CONSTRUCTING NEW R-SEQUENCES

Mark Ramras

Abstract

R-sequences play an important role in modern commutative algebra. The purpose of this paper is to show how new R-sequences may be constructed from a given one. In the first section we give some general results, which are applied in the second section to obtain an explicit method of construction.

Recall that a sequence of elements x_{1}, \cdots, x_{n} in R is an R sequence if $\left(x_{1}, \cdots, x_{n}\right) R \neq R, x_{1}$ is a nonzero divisor on R, and for $2 \leqq i \leqq n, x_{i}$ is a nonzero divisor on $R /\left(x_{1}, \cdots, x_{i-1}\right) R$.

Throughout this paper R will be a commutative noetherian ring which contains a field K. Moreover, R will either be local or graded.

I wish to thank Melvin Hochster for showing me Proposition 1.5, which simplified this paper considerably.

1. It is easy to see that if $x_{1}, \cdots, x_{n} \varepsilon R$ and X_{1}, \cdots, X_{n} are independent indeterminates over K, and if $\varphi: K\left[X_{1}, \cdots, X_{n}\right] \rightarrow R$ by $\varphi\left(f\left(X_{1}, \cdots, X_{n}\right)\right)=f\left(x_{1}, \cdots, x_{n}\right)$ is a flat monomorphism, then x_{1}, \cdots, x_{n} is an R-sequence. The converse, when R is local, is due to Hartshorne [3].

Proposition 1.1 (Hartshorne). Suppose R is local. If x_{1}, \cdots, $x_{n} \varepsilon R$ form an R-sequence then $\varphi: K\left[X_{1}, \cdots, X_{n}\right] \rightarrow R$ is a flat monomorphism, where φ is the map determined by $\varphi\left(X_{i}\right)=x_{i}$ for each i and $\varphi(a)=a$ for all $a \in K$.

Remark. Saying that φ is a monomorphism is the same as saying that x_{1}, \cdots, x_{n} are algebraically independent over K.

Corollary 1.2. Assume R is local. Suppose f_{1}, \cdots, f_{n} is a $K\left[X_{1}, \cdots, X_{n}\right]$-sequence, and each $f_{i} \in\left(X_{1}, \cdots, X_{n}\right) K\left[X_{1}, \cdots, X_{n}\right]$. Suppose also that x_{1}, \cdots, x_{n} is an R-sequence. Then

$$
f_{1}\left(x_{1}, \cdots, x_{n}\right), \cdots, f_{n}\left(x_{1}, \cdots, x_{n}\right)
$$

is an R-sequence.
Proof. By Proposition 1.1 the map φ is a flat monomorphism. By flatness, since f_{1}, \cdots, f_{n} is a $K\left[X_{1}, \cdots, X_{n}\right]$-sequence, $\varphi\left(f_{1}\right), \cdots, \varphi\left(f_{n}\right)$
is an R-sequence. (The assumption that each $f_{i} \in\left(X_{1}, \cdots, X_{n}\right)$ guarantees that the $\varphi\left(f_{i}\right)$ generate a proper ideal of R.)

Remark. It is well-known (e.g., [4, Theorem 119]) that for any local noetherian ring R, a permutation of an R-sequence is again an R-sequence. However, if R contains a field, the preceding result yields a very simple proof of this fact. For it is clear that for any permutation σ of $\{1, \cdots, n\}, X_{\sigma(1)}, \cdots, X_{\sigma(n)}$ is a $K\left[X_{1}, \cdots\right.$, $\left.X_{n}\right]$-sequence. Letting $f_{i}=X_{o(i)}$, we have $f_{i}\left(x_{1}, \cdots, x_{n}\right)=x_{o(i)}$, and so by Corollary $1.2, x_{\sigma(1)}, \cdots, x_{\sigma(n)}$ is an R-sequence.

We now give a graded analogue of Proposition 1.1. For in order to use Corollary 1.2 we need $K\left[X_{1}, \cdots, X_{n}\right]$-sequences.

