
PACIFIC JOURNAL OF MATHEMATICS
Vol. 70, No 2, 1977

QUASI-AFFINE TRANSFORMS OF
SUBNORMAL OPERATORS

CHE-KAO FONG

For an operator T which is a quasi-affine transform of a
subnormal operator S, we show that: (1) if 5* has no point
spectrum and /: λ H> (T - λ )~!x is defined on an open set Π, then
there is a dense subset fl(, of Ω such that /1 Ωo is analytic; and (2)
if Σ is a spectral set of T and Q is a peak set of R (Σ), then the
spectral manifold XT(Q) is a reducing subspace of T and Q is a
spectral set of T |X T (Q).

1. Introduction. We generalize results of Putnam [5] and [6]
which concern local spectral properties of subnormal operators to
quasi-affine transforms of subnormal operators.

Before we proceed, we fix some notation and terminology. All
operators are assumed to be linear, bounded and defined on Hubert
spaces. For an operator Γ, we write σ(T) for the spectrum of T. For
an operator T defined on ffl and a closed set F in the complex plane C,
we write S£T{F) for those JC in <̂f such that there exists a vector-valued
analytic function / from C\F into % satisfying (T- λ)f(λ) = x for all
λ G C\F. An operator T has the single-valued extension property if
whenever g is a vector-valued analytic function defined on an open set in
C with ( Γ - λ ) g ( λ ) = 0 then g(λ) = 0. (See Colojoara and Foias
[1].) By a quasi-affinity we mean a (bounded linear) mapping
W: 5ίf —>3ίf between two Hubert spaces Sίf and JC which is one-one and
has its range dense in JC. An operator T defined on JC is said to be a
quasi-affine transform of an operator S defined on JC if there is a
quasi-affinity W: JC-+JC such that SW = WT.

Suppose we have NW0= W0T, where N is a normal operator
defined on 3ίf0, T is an operator on X and Wo: 26 -» Xo is one-one. Let
% be the closure of the range of Wo and W: ffl^X be the map which
has the same value as Wo at each point in 3€. Then 5ίf is invariant under
JV and SW = WT where 5 is the subnormal operator defined by
restricting N to JC. Therefore Γ is a quasi-affine transform of a
subnormal operator. Conversely, suppose T is a quasi-affine transform
oof a subnormal operator 5. Let IV be a quasi-affinity such that
SW = WT and N be a normal extension of 5. Then NW0 = W0T where
Wo is the one-one mapping which takes the same value as W at each
point. Thus, an operator T is a quasi-affine transform of a subnormal
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operator if and only if there is a one-one mapping intertwining T and a
normal operator.

2. Simple properties.

PROPOSITION 1. If T is a quasi-affine transform of a subnormal
operator, then T has the single-valued extension property.

Proof Let N be a normal operator, Wo be a one-one map such that
NW0 = W0T. Suppose g is a vector-valued analytic function defined on
an open.set such that (T - Λ )g(Λ) = 0. Then we have (N - λ) Wog(A) =
W0(T- λ)g(λ) = 0 for all A. Since normal operators have the single-
valued extension property, Wog(λ) = 0 for all A. Since Wo is one-one,
we have g — 0.

LEMMA 1. (See Colojoara and Foia§ [1] Proposition 3.8.) If T is an
operator on %C with the single-valued extension property and F is a closed
set in C such that 3tτ{F) is closed, then we have σ(T\%τ(F))CF. In
particular, if %T(F) = Sίf, then σ(T)CF.

PROPOSITION 2. // T is a quasi-affine transform of the subnormal
operator S and N is the minimal normal extension ofS. then σ(N) Cσ(S)C
σ(T).

Proof That σ(N) C σ(S) is well-known. Suppose W: X -> % is a
quasi-affinity such that SW = WT. Then WW = W%τ(σ(T)) C
Ses(σ(T)). Since WH is dense in J{ and %s(cr(T)) is closed (see
Radjabalipour [7]), %s (σ(T)) = %. By the above lemma σ(S) C σ(T).

REMARK 1. Using the same argument as above we can show that if
T is a quasi-affine transform of the hyponormal operator 5, then
σ(S)Cσ(T).

