(x)x_{0} = \pi^{c}(x_{1})x_{0} = \pi^{*}(1)x_{1} = x_{1}$$

To show that π^{c} is weakly continuous, suppose that $x_{i}, x \in D(\pi^{*})$ and

 $x_i \rightarrow x$ in norm. Then for any $y = \pi(B)x_0 \in D(\pi)$ and $z \in D(\pi)$ we have

$$\lim \langle \pi^{c}(x_{i})y, z \rangle = \lim \langle \pi^{*}(B)x_{i}, z \rangle$$
$$= \lim \langle x_{i}, \pi(B^{*})z \rangle = \langle x, \pi(B^{*})z \rangle$$
$$= \langle \pi^{*}(B)x, z \rangle = \langle \pi^{c}(x)\pi(B)x_{0}, z \rangle$$
$$= \langle \pi^{c}(x)y, z \rangle.$$

(2) (a) \rightarrow (b). Suppose that (a) holds and $C \in \pi(\mathscr{A})^c$, $y = \pi(A)x_0 \in D(\pi)$. We then have $Cy = C\pi(A)x_0 = \pi^*(A)Cx_0 = \pi(A)Cx_0 = \pi(A)Cx_0 \in D(\pi)$. Hence, by Lemma 6(6), $\pi(\mathscr{A})^c$ is an op-algebra.

(b) \rightarrow (c). If $x \in D(\pi^*)$, then by (1) $\pi^c(x) \in \pi(\mathscr{A})^c$. If $\pi(\mathscr{A})^c$ is an op-algebra, then $x = \pi^*(1)x = \pi^c(x)x_0 \in D(\pi)$. Hence $D(\pi^*) = D(\pi)$ and π is self-adjoint.

(c) \rightarrow (a). If π is self-adjoint, then $\pi(\mathscr{A})^{c} \subseteq L(D(\pi))$.

(3) Suppose $\pi(\mathscr{A})^c$ is an op*-algebra. Then, by (2), π is selfadjoint. If $C \in \pi(\mathscr{A})^c$, then $D(\pi) \subseteq D(C^*)$ and $C^* | D(\pi) \in \pi(\mathscr{A})^c$ so $C^*: D(\pi) \to D(\pi)$. For $x \in D(\pi)$, by (1) $\pi^c(x) \in \pi(\mathscr{A})^c$ so $x^b \equiv \pi^c(x)^* x_0 \in D(\pi)$. For $x = \pi(A) x_0 \in D(\pi)$ and $y \in D(\pi)$ we have

$$\langle y^{b}, x \rangle = \langle \pi^{c}(y)^{*}x_{0}, x \rangle = \langle x_{0}, \pi^{c}(y)\pi(A)x_{0} \rangle$$

= $\langle x_{0}, \pi(A)y \rangle = \langle \pi(A^{*})x_{0}, y \rangle = \langle x^{*}, y \rangle$

so (3.1) holds. That ^b is an involution now follows from (3.1). For example,

$$\langle (y \circ z)^b, x \rangle = \langle x^*, y \circ z \rangle = \langle y^* \circ x^*, z \rangle$$

= $\langle z^b, x \circ y \rangle = \langle x^* \circ z^b, y \rangle = \langle y^b, z^{b^*} \circ x \rangle$
= $\langle z^b \circ y^b, x \rangle.$

The other properties of an involution follow in a similar way. Conversely, suppose π is self-adjoint and there exists an involution ^b on $D(\pi)$ satisfying (3.1). Then by (2), $\pi(\mathscr{A})^c$ is an op-algebra. If $C \in \pi(\mathscr{A})^c$, then for any $x = \pi(B)x_0 \in D(\pi)$ and $y = \pi(A)x_0 \in D(\pi)$ we have

$$\langle Cy, x \rangle = \langle C\pi(A)x_0, x \rangle = \langle Cx_0, \pi(A^*)x \rangle$$

= $\langle Cx_0, \pi(A^*B)x_0 \rangle = \langle Cx_0, [\pi(B^*A)x_0]^* \rangle$
= $\langle \pi(B^*A)x_0, (Cx_0)^b \rangle = \langle \pi(A)x_0, \pi(B)[(Cx_0)^b] \rangle$
= $\langle y, \pi^c[(Cx_0)^b]x \rangle.$

Hence $D(\pi) \subseteq D(C^*)$, $C^* | D(\pi) = \pi^c [(Cx_0)^b] \in \pi(\mathscr{A})^c$ and so $\pi(\mathscr{A})^c$ is an op*-algebra.

