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CURVATURE FUNCTIONS ON LORENTZ 2-MANIFOLDS

JOHN T. BURNS

0. Introduction. This paper deals with the problem of
describing those functions which can arise as Gaussian curva-
tures on 2-dimensional Lorentz manifolds, specifically, the
2-dimensional torus T2 and the plane R2. It is well known that
the only compact connected oriented 2-dimensional manifold
which admits a Lorentz metric is the torus T2, so restricting
attention to T2 represents no loss in generality.

The technique used is that used by Kazdan and Warner in their study
of Gaussian curvatures on Riemannian manifolds. The manifold M is
given the standard flat Lorentz metric g :ds2 = dx2- dy2. Then a given
smooth function K will be the Gauss curvature of the Lorentz metric
g = e2ug if the function u is a smooth solution of the nonlinear hyperbolic
partial differential equation Dw = uxx - uyy = - Ke2u. Solving this equa-
tion on T2 is equivalent to finding a solution u(xy y) in the plane which is
periodic in each variable. Although a considerable literature exists on
the problem of global periodic solutions of nonlinear hyperbolic partial
differential equations, the emphasis is on other types of equations, and
our results appear to be new. Our results illustrate a number of
significant differences between curvature functions of Riemannian (posi-
tive definite) metrics and Lorentz metrics.

Following Kazdan and Warner [7,8], we say that metrics g and g on
a manifold M are pointwise conformal if g = e2ug for some smooth
function u on M and that g and g are conformally equivalent if there is a
diffeomorphism φ of M and a smooth function u such that e2ug is the
metric obtained by pulling back g under φ, i.e. φ*(g)= e2ug. We
prescribe a Lorentz metric g on the manifold M and attempt to realize a
given function K as the curvature of a Lorentz metric g which is
pointwise conformal to g or, if that is not possible, which is conformally
equivalent to g. This approach leads to the problem of solving the
nonlinear hyperbolic partial differential equation Δu = - k + Ke2u,
where k and Δ are the Gaussian curvature and Laplace-Beltrami
operator, respectively, in the given metric g. (For a derivation of this
equation in local coordinates, see Eisenhart [3, p. 90].) The problem of
showing that K is the curvature of a metric g conformally equivalent to g
is precisely that of finding a diffeomorphism φ of M such that one can
solve Δw = - k +(K°φ)e 2 u . For the flat Lorentz metric g:ds2 =
dx2-dy2, Δw = — Dw= ~{uxx-uyy) and k = 0, so the equation in
question is ϋw = uxx - uyy = - Ke2u.
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In §1, we study the hyperbolic equation uxx - uyy = - he",
h^O. For the corresponding elliptic equation uxx + uyy = - heu,
Kazdan and Warner have shown that the conditions (i) h changes sign on

T2 and (ii) hdA < 0, where dA is the area element of the given
Jτ2

metric, are necessary and sufficient for the existence of a solution. For
the hyperbolic equation, we show that condition (ii) is no longer
necessary and that (i) can be replaced by a stronger necessary condition
which in turn implies that (i) and (ii) together are no longer sufficient to
guarantee a solution.

In §2, we study the ordinary differential equation u" = - he", where
h(x) is a smooth 2τr-periodic function of a single variable. We show

J 2τr

h{x)<0 are
0

necessary and sufficient for the existence of a 2ττ-periodic solution. We
use this result to determine which functions of a single variable may be
Gaussian curvatures of Lorentz metrics on T2. In particular, there
exists a Lorentz metric whose curvature is the curvature of the standard
torus of revolution imbedded in R3 and possessing the induced Rieman-
nian metric.

Finally, in §3, we study curvatures on R2. Our main results are that
if either (1) K is a constant function or (2) K is a function with compact
support, then K is the curvature of a Lorentz metric g pointwise
conformal to the flat metric dx2 = dx2- dy2. We conclude with some
further examples which satisfy neither (1) nor (2).

