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CONTINUOUS IMAGES OF WEAKLY COMPACT
SUBSETS OF BANACH SPACES

Y. BENYAMINI, M. E. RUDIN AND M. WAGE

We give a positive answer to a problem of Lindenstrauss by
showing that the family of compact Hausdorff spaces which are
homeomorphic to weakly compact subsets of Banach spaces
(Eberlein compacts) is stable under continuous images. This is
equivalent to the fact that a Banach space E is a subspace of a
WCG space iff the unit ball of E * is an Eberlein compact when
equipped with the wMopology. We also study some to-
pological properties of Eberlein compacts.

Introduction. A compact Hausdorff space is called an Eberlein
compact (E — C), if it is homeomorphic to a weakly compact subset of a
Banach space. The survey paper [7] gives a detailed account of E — C
and the Banach spaces that they generate.

The main result of this paper is the following:

THEOREM 2.1. A continuous image of an E-C, is also an E — C.

This gives a positive answer to problem 4 in [7]. In Banach space
terms, the theorem is equivalent to the following characterization of
subspaces of WCG Banach spaces: E is a subspace of a WCG space iff
B(JB*)-the unit ball of E* with its w*-topology, is an E - C

Essential to our work is the following purely topological character-
ization of E - Q due to H. P. Rosenthal [8]:

A compact Hausdorff space is an E — C iff it has a σ-point -finite
separating family of open Fσ subsets.

Although this is a fairly easy reformulation of a theorem of Amir
and Lindenstrauss (see §1, where we also define all the terms), this
characterization represents an essential change of scene. Previous results
were almost exclusively in the linear-topological context, while the
problem at hand is topological and requires topological terminology and
approach.

After some preliminaries in §1, we prove the main result in §2. In
§3 we treat weakly compact subsets of Hubert space. We show that this
family is also stable under continuous images. We also give a character-
ization of such spaces in terms of the geometry of their space of
continuous functions.

In §4 we prove some "nice" topological properties of E - C. We
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show that their cardinal functions are easily computed, and that an E - C
has "many" Gδ points.

Examples are given in §5 and some problems are listed in the last
section.

1. Preliminaries. If Γ is a set, we denote by co(Γ) the Banach
space of all functions / on Γ, such that for all £ >0, the set
{γ E Γ: |/(γ) | ^ e} is finite. The norm on co(Γ) is the sup norm. The
weak topology on co(Γ), when restricted to a weakly compact subset is the
topology of pointwise convergence on Γ.

The main structure theorem for E - C is due to D. Amir and J.
Lindenstrauss [1]:

A compact Hausdorff space is an E - Q iff it is homeomorphic to a
weakly compact subset of co(Γ) for some set Γ.

In other words, every E - C is homeomorphic to a compact subset
X of a large cube [0,1]Γ with the product topology, where X has the
property that for each e > 0 and / E X the set {γ E Γ: /(γ) g 6} is finite.

It is obvious, either from the definition or the above theorem that a
closed subset of an E - C is an E - C, and that a countable product of
E - C's is an E - C. As remarked in [7] an uncountable product of
non-trivial E - C's is never an E - C.

We have already mentioned RosenthaΓs characterization of E - C
in the introduction. Let us just recall that a family 9> of subsets of X is
called separating, if given any x^ y in X, there is an F G ̂  such that
either x E F and y£F or y E F and x £• F. The family 9 is called
point-finite if each x & X belongs to at most finitely many sets in &. It is
called σ-point-finite if SF = U~=iίFn where each 9n is point finite.

DEFINITION. An E - C, X, is called strong if it embeds in co(Γ) in
such a way that x(γ) = 0 or jc(γ)=l for all x Eί X and
y E Γ. Equivalently, X is a strong E - C iff it has a point finite
separating family of clopen sets.

Strong E - C are much easier to handle and thus the following
simple lemma (which was independently proved in [11]) will be very
useful. We denote by N the natural numbers.

LEMMA 1.1. Every E - Cis a continuous image of a closed subset of
Π =̂i Xm where each Xn is a strong E - C.