Proposition 1.3. Assume R is graded, and let x_{1}, \cdots, x_{n} be homogeneous elements of R of positive degree. Then x_{1}, \cdots, x_{n} is an R-sequence \Leftrightarrow (i) x_{1}, \cdots, x_{n} are algebraically independent over K, and (ii) R is a free $K\left[x_{1}, \cdots, x_{n}\right]$-module.

Proof. Let $A=K\left[x_{1}, \cdots, x_{n}\right]$.
$(\Leftarrow$) Assume (i) and (ii). Hence A is a polynomial ring in n variables and thus x_{1}, \cdots, x_{n} is an A-sequence. Since R is A-free, any A-sequence is an R-sequence.

$$
(\Rightarrow) \text { (i) follows from [5, p. 199]. }
$$

(ii) A is a graded subring of R, with grading induced by that of R. That is, if $R=\oplus \Sigma R_{k}$, let $A_{k}=A \cap R_{k}$. Then ΣA_{k} is a direct sum, which we claim equals A. Since each x_{i} is homogeneous, $x_{i} \in A_{m_{i}}$ for some integer $m_{i} \geqq 1$. Also, $K \subset R$ and R is graded, so $K \subset R_{0}$, and therefore $K=A_{0}$. Since every element g of A is a polynomial in the x_{i} 's with coefficients in K, it follows that $g \in \oplus$ ΣA_{k}. Hence $A=\bigoplus \Sigma A_{k}$. Thus, with the grading on A induced by that of R, and with the original grading on R, R is a graded A module. Now by [2, Ch. VIII, Thm. 6.1] since A_{0} is a field and R is a graded A-module, if $\operatorname{Tor}_{1}^{A}\left(R, A_{0}\right)=0$ then R is A-free. Thus to prove (ii) it suffices to show that $\operatorname{Tor}_{1}^{A}(R, K)=0$.

We compute $\operatorname{Tor}_{1}^{A}(R, K)$ by taking a projective resolution of K over A and tensoring it with R. Since x_{1}, \cdots, x_{n} are algebraically independent over K, they form an A-sequence, and so the Koszul complex of the x 's over A is exact and therefore yields a free A-resolution of K. Tensoring it with R gives the Koszul complex of the x 's over R. But since by hypothesis the x 's form an R-sequence, this Koszul complex has zero homology ([1, Cor. 1.2] or
[2, Ch. VIII, 4.3]). In particular, the first homology group, $\operatorname{Tor}_{1}^{A}(R, K)$, is 0 , and we are done.

We have a graded analogue of Corollary 1.2. Its proof is nearly identical to the latter's and so we omit it.

Corollary 1.4. Suppose R is graded and x_{1}, \cdots, x_{n} is an R sequence, where each x_{i} is homogeneous of positive degree. Suppose f_{1}, \cdots, f_{n} is a $K\left[X_{1}, \cdots, X_{n}\right]$-sequence with each $f_{i} \in\left(X_{1}, \cdots, X_{n}\right)$. Then $f_{1}\left(x_{1}, \cdots, x_{n}\right), \cdots, f_{n}\left(x_{1}, \cdots, x_{n}\right)$ is an R-sequence.

We close this section with a proposition due to M. Hochster.
Proposition 1.5. Let S be a graded Macaulay ring such that S_{0} is local. Let x_{1}, \cdots, x_{n} be homogeneous elements of S. If $\operatorname{rank}\left(x_{1}, \cdots, x_{n}\right)=n$ then x_{1}, \cdots, x_{n} is an S-sequence.