(4) Suppose $\pi(\mathcal{A})^c$ is an op*-algebra. It follows from (1) that $\pi^c: D(\pi) \to \pi(\mathcal{A})^c$ is a weakly continuous linear bijection. For $x = \pi(A)x_0 \in D(\pi)$ and $y = \pi(B)x_0 \in D(\pi)$ we have

$$\pi^{c}(x)y = \pi^{c}(x)\pi(B)x_{0} = \pi(B)x = \pi(B)x_{0} \circ \pi(A)x_{0} = y \circ x.$$

It is now clear that π^c is an anti-isomorphism. To show that π^c is a ^b-anti-isomorphism, for $x \in D(\pi)$ and $y = \pi(A)x_0 \in D(\pi)$ we have

$$\pi^{c}(x^{b})y = y \circ x^{b} = y \circ [\pi^{c}(x)^{*}x_{0}] = \pi(A)\pi^{c}(x^{*})x_{0}$$
$$= \pi^{c}(x)^{*}\pi(A)x_{0} = \pi^{c}(x)^{*}y.$$

COROLLARY. Let π be a closed, strongly cyclic *-representation of \mathcal{A} with separating, strongly cyclic vector x_0 and let π^0 be the underlying ultra-cyclic representation. Then π is self-adjoint if and only if $Cx_0 \in D(\pi)$ for every $C \in \pi^0(\mathcal{A})^c$.

Proof. If π is self-adjoint and $C \in \pi^0(\mathscr{A})^c$, then $Cx_0 \in D(\pi^{0*}) = D(\pi^*) = D(\pi)$. Conversely, suppose $Cx_0 \in D(\pi)$ for every $C \in \pi^0(\mathscr{A})^c$. If $x \in D(\pi^*)$, then $x \in D(\pi^{0*})$ so by Theorem 9(1), $\pi^c(x) \in \pi^0(\mathscr{A})^c$. Hence $x = \pi^c(x)x_0 \in D(\pi)$, so $D(\pi) = D(\pi^*)$ and π is self-adjoint.

References

2. G.G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory, John Wiley & Sons, Inc., New York (1972).

3. G. Lassner, Topological algebras of operators, Rep. Math. Phys., 3 (1972), 279-293.

4. M.A. Naimark, Normed Rings, Noordhoff Publishers, Groningen, The Netherlands (1970).

5. E. Nelson, Analytic vectors, Ann. Math., 70 (1959), 572-615.

6. R.T. Powers, Self-adjoint algebras of unbounded operators, Commun. Math. Phys., 21 (1971), 85-124.

7. ——, Self-adjoint algebras of unbounded operators II, Trans. Amer. Math. Soc., 187 (1974), 1-33.

8. W.M. Scruggs, Unbounded representations of *-algebras, Dissertation, University of Denver (1976).

9. B. Simon, The $P(\phi)_2$ Euclidean (Quantum) Field Theory, Princeton University Press, Princeton, New Jersey (1974).

10. R.F. Streater and A.S. Wightman, *PCT*, *Spin and Statistics and All That*, W.A. Benjamin, Inc., New York (1964).

Received January 13, 1977 and in revised form May 19, 1977.

UNIVERSITY OF DENVER DENVER, CO 80210

^{1.} H.J. Borchers and J. Yngvason, On the algebra of field operators. The weak commutant and integral decomposition of states, Commun. Math. Phys. 42 (1975), 231-252.