REMARK 2. Let S be a subnormal operator on %t and N be the
minimal normal extension of S on X Then S*P - PN*, where P is the
projection from 3ίf onto W. Therefore we have $? = PX =
P^*(σ(N*)) Ca?s (σ(N*)). If S * has the single-valued extension prop-
erty, then, by Lemma 1, σ(S*)Cσ(N*) and hence σ(S) = σ (N).

EXAMPLE. Let 5 be the unilateral shift. Then its minimal normal
extension is the bilateral shift, denoted by U. Note σ(U) = the unit
circle / the unit disk = σ(S). Hence, from the above remark, S* does
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riot have the single-valued extension property. For a construction of a
nonzero analytic function g such that (S* — λ)g(λ) = 0, see Colojoara
and Foias [1] p. 10.

It is well-known that a completely subnormal operator does not have
a nontrivial invariant subspace on which the operator is normal. The
same holds for operators which are quasi-affine transforms of completely
subnormal operators.

PROPOSITION 3. If T is a quasi-affine transform of a completely
subnormal operator S, then T has no nontrivial invariant subspace M such
that T\M is normal

Proof. Let Wo be a quasi-affinity and SW0= W0T. Suppose M is
an invariant subspace of T such that T \ M is normal. Let Jf be the
closure of W0Jί and Wi'.M-^Jΐ be defined by restricting Wo to
M. Then JV is an invariant subspace of S and hence S \Jί is
subnormal. Also (5 \Jf)Wx= W,(T\ M). Therefore S\Jf is
normal. (See e.g. Radjavi and Rosenthal [8].) Since 5 is subnormal, Jί
is reducing for 5. Since we assume that S is completely subnormal, we
have M = {0}. Hence M = {0}.

3. Spectral manifolds.

PROPOSITION 4. If T is an operator on ffl which is a quasi-affine
transform of a subnormal operator 5, S* has no point spectrum, x E Sίf, Ω is
an open set in C and f:Ω^>ffl is a bounded function such that
(T - λ)/(λ) = x for all λ, then f is analytic.

Proof. Let N be the minimal normal extension for S and % be the
underlying Hubert space of N. Let Wo be a one-one mapping such that
NW0 = WQT. Since S* has no point spectrum, it is easy to show that N
also has no point spectrum. (From NW0 = W0T and the fact that Wo is
one-one we see that the point spectrum of T is empty.) For A G Ω, we
have

(N-λ)Wof(λ)= W0(T-λ)f(λ)= WQx.

By Putnam [5], λ -> Wof(λ) is analytic. Hence, for y G 3ίf, the function
λ ->(f(A), W0*y)= (Wof(λ)7 y) is analytic. Since Wo is one-one, the
range of Wo* is dense and hence λ —»(/(λ), JC) is analytic for each x in a
dense subset of $?. By the boundedness of /, we can show that
λ ->(/(λ), x) is analytic for each x in 5ίf. Therefore / is analytic.

For the next proposition we need a technical lemma.
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LEMMA 2. Suppose that Ω is an open set in C, /: Ω—»2ίf is a
vector-valued function and D is a dense subset of X such that A —•
(f(λ), x) is analytic for x E D. Then there is an open dense subset Ωo of
Ω on which f is analytic.

Proof. It suffices to show that, for every nonempty open subset U
of Ω, there is a nonempty open subset of U on which / is bounded. Fix
a nonempty open set U in Ω. First we show that, for every positive
integer rc, the set

Fn={λEU:\\f(λ)\\^n}

is relatively closed in U. Let λ0 E U be in the closure of Fn. Since, for
x E D, A -» (/(A), x) is continuous and | (/(A), x) | ̂  n || x || for λ E Fn, we
have | ( / ( λ o ) , x ) | ^ n | | x | | for x E D. Since D is dense, | | / ( λ o ) | | ^
n. Therefore A 0 £F f l . Now, U = U*=i Fn. By the Baire Category
Theorem, there is some n such that the interior of Fn is nonempty. The
proof is complete.

PROPOSITION 5. // T is an operator on %€ which is a quasi-affine
transform of a subnormal operator S, S * has no point spectrum, x E Sίf, Ω is
an open set in C and f: Ω—> iff is a function such that (T - λ )/(λ) = x for
all A E Ω, then there is a dense open subset Ωo of Ω such that f | Ωo is
analytic.