Proof. Let X be an E - Q and assume that X is embedded in co(Γ)
in such a way that 0 ^ x(y) g 1 for all x E X and γ E Γ. Thus X is a
closed subset of [0,1]Γ with the product topology. Let Λ = ΓxN and
define φ: {0,1}Λ-»[0,1]Γ by (φ(y))(y) = Σ:=12"ny(γ, n). φ is a continu-
ous onto map and Y = φ~\X) is a compact subset of {0,1}Λ. For every
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rc, let Rn: Y-^{0,1}Λ be the restriction to Γx{rc}, and define Xn =
RnY. Certainly ycΠ;=,XB, and each Xn is a strong E - C. Indeed, if
y E Y, there are at most finitely many γ's such that (φ(y))(γ)^ 1/2", and
if β is not one of these, then necessarily y(/3, n) = 0.

We shall denote by \A | the cardinality of the set A.

DEFINITION. An E - C, X, is called uniform if it embeds in co(Γ) in
such a way that there is a function N(β) such that for all x E X and e > 0,
|{γ: |jc(γ)| = e}| ̂  N(e). Equivalently, X is a uniform £ - C iff it has a
separating family ^ of open Fσ subsets for which there is a function N(n)
and a decomposition ^ = U 3*w such that each x E X belongs to at most
N(n) sets in SFn.

Uniform E - C were introduced in [2], where it was shown that X is
a uniform J5 - C iff it is homeomorphic to a weakly compact subset of a
Hubert space. Also, an example was constructed in [2] of an E - C
which is not uniform.

Let Γ be a set and denote by J{(n) the subset of {0,1}Γ of all x such
that |{γ: x(y)= 1}| ̂  n. J{(n) is a strong and uniform E-Q and
% = 5Γ(1) is homeomorphic to the one point compactification of Γ.

For each n, J{(n) is a continuous image of 3fCn. Indeed, if x =
(JCI, ..., xn)E 3P, then for each i there is at most one γf with xι(γι) =
1. Define φ: %n^%(n) by

γ = γ, for some 1 ̂  / ̂  n
otherwise

It is easy to check that φ is an onto continuous map. We shall
denote by 3ΓN the product of countably many copies of X. In the case of
uniform £ - C w e can now strengthen Lemma 1.1:

LEMMA 1.2. Every uniform E - C is a continuous image of a closed
subset of XN.

Proof We analyze the proof of Lemma 1.1. If X is a uniform
E - C with function N(e\ we get that for each y E Y and n, there are at
most N(l/2n) γ's for which φ ( y ) ( γ ) ^ 1/2". Thus RnY is not only a
strong E-Q but in fact a subset of 3ίf (N(l/2")), and Y is a closed subset
of Π^=15ίf(n). But by the above remark each jf{{n) is a continuous image
of 3P and thus Y is a continuous image of a closed subset of ΠΓ 3ίfn = 3ΓN.

REMARK. In Theorem 3.1 we show that the continuous image of a
uniform E - C is also a uniform E - C, and thus the above lemma
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characterizes uniform E - Q i.e., X is a uniform E - C iff it is a
continuous image of a closed subset of 5ΓN.

We finish this section by quoting a well known combinatorial lemma
(see [5] or [6] p. 86-87 where a Δ-system is called a quasi-disjoint family).

DEFINITION. A family sέ = {Λα} of subsets of Γ is called a Δ-system
if there is a set D CΓ such that Aa Π Aβ = D for all a^ β. The
following lemma ensures that a given family si contains a "large"
Δ-system. Part (a) will be needed in §2 and part (b) in §3.

LEMMA 1.3. Let si be a family of subsets of a set Γ such that
A\^n for some n and all A E si.

(a) // si is infinite then si contains an infinite Δ-system.
(b) There is a function g(n,l) such that if \si\^ g(n,l), then d

contains a Δ-system of cardinality I

2. Continuous images of E — C. In this section we
prove the main result of this paper, namely

THEOREM 2.1. Let X be an E - C and f a continuous function from
X onto Y. Then Y is also an E - C.

Before giving the proof, we start with some lemmas and notation.

LEMMA 2.1. Let Y be a compact Hausdorff space, and λ the first
ordinal with the same cardinality as Y. Let U be an open subset of Y, and
S a relatively closed subset of U. Then there are open subsets
{V(a, m): a < λ, m = 1,2,...} of U, and compact subsets 5(α, m) of
S Π V(a, m) such that

(a) S = U{S(α, m): a < λ, m = 1,2,...}
(b) If a>β, then S(α, m)Π V(β, n) = 0.

Proof. Index Y as Y = {yα: a < λ}. For each a < λ define induc-
tively a sequence of compact subsets K(a,m) of U and open subsets
V(α, ra) of U as follows:

K(a,l) = {ya} if yaEUy K(α,l) = 0 if ya£ U.