Proof. Let $M=M_{0}+\sum_{i \geqq 1} S_{i}$, where M_{0} is the maximal ideal of S_{0}. Then M is maximal in S and contains every proper homogeneous ideal of S. Let $I=\left(x_{1}, \cdots, x_{n}\right)$, and localize at M. Then in the local Macaulay ring S_{M}, $\operatorname{rank}\left(f_{M}\right)=n$, so x_{1}, \cdots, x_{n} is an S_{M}-sequence, by [4, Thms. 129 and 136]. Let \mathscr{K} denote the Koszul complex of the x 's over S. Then $\mathscr{K} \boldsymbol{\otimes}_{s} S_{m}$ is acyclic since it is the Koszul complex of the x 's over S_{x}. Hence for each $i \geqq 1$, the i th homology module $H_{i}\left(\mathscr{K} \otimes S_{M}\right)=0$. Since S_{M} is S-flat we have $H_{i}(\mathscr{K}) \otimes S_{M}=0$, so ann $\left(H_{i}(\mathscr{K})\right) \not \subset M$. Since the x 's are homogeneous, \mathscr{K} is a complex of graded S-modules and hence $H_{i}(\mathscr{K})$ is also graded. But the annihilator of a graded module is a homogeneous ideal. Thus ann $\left(H_{i}(\mathscr{K})\right)=S$ and so $H_{i}(\mathscr{K})=0$ for all $i \geqq 1$. Therefore \mathscr{K} is acyclic, and so by [1, Prop. 2.8], x_{1}, \cdots, x_{n} is an S-sequence.
2. Any permutation σ in the symmetric group \mathscr{S}_{n} acts as an automorphism on the polynomial ring $K\left[X_{1}, \cdots, X_{n}\right]$ by

$$
(\sigma f)\left(X_{1}, \cdots, X_{n}\right)=f\left(X_{o(1)}, \cdots, X_{o(n)}\right)
$$

The next lemma is the key to our construction.
Lemma 2.1. Let σ be the cyclic permutation $(1,2, \cdots, n)$, of order n. Let K be a field, with $a \in K$. Define a homogeneous polynomial $f \in K\left[X_{1}, \cdots, X_{n}\right]$ by $f\left(X_{1}, \cdots, X_{n}\right)=X_{1}^{m}-a g$, where $g=\prod_{t=1}^{k} X_{i_{t}}^{m_{t}}, 2 \leqq i_{1}<i_{2}<\cdots<i_{k} \leqq n$, each $m_{t} \geqq 1$, and $\sum_{t=1}^{k} m_{t}=m$.

If $a^{n} \neq 1$, then the only common zero of $f, \sigma f, \cdots, \sigma^{n-1} f$ in K^{n} is $(0, \cdots, 0)$.

Proof. We first treat a special case where the basic idea of the proof is not obscured by details. Suppose that $k=n-1$, i.e., that each $X_{i}, 2 \leqq i \leqq n$, divides the monomial g. Let $\left(z_{1}, \cdots, z_{n}\right) \in$ K^{n} be a common zero of $f, \sigma f, \cdots, \sigma^{n-1} f$. We have the following system of equations:

$$
\begin{aligned}
z_{1}^{m} & =a \mathcal{Z}_{2}^{m_{2}} \cdots z_{n-1}^{m_{n-1}^{1}} \mathcal{Z}_{n}^{m_{n}} \\
z_{2}^{m} & =a z_{3}^{m_{2}} \cdots \mathcal{Z}_{n}^{m_{n-1}} \boldsymbol{z}_{1}^{m_{n}} \\
\vdots & \\
z_{n}^{m} & =a \mathcal{Z}_{1}^{m_{2}} \cdots \mathcal{Z}_{n}^{m_{n}-1} \boldsymbol{z}_{n-1}^{m_{n}}
\end{aligned}
$$

Equating the product of the left sides with the product of the right sides, and using the fact that $\sum_{i=2}^{n} m_{i}=m$, we obtain:

$$
\left(\prod_{i=1}^{n} z_{i}\right)^{m}=a^{n}\left(\prod_{i=1}^{n} z_{i}\right)^{m_{2}} \cdots\left(\prod_{i=1}^{n} z_{i}\right)^{m_{n}}=a^{n}\left(\prod_{i=1}^{n} z_{i}\right)^{m} .
$$

But $a^{n} \neq 1$, so $\prod_{i=1}^{n} z_{i}=0$ and thus some $z_{j}=0$. For all i such that $i \neq j, z_{j}$ appears on the right side of the i th equation of the system above. Hence $z_{i}=0$. Thus $\left(z_{1}, \cdots, z_{n}\right)=(0, \cdots, 0)$.

In the general case we shall break up the system of n equations into a number of subsystems, for each of which the preceding argument can be used.