The results of this paper constitute part of the author's Ph.D.
dissertation submitted at the University of Minnesota. The author
gratefully acknowledges the advice and encouragement of his advisor,
Prof. Leon W. Green.

1. Necessary and sufficient conditions. We turn now
to the problem of determining those smooth functions on the 2-
dimensional torus T2 which can be the Gaussian curvature of some
Lorentz metric. We begin by considering the flat Lorentz metric whose
components are gn = α2, g22

 = — b2, g12

 = g2i = 0. The area element
associated with the metric g will be denoted by dAg, and dAg =
Idet g fdxdy = \ ab \dxdy. We will also think of T2 as the plane JR2 with
the points which differ by integer multiples of 2π identified. A smooth
function on T2 will then be a function which is smooth on R2 and
2π-periodic in each variable. The equation we wish to study is

(1.1) Πgu = (ί/a2)uxx - (l/ί>2K = - he*.

For equation (1.1), only (i) of the previously mentioned Riemannian
necessary conditions remains. Indeed, by integrating both sides of (1.1)
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over Γ2, we obtain the necessary condition that heudAg = 0. For a
Jτ2

smooth function h, this implies that h must change sign. To show that
condition (ii) is no longer necessary, we first derive an alternate necessary
and sufficient condition for (1.1) to have a solution.

Let C°°(Γ2) denote the set of smooth functions on the torus, and let P
be the set of smooth functions on T2 which never vanish. Define

S = {h e

The following proposition, whose main usefulness is in the construction
of counterexamples to condition (ii), follows from an easy computation
using the change of variable f = e~u.

PROPOSITION 1.1. The equation D g« = - he2u has a solution
u E C*(T2) if and only if h E S.

We now specialize to the standard flat Lorentz metric ds2 =
dx2 - dy2 and use Proposition 1.1 to show that condition (ii) is no longer
necessary. Let v E CX(T2) be such that D ^ = vxx - vyy = 0, and let
ft = vl-v2

y. Then /(JC, y) = cosh(υ(*, y))E P and fOf - (f2

x-fy) =
ft. Hence h E S, and Πu = - he2u has a solution u E C°°(Γ2). In fact,
w(x, y) = logsech(ϋ(jc, y)) is a solution. However, from Green's first

identity, we have hdA = 0.

In the case of a Lorentz metric ds2 = a2dx2- b2dy2, where a and b
are incommensurable, there are no nonzero functions of the form
h = (ί/a2)v2

x- (l/fc2)t>2, where Ogv = 0, because the only solutions of
\3gυ = 0 are constants. However, condition (ii) still fails because of

THEOREM 1.2. On the torus T2 with flat Lorentz metric ds2 =
a2dx2- b2dy2 and associated area element dAg, there exist functions
h E C°°(Γ2) for which Dgu = - he2u has a solution and either (1)

ί hdAg<0 or (2) ( hdAg>0.

Proof (1) Suppose f E P, /(JC, y) = w(x), w not constant. By
Proposition 1.1, h = (l/a2)(w(jt)H>"(x)- (w'(x))2) is a function for which
DgM = - he2u has a solution. Integrating by parts, we have

ί hdAg = ~4τr^- [2\w\x)fdx<0.
Jτ2 a Jo

(2) follows by taking / ε P , /(JC, y ) = w(y), w not constant.
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For the flat Lorentz metric ds2 = dx2 - dy2 with area element dA, we
show now that the condition that h changes sign should be replaced by a
stronger necessary condition which has considerable geometric
content. Recall that an isotropic or null geodesic is one whose tangent
vector at every point has length zero. For the standard flat metric, the
null geodesies are the lines in the rectangle [0,2π] x [0,2ττ] with slope
+ 1 or - 1. These geodesies are all closed. Null geodesies are of
course a feature peculiar to indefinite metrics, and our new condition
states that if h is such that uxx - uyy = - heu has a solution, then along
each null geodesic either h changes sign or h = 0. To show this, we use
the classical change of variable x = ξ + TJ, y = f - 17, and let w(ξ, η) =
M(JC, y) and H(ξ, η) = /t(jc, y). Our equation becomes

(1.2) wξv=-He\

For convenience, we shall adopt the following slight abuse of
notation. If w(ξ9 η) is 2π-periodic in ξ and η, we shall write
w G C°°(T2). Then we have the following easy lemma.