If K(a, m) has already been defined, let V(α, m) be an open set such that
K(α, m) C V(α, m) C V(α, m)CU, and take K(a, m + 1) = V(α, m).

Notice that for each α, U ™m=\ K(a, m) = U * =ί V(α, m) and hence
is an open set. Thus H(a, m) = K(a^ m )\ U {K(β, n): β < α, n =
1,2,...} is compact. Define now S(α, m) = H(a, m)Π S. Since S is
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relatively closed and H(a, m) is compact, S(a,m) is compact. It is easy
to check that these S(α, ra), V(α, ra) satisfy (a) and (b).

Let now X be an E - C and /: X-> Y an onto map. By Lemma
1.1, we can assume that X is a closed subset of a countable product of
strong E-Q i.e. XC{0,1}Γ where Γ = U; = 1 Γ n , the Tn are pairwise
disjoint, and {γ EΓn:x(y)= 1} is finite for all x E X and all n.

For x E X we shall denote { γ E Γ : x ( γ ) = l } by Γ(x), and
Γ(JC) Π ( U !Ui Γn) by Γ(JC, fc). The family of all finite subsets of Γ will be
denoted by si.

For a fixed A in si, let

U(A) = {y E Y : Γ ( J C ) Π A / 0 for all x 6 f ' ( y ) }

= {yEL/(Λ):VγEΛ,3jcE/-1(y) with Γ(x)ΠA={γ}}

= t/(A)\U

Each £/(A) is an open subset of Y and S(A) is a relatively closed subset
of U(A).

LEMMA 2.2. The family {U(A): A E si} separates the points of
Y. Moreover, if w,y E.Y with w^ y, then there is an A E si such that
either y E S(A) and w£ U(A), or w E S(A) and y£ U(A).

Proof. Fix w^y in Y. Then there is a zE/~\w) such that
Γ(x) Π (Γ\Γ(z))τ^ 0 for all x E /~!(y) (or visa versa). For otherwise we
could find znE/-](>v) and xn ef~\y) with Γ(zn)DT(xn)DΓ(zn+ι)D
" -. But then xn and zn have a common limit which is impossible.

Fixing z as above, there is a finite subset B of Γ, disjoint from Γ(z),
such that Γ(JC) Π B ^ 0 for all x E f~\y). Indeed, if this were not the
case, we could find inductively a sequence xn E f~\y) such that for all
k < n, Γ(jcfc, n) Π Γ(jcn)CΓ(z). But then if x is a limit point of {xn}, we
would have Γ(Λ:)CΓ(Z), contradicting the choice of z.

Thus there is a minimal subset A CB with the property that
Γ(x)ΠA/0 for all x G/'^y). This is the desired A. Indeed, the
condition T(x)ΠA^0 for all x E /~*(y ), means that y E t/(A), and the
minimality of A, implies that in fact y E 5(A). However w^ £/(A),
since z E /^(w) and Γ(z) Π A = 0 .

LEMMA 2.3. Lei VCYfe open, and S C V compact. Then there is
a k such that if z E X /s such that there is a t E f~\S) with Γ(z, fc) =
Γ(ί,fc), then zG
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Proof. If not, find for each k,zk£f~\V) and tkGf~ι(S) with
Γ(zk, k) = Γ(ίk, k). By compactness we can assume that zk —> z, and
then clearly also tk->z. However X\f~ι(V) is compact and disjoint
from f~ι(S), hence {zk} and {tk} cannot have a common limit point.

Proof of Theorem 2.1. Let λ be the first ordinal with the cardinality
of Y. We shall construct for each a < λ, m E N and A G i a n open Fσ

subset F(α, ra, A) of Y, such that {F{a,m,A)} is a separating, σ-point
finite family. Thus Y is an E — C by RosenthaΓs characterization.

Construction of F(α, m, A). For a fixed Λ E ^, the sets S(A) and
l/(A) satisfy the assumptions of Lemma 2.1, hence we can find for each
α < λ and m =1,2, ••• an open subset V(a,m,A) of U(A) and a
compact subset 5(α, m, A) of 5(A)Π V(α, m, A) such that

(a) S(A)= U{5(α,m,A): α < A, m = 1,2, •}
(b) If α > ft S(a, m, A) Π V(ft rc, A) = 0 .