Proof The argument makes use of Lemma 2. It is a slight
modification of that of Proposition 4, and hence is left to the reader.

COROLLARY. If T on X is a quasi-affine transform of a sub-
normal operator S on X, Ω is a nonempty open subset of σ(S) and
fΊ {(T - A) ̂ : A E Ω } ^ {0}, then T has a nontrivial invariant subspace.

Proof. Suppose SW = WT with W as a quasi-affinity. If the point
spectrum of S* is nonempty, from W*S* = T* W* we see that the point
spectrum of Γ* is also nonempty and hence T has an invariant
subspace. Therefore we may assume that the point spectrum of 5 * is
empty. Let x be a nonzero vector in Π { ( T - λ ) ^ : A E Ω}. By Propo-
sition 5, there is a nonempty open set Ωo in Ω such that x E
$V(C\Ω0). Let M be the closure of ^Γ(C\Ω 0). Then M^{0}. By
Radjabalipour [7], <^5(C\Ω0) is closed. Since C\Ω0£ cr(S), by Lemma 1,
%s (C\Ω0) ϊ X. Now WQM C %s (C\Ω0). Hence M ί W.

REMARK. In view of Stampfli and Wadhwa [12], Proposition 4 still
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holds if we merely assume that T is a quasi-affine transform of a
hyponormal operator without point spectrum.

4. Peak sets. The following theorem is a generalization of
Theorem 1 in Putnam [6]:

THEOREM. Let T (defined on ffl) be a quasi-affine transform of a
subnormal operator. Let Σ be a spectral set of T and Q be a peak set of
R (Σ) (the uniform closure of rational function with poles off Σ). Then
there is a projection F(Q) on W such thatF(Q)^ = %T(Q) andF(Q) is in
the weakly closed inverse-closed algebra generated by T. Furthermore,
TI F(O)3€ and T\(I- F(Q))W are quasi-affine transforms of subnormal
operators and Q is a spectral set for T \

Proof. Suppose N = I λdEλ on JCQ is a normal operator, Wo is a

one-one mapping and NW0 = W0T. Since Σ is a spectral set of Γ, g(T)
is defined for g<ΞR(Z) and | |g(T) | |^sup{|g(λ)|: λ G Σ}. Furthermore,
it is straightforward to show that g(N)W0 = Wog(T) for g G R (Σ). Let
/ be a peak function of Q, i.e., / = 1 on Q and | / ( λ ) | < l for
λ £ Q. Then

for each n. Hence {f(T)n: n = 1,2, ...} has a weakly convergent subse-
quence, say, w-lim/(T)n' =F(Q). Since {/": n - 1, 2,...} converges
pointwisely to the characteristic function of Q and f(N)nW0= Wof(T)n

for all n, we have E(Q)W0 — W0F(Q). Since W is one-one and
W0F(Q)2 = E(Q)2W0 = E(Q)WQ= W0F(Q), we have F(Q)2 = F(Q).
Since || ̂ (0)11 = 1, we see that F(Q) is a projection. From the definition
of F(Q) we see that F(Q) is in the weakly closed inverse-closed algebra
generated by T.

For convenience, we write Tλ = T\F(Q)%, Nλ= T\E(Q)X0 and
Wx\ F(Q)W^E(Qp{0 for the restriction of Wo to F(Q)W. We have
Nί Wx = WxTλ. Note that Wλ is one-one, JVi is normal and σ(Nλ) C Q.

Let q be a rational function with poles off Σ. Let C be an arbitrary
compact set in C disjoint from Q. Then, when n is large enough, we
have

Hence we have | |^(Γ)F(O)| |^sup{|q(λ) | : λ-*ΞΪ\C}. Since C is arbi-
trary, we have
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Next, suppose r is a rational function with poles off Q. Since Q is a
peak set of JR(Σ), for every connected component Ω of C\Q, we have
Ωj£ Σ. (Otherwise, / - I would be a nonzero continuous function which
is analytic on Ω and zero on <9Ω, contradicting the maximal modulus
principle.) By Rudin [10] Theorem 13.9, there is a sequence {qn} of
rational functions with poles off Σ such that sup{|gn(λ)- r(A) j: AGO}
—»0 as n-»α>. Hence, by (*),

as n,m -> oo. Therefore {qn{Tλ): n = 1,2,...} is convergent in the norm
topology, to Tn say. It is easy to see that || Tr || § sup{ | r(λ) j : λ E Q},
r(Ni)W] = WjTr and Γr is in the inverse-closed, uniformly closed algebra
generated by Tx. In particular, if μ g* Q and r is taken to be the function
λ -> (λ - μ, )-*, then (N, - μ)" ! W2 = ̂  ΓΓ and

Since WΊ is one-one, we have Tr(T1- μ ) = /. Therefore T{-μ is
invertible. We have shown that σ-eFj) C Q. Now it is easy to see that,
for general r, Tr = r(Tj). Hence Q is a spectral set for Tx.