LEMMA 1.3. If H E C°°(T2) and w G CM(T2) is a solution of (1.2),

then for each fixed £0G [0,2π], ί * H(ξ0, η)ew{ξ°η)dη = 0, and for each
Jo

fixed

τ,0e[0,2τr], Γ
Jo

Let γ be a null geodesic with slope + 1. (The case with slope - 1 is
similar.) By periodicity, we may think of y as the line segment from
(JCO, ~*o) to (JCO + 2TΓ, -JCO + 2TΓ), where 0 < J C 0 — 2ττ. We consider the

line integral heu. Parameterizing this integral with JC, we obtain
Jγ

Γ+27T h(xyx- 2xo)eu^χ-2^dx = Γ
Jxo Jo

= 0

by Lemma 1.3. Since eu >0, this implies that either h changes sign
along γ or h = 0 along γ. We state this result formally as

THEOREM 1.4. // h^C~{T2) and Ώu = - heu has a solution
u G C°°(T2), then along each null geodesic either h must change sign or be
equal to zero.

An important consequence of Theorem 1.4 is that the Kazdan and
Warner conditions (i) and (ii) for the solvability of the elliptic equation
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are not sufficient to guarantee the existence of a solution of the
hyperbolic equation. More precisely, we have

THEOREM 1.5. If h E C°°(Γ2) changes sign on Γ2, then neither (a)

I hdA > 0, nor (b) \ hdA = 0, nor (c) \ hdA < 0 is sufficient to
JT2 JT2 JT2

guarantee the existence of a solution u E C°°(T2) of DM = - heu.

Proof We prove (b) with (a) and (c) following as immediate
consequences. We represent T2 as the rectangle [0,2ττ] x [0,2π] with
opposite sides identified. Let p0 = (JC0, yo) denote the point
(τr/2,3π/2). Let Dλ be the open disc centered at p0 with radius r, where
r < 7r/4. Let D2 be the open disc centered at p0 with radius r/2. For
t ^ 0, there is a smooth function ht on T2 with the properties

(i) ht(p)=t for pED2

(ii) - K f t , ( p ) < ί for pEDι-D2

(iii) Λf(p)= - 1 for pGT'-D,.

Define f{t) = ht. Clearly, /(0) < 0, and t0 > 0 may be chosen so that

f(to) > 0. Hence, there is a ί * E (0, ί0) such that 0 = f(t *) = ftf , and,
JT2

since ί*>0, ft,, changes sign on T2. However, on the null geodesic
y = x, ht* = — 1, and hence /ι,* does not satisfy the necessary condition of
Theorem 1.4. This completes the proof of (b). The function hk) pro-
vides the proof of (a), and - hk) provides the proof for (c).

If h merely changes sign on T2, it is possible in the elliptic case to

find a diffeomorphism Φ of T2 so that (h°Φ)dA <0, and hence
JT2

uxx + uyy = - (h °Φ)e" has a solution. This will not be the case with the
hyperbolic equation. Thus Theorem 1.5 reveals a fundamental differ-
ence between the Riemannian and Lorentzian cases. While it does not
rule out the possibility that any K E C°°(T2) which changes sign may be
the curvature of some Lorentz metric, it does have the following
important consequences which we state as

COROLLARY 1.6. For an arbitrary K E C°°(T2), the conditions
(i) K changes sign

(ii) f KdA<0 (or\ KdA=0 or ί KdA>θ)

are not sufficient to guarantee that K is the curvature of a metric pointwise
conformal to the standard flat Lorentz metric.