Fix now a,m,A such that 5(α, m, A)/^0. Since 5(α, m, A) is a
compact subset of V(α, ra, A), we can find by Lemma 2.3 a /c =
fc(α, m, A) such that whenever z E X is such that Γ(z, k) = Γ(ί, k) for
some ί ε Π S ( α , m , A ) ) , then /(z)E V(α,m,A). Define W =
% / n , A ) = {2EX: 3/ E f'\S(a9 m, A)), Γ(z, fc)DΓ(f,fc)}. W is an
open subset of X which contains /"1(5(α, m, A)), thus Z(α, m, A) =
Y\/(X\W) is an open subset of Y containing S(a,m,A). We now
choose F(α, m,A) to be an open Fσ set satisfying

5(α, w, A ) CF(α, m, A ) C V(α, /w, A ) Π Z(α, m, A ).

Proo/ ί/iαί {F(α, m, A)} separates points. Let y ̂  w be in Y. By
Lemma 2.2 there is an Λ G i such that y E 5(A), wg: (7(A) (or visa
versa). Since S(A)= U{S(α, m, A): a < A, m = 1,2, •} there are α
and m such that y E 5(α, m, A)CF(α, m, A). Also F(α, m, A)C
V(α, m, A) C [/(A) hence w £ F(α, m, A),

Proof that {F(α, m, A)} /s σ-point finite. For each α, m, A, let

n(α, m, A) = max {| A |, k(a,m,A), /(A)},

where /(A) = max{/:A Π Γ , / 0 } .
We shall show that for each fixed m and n, the family

{F(a,m,A): n{a,m,A)i=kn\ is point-finite. Assume for contradiction
that y E Π y

oc

=1 F(ap m, Ay) where n{an m, Ay ) ̂  n for all /. Since
k(ap m, A y )^ π we can assume, by passing to a subsequence, that
/c(α;, m, Aj)= k is independent of /. Since j A j ^ n for all /, we can
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assume, by passing to a further subsequence and using Lemma 1.3 (a),
that {A}} form a Δ-system, i.e. there is a finite set D C Γ such that
A DAj = D for all iVy.

Fix any zEf~\y). Since F(αy, ra, Ay)CZ(αy, m, Ay), we get that
zef-ι(Z(aJ9m9AJ))CW(aJ9m9AJ)9 and there is a t, <Ξf~\S{ah m9 A,))
with Γ(z, fc)D Γ(ίy, fc). Since Γ(z, fc) is a finite set, we can assume, by
passing to a subsequence that T(th k) = Γ(th k) for all / and /, and by the
definition of k = fc(αy, ra, Ay ), we get that f{U)E. V(an m, Ay) for all i
and /.

We now distinguish two cases to get the desired contradiction:

Case 1. There are iV / such that A, = A] - D. Then necessarily
atj£ a, and assume α, > α; . But then /(ί,)E S(α,, m, D) Π V(αy, m, D)
contradicting Lemma 2.1 (b).

Case 2. All the Ay's are different from each other (and different
from_D). Fix any yE.Aλ\D._ Since f{tλ)E. S(au m^A^CSiA,), there
is a t! E f~ι{f{tλ)) such that Γ ^ ) Π A2 = {γ}. Since Γ(tu n) is a finite set
and all the sets {Ay\D} are disjoint and contained in Tλ U U Γπ (here
we use the fact that /(A y)^n), we can find an i such that (Ai\D)Π
Γ(Γθ = 0 . But then also A, IΊ ΓίΓO = 0, and we get that f(tx) £ [/(A, ),
contradicting the fact that /(ίi) = /(O E V(αy, m, A,) C [/(A,).

We now pass to some Banach space consequences of Theorem
2.1. First recall some notation and definitions. If X is a compact
Hausdorff space, C(X) denotes the Banach space of continuous func-
tions on X, with the sup norm. For a Banach space JE, we denote by E*
its dual, and by B(E*) the unit ball of E* endowed with the w*-
topology. A Banach space is called WCG (weakly compactly gener-
ated), if it is the closed linear span of a weakly compact subset.

COROLLARY 2.1. Let E be a Banach space. Then E is a subspace
of a WCG space iff B(E*) is an E - C

Proof If β ( £ * ) is an E - C, then C(B(E*)) is WCG [1], and E is
canonically a subspace of C(B (£*)). Conversely, if £ is a subspace of a
WCG space F, then B(F*) is an E - C [1], and the restriction map
R: B(F*)-> B(E*) is a w *-continuous onto map. Thus by Theorem
2.1, B(E*) is also an E - C

H. P. Rosenthal [8], gave a example of a non- WCG subspace of a
WCG space. The next corollary says that this cannot happen for C(X)
subspaces.