Since σ(Γ,)C0, we have F(Q)WC%T(Q). Conversely, suppose
xE^τ(Q). Then there is an analytic vector-valued function
f:C\Q-*W such that (T-λ)f(λ) = x for all A. Hence, for λ0Q,
(N-λ)W 0 /(λ)= W 0 (Γ-λ)/(λ)= WOJC. Therefore W 0 xEf N (O) =
£(0)3Sfo. Now W0F(Q)x = £(O)W0x = Wox. Since Wo is one-one,
F(O)JC = JC, or x G F(Q)%. Therefore F(Q)W = ̂ T (O). The proof is
complete.

REMARK 1. If we assume that Q, instead of being a spectral set for
Γ, has the following property: there exists M > 0 such that | | r ( T ) | | ^
Msup{|r(λ)|: A E Σ} for every rational function r with poles off Σ, then,
using the same argument as in the proof of the above theorem, we can
establish the existence of an idempotent operator F(Q) in the weakly
closed, inverse-closed algebra generated by T such that F(Q)9€ =
Sετ{Q). Furthermore, we have

for every rational function r with poles off Q. Such an F(Q) is
unique. (Suppose Fλ and F2 are two idempotent operators in the weakly
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closed, inverse-closed algebra generated by T such that Fffl = F2ffl -
3£T{Q). Then FXF2 = F2Fι is also an idempotent operator with FxF1%t =
FtX and kerF1F2CkerF1. Hence FXF2 = F,. Similarly F2Fί = Fι.
Therefore Fi = F2.)

REMARK 2. From the proof of F(Q)% D %T(Q) and in view of
Putnam [5], we see that

REMARK 3. If Qx and Q2 are peak sets for Σ, then we have
ΠQ2) = E (Oi Π Q2) Wo = JB (Qι)E (Q2) Wo = E (Qι)W0F(Q2)
FiQ,) and hence F ^ Π Q2) = F(Qι)F(Q2). In general, let $

be the Boolean algebra generated by the family of peak sets for
Then F can be extended to £S in a unique way such that:

(1)
(2) FOBΛB2) = F(Bi) - F{BX)F{B2).

In fact, for J5,£ 98, £ ( 5 0 ^ = WQF(BX).
The following corollary is a generalization of a result in Conway and

Olin [4].

COROLLARY. Let T be a completely nonnormal contraction which is
a quasi-affine transform of a subnormal operator with minimal normal

extension N = I λdEλ on J{Q. If Z is a Borel set in {λ E C: j λ | = 1} of arc

length measure zero, then E(Z) = 0.

Proof By the inner regularity of the spectral measure E, it suffices
to prove the corollary under the additional assumption that Z is
closed. Since T is a contradiction, by von Neumann's well-known
theorem, the closed unit disc Σ = {λ: | λ | ̂  1} is a spectral set for T. By
the theorem of F. and M. Riesz (see, e.g., Hoffman [2], p. 32), Z is a peak
set for K(Σ). From the above theorem, we have E(Z)W0= W0F(Z)
(Wo: ffl-*9C0 here is a one-one mapping implementing JVW0= W0T),
and Z is a spectral set for T\F(Z)%. By the Hartogs-Rosenthal
Theorem, R(Z)=C(Z). Therefore Γ|F(Z)9ίf is normal, (by Lebow
[3]). Since, by assumption, T is completely nonnormal, F(Z) =
0. Hence E(Z)W0 = 0. Since N is the minimal normal extension of
the subnormal operator given by restricting N to the closure of the range
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of Wo, 3CQ is the closure of the linear span of {N*nx: x E W0^,n =
1,2 , }. Therefore E(Z) = 0.
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