COROLLARY 1.7. For K E CX{T2), the condition that K changes sign
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is not sufficient to guarantee that K is the curvature of a metric conformally
equivalent to the standard flat Lorentz metric.

2. Functions of a single variable. In view of the negative
results just presented, the determination of any class of functions
satisfying easily verifiable conditions sufficient for Ou = — he" to have a
solution on T2 is of considerable interest. One such class consists of
those functions h of the form h(x, y ) = /(*) or h(x,y)= g(y), where /
and g are 2π-periodic functions of a single variable. For convenience
we write h(x, y) - h(x) in order to retain our previous notation. If we
seek a solution of the form u = u(x), where u is 2π-periodic in x, we
arrive at the ordinary differential equation

(2.1) w"= -he\

Integrating both sides of (2.1), we find that h must change sign on
the interval [0,2π]. Multiplying (2.1) by e~u and integrating by parts

[In Γ2π

gives hdx = - e~u(u'fdx <0. Let C^S1) denote the set of all
Jo Jo

smooth functions defined on JR1 which are 27r-periodic, and let A(Sι) be
the set of absolutely continuous functions defined on Rι which are
2τr-periodic. Using a one dimensional version of the argument given by
Kazdan and Warner [7, Theorem 5.3] for the elliptic partial differential
equation which arises in the Riemannian case (see also [2]), we may apply
standard arguments of the calculus of variations [1, p. 131] to minimize

Γ2π

the functional J(v)= (v'fdx over the set of functions
Jo

B={vEA(Sι)\ Γ heυdx =0 and F" vdx =θ)

to conclude that the above necessary conditions are also sufficient to
guarantee the existence of a solution. Hence we have

THEOREM 2.1 Let h G C°°(Sι). Then the conditions (i) h changes
[1ΊT

sign and (ii) hdx < 0 are necessary and sufficient for the existence of a
Jo

solution u G C*(Sι) of equation (2.1).

REMARK. Clearly, the equation u" = he" has a 2π-periodic solu-

tion iff only if h changes sign and h>0.
Jo

We now investigate the geometrical consequences of Theorem
2.1. Let Kλ be any smooth 2π-periodic function which changes sign on
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[0,2π] and such that ί^ Kλ(t)dt/0. If Γ V ^ O , let K(x9y) =
Jo Jo

K^x). By Theorem 2.1 there is a smooth function u(x, y) = u(x) such

that DM = - Keu. If ί^K1>0, let tf(jc, y) = K^y). By the remark
Jo

after Theorem 2.1, there is a function M(JC, y ) = u ( y ) which solves
Dw = - Keu. Therefore, the indefiniteness of the Lorentz metric ds2 =
dx2—dy2 allows greater freedom in achieving pointwise conformal
metrics with prescribed curvature, at least in the case where the curvature
K is a function of one variable.

One particularly interesting application of Theorem 2.1 shows that
there exists a Lorentz metric g on T2, pointwise conformal to ds2 =
dx2- dy2, whose curvature K is equal to the curvature of the standard
torus of revolution imbedded in R3 and possessing the induced Rieman-
nian metric. The Gauss curvature is KAt) = (cos t)/r(R +rcos/) with

Γ2π

R > r > 0 [6, p. 109]. Kλ changes sign and Kλ(t)dt < 0, so K(JC, y) =
Jo

Kx(x) is the curvature of some g.
To conclude our geometric observations, we analyze the case of a

smooth 2τr-periodic function Kλ which changes sign on [0,2τr] and has
Γ2τr

Kλ(t)dt = 0. Since Kλ changes sign, it is negative on some open set,
Jo

and hence it is possible to find a diffeomorphism ψ of S] such that
Γ2τr

(Kι ° ψ)dt < 0. If Id denotes the identity diffeomorphism of S \ then
Jo

Φ = φ x Id defined by (ψ x Id)(x, y) = (ψ(x), y) is a diffeomorphism of
T2, and, if we let K(x, y) = KI(JC), then by the argument above we can
solve DM = - (K°Φ)e2u. Hence K is the curvature of the metric
g = (Φ~ι)*(e2ug), where g is the flat Lorentz metric ds2 = dx2 - dy2. We
summarize these results in