COROLLARY 2.2. Let F be WCG, and E a subspace of F which is
isomorphic to a C(X) space. Then E is WCG.
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Proof. By Corollary 2.1, JB(£*) is an E - C, and a space £,
isomorphic to C(X), is WCG iff £ ( £ * ) is an E - C [1].

3 . U n i f o r m E — C. We start with the analogue of Theorem
2.1 for uniform E — C.

THEOREM 3.1. Let X be a uniform E — C, and / a continuous map
from X onto Y. Then Y is also a uniform E — C.

Proof. We examine the proof of Theorem 2.1 and use the same
notation By Lemma 1.2 we can assume that X is a closed subset of 3ίfN,
i.e. XC{O,1}Γ, Γ = U * = 1 Γ n where the Γn's are disjoint and | { γ E
Γn: Jc(γ)= 1}| = 1 for all x E X and all n. In the last step of the proof
we shall use Lemma 1.3 (b) instead of 1.3 (a), and we shall show that if m
and n are fixed, no y belongs to more then n g(n,2n(n 4-1)) different
F(an m, A,)'s.

If this were not the case, we could find k and more than
g(n,2n(n + 1)) 's for which k(aI,m,AJ)=k is independent of /. By
Lemma 1.3 (b) we can find a set D and more than 2" (n + 1) Ay 's for which
A ΠA, = D if ιV;.

Since Γ(z, k) has cardinality at most n, there are n + 1 y's for which
Γ(ί7, k) is independent of /, i.e. f(tt)E. V(ap m,A,) for all /,/. Case 1 is
the same as in Theorem 2.1. In Case 2, since Γ(ΐu n) has at most n
elements, and we have n + 1 disjoint sets {A}\D}, there is an ιV 1 with
(A,\O)ΠΓ(F1) = 0 , which leads to the contradiction.

Our next result characterizes uniform E ~ C in terms of their space
of continuous functions. The equivalence of (a) and (d) is analogous to
the equivalence of (a) and (c) in Theorem 2 in [1]. The equivalence of
(a) and (c) should be compared with the theorem in [3] that a Banach
space E is WCG iff there is an operator with dense range from a reflexive
space into E.

THEOREM 3.2. Let Xbe a compact Hausdorff space. The following
are equivalent:

(a) X is a uniform E — C
(b) There is a dense range operator from a Hubert space into C(X).
(c) There is a dense range operator from some super-reflexive space

into C(X).
(d) B(C(X)*) is a uniform E - C.

Proof Obviously (b) => (c) and (d) => (a). To see that (c) => (d),
let T: F-+C(X) be a dense range operator from the super-reflexive
space F. Then Γ* is one-one and w* continuous, hence a
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homeomorphism from J3(C(X)*) into the super-reflexive space
F*. Thus (d) follows from the theorem in [2].

We now pass to the only nonobvious implication (a) Φ (b). By the
same argument as (2) => (1) in the theorem of [2], we can assume that X
is a subset of /2(Γ) satisfying:

(1) 0£X
(2) Σyev\x(y)\ ^ 1 for all x E X .

Let {ey} be the standard basis for /2(Γ), and i n = Γ x x Γ (n
times). Let d = U I = 0 ^ (sί0 = {0}), and H = (Σ r f © /2(Γ))2 and define
T: H^ C(X) as follows: If ft = (ftA)Ae<rf G H a n d x E X define

Π eaj(x)(hA,x))).
A=(αi,

T is a bounded linear operator, because for each x E X, if || h || ̂
we also have (hA, x)^\\hA\\^\\h\\^l for ali A, and hence by (2) we get

Π eaι(x)(hA,x) ^ Σ Π
( ) . . . .

A=(αi, ,on) A<Ξsdn

γ e r

A = ( α ι , ,an)

But TΉ contains all the polynomials in the coordinate functions
eΎ(x). Since these polynomials separate points in X and do not have a
common zero (by (1)), TH is dense in C(X) by the Stone-Weierstrass
theorem.

Analogous to Corollaries 2.1 and 2.2 we get:

COROLLARY 3.1. A Banach space E is a subspace of a C(X) space,
where X is a uniform E - C, iff B(E*) is a uniform E - C. Moreover, if
E is itself a C(Y) space, this happens iff Y is a uniform E - C.