Let $H=\left\langle\sigma^{i_{1}}, \cdots, \sigma^{i_{k}}\right\rangle$ be the subgroup of the cyclic group $\langle\sigma\rangle$ generated by $\sigma^{i_{1}}, \cdots, \sigma^{i_{k}}$. Thus H is cyclic, of order dividing n. In fact, $H=\left\langle\sigma^{b}\right\rangle$ where b is the greatest common divisor of n, i_{1}, \cdots, i_{k}.

We claim that if X_{r} divides $\sigma^{s}(g)$, then $r \equiv s(\bmod b)$. For $r=\sigma^{s}\left(i_{c}\right)$ for some $c, 1 \leqq c \leqq k$. Thus $r \equiv s+i_{c}(\bmod n)$. Since b is a common divisor of i_{c} and n, it follows that $r \equiv s(\bmod b)$.

Now consider $\prod_{s=1}^{n} \sigma^{s}(g)$. It is clearly invariant under σ. But if $\sigma\left(\prod_{i=1}^{n} X_{i}^{a_{i}}\right)=\prod_{i=1}^{n} X_{i}^{a_{i}}$, then $a_{1}=a_{2}=\cdots=a_{n}$. Now since deg $g=m, \operatorname{deg}\left(\prod_{s=1}^{n} \sigma^{s} g\right)=n m$. Thus $\prod_{s=1}^{n} \sigma^{s} g=\prod_{i=1}^{n} X_{i}^{m}$. On the other hand, for any r,

$$
\prod_{s=1}^{n} \sigma^{s} g=\left(\prod_{s=r(\bmod b)} \sigma^{s} g\right)\left(\prod_{s \neq r(\bmod b)} \sigma^{s} g\right),
$$

and if $r \not \equiv s(\bmod b)$ then X_{r} does not divide $\sigma^{s} g$. Therefore

$$
\prod_{s=r \bmod b)} \sigma^{s} g=\prod_{s=r(\bmod b)} X_{s}^{m}=\left(\prod_{s=r(\text { mood } b)} X_{s}\right)^{m} .
$$

Now suppose (z_{1}, \cdots, z_{n}) is a common zero of $f, \sigma f, \cdots, \sigma^{n-1} f$. Then for all $1 \leqq s \leqq n, z_{s}^{m}=a\left(\sigma^{s} g\right)\left(z_{1}, \cdots, z_{n}\right)$. Hence

$$
\left(\prod_{s=r(\bmod b)} z_{s}\right)^{m}=a^{n / b} \prod_{s=r(\bmod b)}\left(\sigma^{s} g\right)\left(z_{1}, \cdots, z_{n}\right)=a^{n / b}\left(\prod_{, \equiv r(\bmod b)} z_{s}\right)^{m} .
$$

Since $a^{n} \neq 1$, it follows that $a^{n / b} \neq 1$, and so $z_{s}=0$ for some $s \equiv r$ $(\bmod b)$. We shall show that $z_{t}=0$ for every $t \equiv r(\bmod b)$.

For $1 \leqq j \leqq k, X_{i_{j}}$ divides g : Thus $X_{t}=\sigma^{t-i_{j}}\left(X_{i_{j}}\right)$ divides $\sigma^{t-i_{j}}(g)$, say $x_{t} h=\sigma^{t-i_{j}}(g)$. Now $\sigma^{t-i_{j}}(f)=\sigma^{t-i_{j}}\left(X_{1}^{m}\right)-a \sigma^{t-i_{j}}(g)=X_{t-i_{j}}^{m}-a x_{t} h$. If $z_{t}=0$, then $z_{t-i_{j}}^{m}=0$ since $\left(z_{1}, \cdots, z_{n}\right)$ is a zero of $\sigma^{t-i_{j}}(f)$, and so $z_{t-i_{j}}=0$. Thus for all j and for all q with $q \equiv s\left(\bmod i_{j}\right)$, we have $z_{q}=0$. This implies $z_{t}=0$ for all $t \equiv r(\bmod b)$. Since r was arbitrary, $\left(z_{1}, \cdots, z_{n}\right)=(0, \cdots, 0)$.