THEOREM 2.2. Let Kx be a smooth 2π-periodic function of one
Γ2π

variable which changes sign on [0,2ττ]. // Kx(t)dt <0, define
Jo

K G C^T2) by X(JC, y) = K,(JC). // f ^ Kλ{t)dt > 0, define K G CX(T2)
Jo

by K(x, y) = X](y). Then K is the Gaussian curvature of a Lorentz
metric g pointwise conformal to the flat metric ds2 — dx2 — dy2.

THEOREM 2.3. Let K1 be a smooth 2π-periodic function of one
variable which changes sign on [0,2τr]. Define K G C°°(T2) by K(x, y) =
Kλ{x). Then K is the curvature of some Lorentz metric g (conformally
equivalent to ds2 = dx2- dy2).

3. Curvature functions on JR2. We now turn our atten-
tion to the problem of curvature functions on the plane R2. If a smooth
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function K on R2 is to be the curvature of a Lorentz metric g pointwise
conformal to the flat metric ds2= dx2- dy2, we must find a smooth
function u on R2 which is a solution of DM = - Ke2u. Our first main
result is that if K is any smooth function with compact support, then K is
the curvature of such a metric.

To achieve the analysis necessary to obtain the geometric result, we
find it convenient to consider the modified equation

(3.1) wξη = eh(ξ,η)ew,

where e is a small real number. Let C°°(R2) denote the set of smooth
functions on R2. We shall prove

THEOREM 3.1. If h E C%R2) has compact support, then there is an
e > 0 such that equation (3.1) has a solution u E C°°(R2).

Proof. Since h has compact support, we may assume that Supp h is
contained in the open interior of a triangular region T in the ξ — η plane
with vertices at (0,0), (L,0), and (0, L). Furthermore, we may assume
that the distance (in the ordinary Euclidean metric on R2) from Supp h to
the boundary of T is 2δ > 0. For future use, we note in particular that
each side of the triangle is the centerline of an open strip of width 2δ,
inside of which h = 0 . We now show that there is an e > 0 for which
equation (3.1) has a solution u defined on the rectangle R = {(£, η)\0^
^ L , 0 g η g L } and which is smooth on the interior of R and satisfies
the boundary conditions u(ξ,0) = 0 for O^ξ^L and M(0, η) = 0 for

Since Supp h is compact and contained in R, we may let M =
max(£η)eκ I h(ξ, η)\. Set e = eo/ML2e, where 0 < e0 < 1. With wo(£ η) =
0, define

w*+i(£τ7)=e h(s, t)exp(un(s, t))dsdt, for n ^ 0.
Jo Jo

By the standard successive approximations argument, the sequence {un}
converges uniformly to a continuous function u which satisfies uξv =
eh{ξ, η)eu. Since h is smooth in the interior of the rectangle R, so is
u. Furthermore, u (ξ, 0) = 0 for 0 g ξ ^ L, and u (0, η) = 0 for 0 g η g
L. To extend this local solution to the entire plane, observe that along
that part of the noncharacteristic curve C: ξ + η = L which lies in the
interior of JR, the functions u and du /dn, the normal derivative of u, are
smooth. Furthermore, by the construction of JR, the support of each of
these functions along C is contained in the open segment between
(δ, L - δ) and (L - δ, δ). Hence both u and du/dn may be extended
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smoothly along the entire curve C by defining them to be identically zero
along those parts of C which lie outside JR. We can then take this data
as the Cauchy data for the equation wξv = 0. From [4, p. 110-17], we
find that the problem is well-posed and hence has a unique solution v
which is in C°°(/?2) since the Cauchy data are smooth. However, if (£, η)
is a point in the strip of width 2δ along C and within the interior of R,
then h(ξ, η) = 0, and our local solution u of (3.1) is actually a solution of
wξη = 0 with the same Cauchy data as υ. Hence, in this strip u =
v. Therefore, we may extend our local solution u into the half-plane
{(£ v)\ V > L ~ ζ) by taking u(ξ, η) = υ.(ξ, η). For the extension to the
remainder of R2, we note that in the open strip (0, δ) x (0, L) along the
77-axis and in the open strip (0, L)x(0, δ) along the £-axis, our local
solution of (3.1) is identically zero. Moreover, the Cauchy data along
the curve C are identically equal to zero outside the segment between
(δ, L - δ ) and ( L - δ , δ). Hence, to extend our local solution u
smoothly to the remaining regions of the plane, we may take u = 0 in
these regions.