4. Some topological properties of E — C The first deep
result on the topological structure of weakly compact sets in Banach
spaces, and the origin of the name 'Έberlein compacts", is the following
famous theorem of Eberlein and Smulian (see [4]).

THEOREM 4.1. Let X be an E - C and Y a subset of X. If xQ G Ϋ,
then there is a sequence in Y converging to xQ.

It should be remarked that this theorem is trivial for weakly compact
subsets of co(Γ). However, the Amir-Lindenstrauss theorem which says



318 Y. BENYAMINI, M. E. RUDIN AND M. WAGE

that every E — C is homeomorphic to a weakly compact subset of c()(Γ), is
much deeper than the Eberlein-Smulian theorem.

The usual cardinal functions of an E — C are easy to compute. In
fact they are the smallest cardinality of a set Γ such that X embeds in
co(Γ). We shall prove one such result, which implies many others.

DEFINITION. Let X be a topological space. The cellularity of X, is
the supremum of all cardinals Λ such that X contains Λ pairwise disjoint
open sets. If the cellularity of X is Ko, we say that X is CCC (countable
chain condition).

THEOREM 4.2. Let X be an E — C and Λ the smallest cardinality of a
set Γ, such that X embeds in co(Γ). Then the cellularity of X is Λ.

Proof Assume X C co(Γ) with ! Γ ! = Λ, and fix any cardinal μ < λ.
Since Λ is minimal, there is an e > 0 such that si = {A C Γ: 3JC E X,
jκ(γ)ί>€ Vγ E Λ } has cardinality at least μ. si does not contain an

infinite increasing chain An, because any limit point of the appropriate
xn's, would be at least 6 on the infinite set U An. Thus every A E sέ is
contained in a maximal one. Let 35 be the set of maximal elements in
sd. By the above | <% | ^ μ and for each B E 01 the set UB =
{x G X:Vy £ B, | x ( γ ) | > e) is open and nonempty. The sets {UB}BEΛ

are pairwise disjoint because if x E UBι Π Uβ2 then | j c ( γ ) | > e for
γ E βj U B2 contradicting their maximality.

REMARKS, (a) It is clear from our proof that if λ is not the limit of
a sequence of smaller cardinals, then in fact one can find A pairwise
disjoint open sets in X. The same is true, however, also if λ is a limit of
a sequence of smaller cardinals by a general theorem in point-set
topology (see [6] p. 37).

(b) The special case of the theorem, saying that if X is not
separable it is not CCC, was proved by Rosenthal [9] using different
methods.

Our next result is a stronger form of Theorem 5 in [1]. Our proof is
entirely different.

THEOREM 4.3. Every E — C contains a dense Gδ metrizable set ofGδ

points.

Proof We start with the simple remark that a strong E - C does
not contain a perfect subset. Indeed if X C{0,1}Γ is a strong E - C and
Z CX, let i = { A C Γ : ^ Λ 6 Z}, where χA is the indicator function of
A. sέ does not contain an infinite increasing chain, hence there is a
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maximal element B in sέ. But then χB is an isolated point in Z. (This
fact was also proved in [8], page 109.)

We now prove the theorem for the special case of an E — C, X, which
is a closed subset of ΠΓ=i Xk where each Xk is a strong E - C Denote
by Rn: X—>Π£=1Xfe the natural projection and let Dn =
{x E X: Rn

](Rn(x)) is open in X}. Clearly D = (Ί l = ι U x

n=mDn is a Gδ

set in X consisting of Gδ points.
Define a metric p on D by p(jt, y) = [min{rc: Rnx/ Rny}]~\ If

p(xn, JC)->0 clearly xn —» x. However if x E Dm and xn —» x then neces-
sarily Rm (x) = Rm (xn) for large enough n and hence p(xn, x)^
1/ra. Since JC E D iff x E Dm for infinitely many m's, we get that if
xn —» x and JC E D then p(jcM, JC)—>0, i.e. p induces the original topology
on D.

To see that D is dense, it is enough, by Baire's theorem to show that
U * = m D n is dense for every m. Thus let U be a basic open set

depending on the first N coordinates, and assume N ^ m. Let xG [/be
such that RNx is isolated in Rn(U) (such an JC exists by the remark in the
beginning of the proof, since Π ^ Xk is a strong E - C). We then have
x E D N , i.e. ( U ; = f Π D π ) n t / ^ 0 .