THEOREM 2.2. Let K, σ, a, and f be as in the preceding lemma. Then $f, \sigma f, \cdots, \sigma^{n-1} f$ is a $K\left[X_{1}, \cdots, X_{n}\right]$-sequence.

Proof. Let $I=\left(f, \sigma f, \cdots, \sigma^{n-1} f\right)$ and let $R=K\left[X_{1}, \cdots, X_{n}\right]$. Let $S=\bar{K}\left[X_{1}, \cdots, X_{n}\right]$, where \bar{K} is the algebraic closure of K. By Lemma 2.1 the variety of $I S$ in \bar{K}^{n} contains only the origin. Hence by the Nullstellensatz, the radical of $I S$ is the maximal ideal $\left(X_{1}, \cdots, X_{n}\right) S$. Therefore $\operatorname{rank}(I S)=n$, and so by Proposition 1.5 $f, \sigma f, \cdots, \sigma^{n-1} f$ is an S-sequence. Now $S=R \otimes_{K} \bar{K}$, so S is R-free. Hence S is faithfully R-flat, and thus $f, \sigma f, \cdots, \sigma^{n-1} f$ is also an R-sequence.

Combining Theorem 2.2 with Corollaries 1.2 and 1.4, we have:
Corollary 2.3. Suppose R contains a field K, and x_{1}, \cdots, x_{n} is an R-sequence. Define $f \in K\left[X_{1}, \cdots, X_{n}\right]$ as in Lemma 2.1, and assume $a^{n} \neq 1$. If R is local, or if R is graded and each x_{i} is homogeneous of positive degree, then

$$
f\left(x_{1}, \cdots, x_{n}\right),(\sigma f)\left(x_{1}, \cdots, x_{n}\right), \cdots,\left(\sigma^{n-1} f\right)\left(x_{1}, \cdots, x_{n}\right)
$$

is an R-sequence.
REMARK. Since f is a homogeneous polynomial of positive degree, when the original R-sequence consists of homogeneous elements of positive degree, the same is true for the resulting R sequence. Thus in the graded case as well as in the local case, the procedure may be iterated.

Example. Let $R=K[X, Y, Z]$, where X, Y, Z are independent indeterminates. By Theorem 2.2, if $a^{2} \neq 1$, then $X^{2}-a Y Z, Y^{2}-$ $a X Z, Z^{2}-a X Y$ is an R-sequence, and if $b \in K$ and $b^{3} \neq 1$, then $X^{3}-b Y^{3}, Y^{3}-b Z^{3}, Z^{3}-b X^{3}$ is another. Hence by Corollary 2.3, $\left(X^{2}-a Y Z\right)^{3}-b\left(Y^{2}-a X Z\right)^{3}, \quad\left(Y^{2}-a X Z\right)^{3}-b\left(Z^{\prime}-a X Y\right)^{3}, \quad\left(Z^{2}-\right.$ aXY) ${ }^{3}-b\left(X^{2}-a Y Z\right)^{3}$ is again an R-sequence, as is $\left(X^{3}-b Y^{3}\right)^{2}-$ $a\left(Y^{3}-b Z^{3}\right)\left(Z^{3}-b X^{3}\right), \quad\left(Y^{3}-b Z^{3}\right)^{2}-a\left(Z^{3}-b X^{3}\right)\left(X^{3}-b Y^{3}\right), \quad\left(Z^{3}-\right.$
$\left.b X^{3}\right)^{2}-a\left(X^{3}-b Y^{3}\right)\left(Y^{3}-b Z^{3}\right)$.

References

1. M. Auslander and D. Buchsbaum, Codimension and multiplicity, Ann. Math., 68, no. 3 (1958), 625-657.
2. H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, 1956.
3. R. Hartshorne, A property of A-sequences, Bull. Soc. Math. France, 94 (1966), 61-65.
4. I. Kaplansky, Commutative Rings, Allyn and Bacon, 1970.
5. —, R-sequences and homological dimension, Nagoya Math. J., 20 (1962), 195-199.

Received August 2, 1976.
Northeastern University
Boston, MA 02115