Therefore, for some e >0, we have obtained a solution u G C°°(JR2)
of equation (3.1).

COROLLARY 3.2. If there is an e > 0 for which (3.1) has a solution
u G C°°(R2% then wξv = h(ξ, η)ew has a solution w G C°°(R2).

Proof Let w = u - log(l/β).

COROLLARY 3.3. Let K G C%R2) have compact support. Then
DM = - Ke2u has a solution u G C°°(/?2).

Proof Let h(ξ,η)= -2K(ξ + η,ξ-η) in Corollary 3.2. Then
w(x, y) = |w((x + y)/2, (x -y)/2) is the desired solution.

COROLLARY 3.4. Any function K G C°°(R2) with compact support is
the Gaussian curvature of some Lorentz metric g which is pointwise
conformal to the standard flat Lorentz metric ds2 = dx2- dy2.

To establish our second main result, we let ^(R1) denote the set of
smooth functions defined on all of R1. Then we have

THEOREM 3.5. Leth(ξ, η) = f(ξ)g(η), where f g G C°°(R!), and let
Φ(ξ) and ψ(η) be any functions in C°°(Rι) such that Φ(ξ)ψ(η)> 0 for all
(ξ,η)<ΞR2. Let F(ξ) and G(η) be such that F'(ξ) = f(ξ)Φ(ξ) and

= g(η)ψ(η). Then

w(6i?)= log(2Φ(ξ)ψ(η)/cosh2(F(ξ)+
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is a solution of wξΊ) = — h(ξ, η)ew — — f(ξ)g(η)ew defined and smooth on
all of R2.

Proof Compute.

COROLLARY 3.6. If K is any constant, then wξΎ] = - Kew has a
smooth solution.

COROLLARY 3.7. Let K be any constant. Then K is the Gauss
curvature of a Lorentz metric g pointwise conformal to the flat metric
ds2 = dx2- dy2 on R2.

REMARK. This corollary indicates that the situation for Lorentz
metrics on R2 with prescribed Gauss curvature differs considerably from
that for Riemannian metrics. Wittich [9] has shown the nonexistence of
a global smooth solution of the elliptic equation uxx + uyy - eu. As a
consequence, it is impossible to find a Riemannian metric on the entire
plane R2 which is of constant negative curvature and pointwise confor-
mal to the standard flat Riemannian metric ds2 = dx2 + dy2. By the
corollary, this is not the case with Lorentz metrics.

REMARK. The equation wξη = ew is classical, having apparently
been first treated by Liouville [5, p. 97], who gave the solution e w =
^/'(OgX7?)/((/(£) + S(v))2) where / and g are arbitrary twice differenti-
able functions for which the expression is meaningful.

REMARK. By making specific choices of / and g in Theorem 3.5, we
may exhibit some interesting curvatures. K(x, y) = exp(x 2 + y2) is a
curvature which is everywhere^ 1. - K is a curvature everywhere^
- 1. K(x, y) = x2- y2 is a curvature which changes sign.
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