To prove the general case, let Y be any E - C By Lemma 1.1 we
can find a closed subset X of a countable product of strong E - C's{Xk},
and an onto map /: X—> Y. By Zorn's Lemma we can assume that / is
irreducible (i.e. /(Xi) ^ Y for all closed proper subsets Xλ of X). Let Dn

and D in X be as in the first part of the proof.
For each JC E Dn, let U(x, n) = f'ι[Y\f(X\R'n

ιRn(x))] ί/(x, n) is
an open subset of X which is non-empty by the irreducibility of /, also

Let En = U{C/(JC, n): JC E Dn}. JBn is an open subset of Dn, and
again by the irreducibility of /, U x

n=mEn is dense in X for all m. Thus
E = Π ; = 1 U : = m £ n is a dense Gδ subset of D such that f\f(E)) =
E. Also if e E E there is an increasing sequence {n; } such that e E
C/(jcy , πy), and thus also f~ι(f(e))C U(xp n}). But clearly Π JL, C/(JC/5 ny)
cannot contain more than one point, hence f~\f{e)) = e. Using the fact
that if K is Gδ in X and Γ(f(K)) = X then /(X) is Gδ in Y, we thus get
that f(E) is a dense Gδ subset of Y consisting of Gδ points. It is also
easy to check that / is a homeomorphism on E, and thus f(E) is
metrizable.

5. Examples. By RosenthaΓs characterization, a compact
Hausdorff space is an E - C if it has a σ-point-finite separating family of
open Fσ's.

It was observed by Michael (see [8]), that one cannot replace the
condition of separation by strong separation. (A family & is strongly
separating, if given x/ y in X, there is an F E ^ with j c £ F , y ^ F). In
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fact, a compact Hausdorff space admitting a strongly separating, point
countable family of open Fσ's is metrizable. (A family £F is point
countable if every J C G X belongs to at most countably many members of
&. Clearly every σ-point-finite family is point countable).

A very simple example was given in [11] of a compact Hausdorff
space which is not an E - C but has a σ-point-finite, separating family of
open (but not Fσ) subsets. We just mention here without giving the
construction that there exists a compact Hausdorff space X which is not
an E — C but has the following properties

(1) X has a σ-point finite separating family of open sets.
(2) If Y CX and x0 E Ϋ, there is a sequence in Y converging to x0.
(3) A closed subset of X is metrizable iff it is separable iff it is CCC.
(4) X contains a metrizable dense open subset of isolated points.

(Properties (2)-(4) should be compared with the properties of E - C
proved in §4).

One also cannot replace the assumption of σ-point-finite by the
weaker assumption that the family is point-countable. Recall that a
Souslin interval is a linearly ordered topological space (with the order
topology), which is compact, connected, CCC and non-separable. The
existence of a Souslin interval is known to be independent of the usual
axioms of set theory (see e.g. [10]), and it is quite plausible that under
different set theoretic assumption one could replace the σ-point finite
condition by point-countability.

EXAMPLE 5.1. Assume that Souslin interval exists. Then there is
a compact Hausdorff space which is not an E — C, but has a point-
countable separating family of open Fσ's.

The construction. Let L be a Souslin interval. Identify every
maximal closed separable subinterval to a single point. The resulting
space, L*, is CCC, compact, non-separable, connected, linearly ordered,
and has no non-trivial separable subinterval.

By transfinite induction, choose for each countable ordinal a a
family 5Ea of disjoint open subintervals of L* satisfying

(a) For each α, U S£a is dense in L*.
(b) If β < a and I E S£m there is a / E gβ with I CJ.
(c) If a = β + 1 and / E && then {/ E £a: / CJ} is order isomor-

phic (in the natural order) to the rationals (in the reals).
(d) If a is a limit ordinal and / E ££m then

Now if / E S£β then R} - J\ U {/ E J£β+ί: I CJ} is order isomorphic
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to the irrationals (in the reals), and thus there is a countable family ^> of
open subintervals of / which separates the points in Rj.

Notice that the family 9* = U/ίF/ is point-countable, because every
nested family of intervals in L * is at most countable, by the fact that L * is
CCC. Hence given any t E L*, there are at most countably many β's
and Jβ E i?β with t E Jβ.

Also & separates every pair of points x^ y in L* provided they are
not the end points of the same interval / in some i?α, where a is a limit
ordinal.

The Souslin Cactus X is the quotient space obtained from L* by
identifying each pair of end points of every interval / ε i ? α for all limit
ordinals a to single points. X is a compact Hausdorff space and Όffi is
a point-countable, separating family of open Fσ's in X. However X is
nonmetrizable and is CCC, hence it cannot be an E - C (by
Theorem 4.2).

Our last example gives a negative answer to a question of H. P.
Rosenthal [8].

EXAMPLE 5.2. There exists a non-metrizable E - C , in which
every closed metrizable subset is Gδ.

The construction. Let 5 = {0,1,1/2,1/3, •} with the usual topol-
ogy, and denote by ωx the first uncountable ordinal. We shall construct
inductively for each a < ωu a point xa E 5ωi satisfying

(1) Σ,< ω ixα(]S)<l
(2) Γ(xa) = {y\ γ ^ α } (where for x E S*\Γ(x) = {y E

(3) If xa(δ) = xβ(δ) for some δ S a g β, then xα(γ) = c^(γ) for all

Once these xα's are constructed, let X be the closure of {xa} in 5ωi

(with the product topology). By (1) X is an E - C, and it has the
following property: If xEX and jc(γ) = θ, then Γ(JC)C[1, γ) = {a <
ωx: a < γ}. Indeed, if x(δ)^0 for some δ > γ, then x(δ)=l/n for
some n, but then if xαy—>x, then also jcα/(δ)=l/n for / large
enough. Hence by (3) xaj(y) = xa,(y) for all large enough i and /. But
then xa,(y) = lim X^γ) = x(y) = 0, and xa,(δ) = IInϊ 0 contradicting (2).

In particular, for each y < ωx the set

is a Gδ set which is clearly metrizable. But every closed metrizable
subset of X is separable and is thus contained in some Xγ, hence it is also
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In order to construct the jcα's, we add another assumption:
(4) For every limit ordinal A < ωx and every β < A, there is a

sequence an increasing to A, an > β such that
(a) xan(y) = xβ(y)foτa\\γ^β

(b) Σy<ωιxan(γ)^ — -hΣy<mxβ(γ)

We construct the xα's inductively in "blocks": If λ is a limit ordinal,
and {xa}a<λ are already defined satisfying (l)-(4), we construct xα's for
λ ^ a < A + ω. The details are left to the reader.

6. Open problems. The first four problems deal with univer-
sal E-C.

Problem 1. Given a cardinal λ, does there exist an E - C, X, of
weight A, such that every E - C of weight λ is a continuous image of X?

Problem 2. Given a cardinal A, does there exist a WCG Banach
space E of density character A such that every WCG space of density
character A embeds in EΊ

It is clear that a positive answer to 1 will also give a positive answer
to 2.

Problem 3. Given a cardinal A, does there exist a uniform E-C,
X, of weight A, such that every uniform E - C of weight A is a continuous
image of X?

By Lemma 1.2, every uniform E - C is a continuous image of a
closed subset of 5ίΓN.

Problem 4. Is J{N universal for uniform E - CΊ

Even if the answer to problem 4 is negative, its solution will involve
better understanding of Xs whose topological structure deserves a
detailed study.

Problem 5. Does there exist a nonmetrizable homogeneous
E-CΊ

Recall that a topological space X is called homogeneous if for every
x, y E X there is a homeomorphism / of X onto itself which carries x
to y.

We observed in the beginning of the proof of Theorem 4.3 that a
strong E - C is scattered.

Problem 6. Is every scattered E - C a strong E-CΊ
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Our last problem is related to Corollary 2.1. It is not clear however
whether it has any connection with the material of this paper.

Answering a problem of Corson (see [7] problem 2), M. Talagrand
[12] has recently shown that a WCG Banach space is Lindelόf in its weak
topology. The property of being Lindelόf in the weak topology is
inherited by closed subspaces, however, as Rosenthal has shown [8], the
property of being WCG is not. We thus reformulate the other implica-
tion of Corson's problem.

Problem 7. Is a Banach space E a subspace of a WCG space if it is
Lindelόf in its weak topology?

The reader is referred to [7] Problems 6 and 6' for related questions.

Added in proof. Problems 6 and 7 are now solved. K. Alster
{Some remarks on Eberlein compacts, to appear) showed that the answer
to problem 6 is positive. R. Pol (A function space C(X) which is weakly
Lindelof but not weakly compactly generated, to appear), and M. Talag-
rand (Espaces de Banach Faiblement -analytiques, C. R. Paris, 284,1977,
745-748) have independently given counter-examples to problem 7.
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