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THE EXACT BERGMAN KERNEL AND THE
KERNELS OF SZEGO TYPE

SABUROU SAITOH

A relation between the magnitudes of the exact Bergman
kernel and a product of two kernels of Szego type is given.
The method is turned to the establishment of a positive
definiteness of a period matrix of a product of two kernels
of Szego type. The positive definiteness leads to some com-
pleteness theorems of such products.

1. Introduction. Let G denote an #-ply connected regular
region with boundary components {C,}’_,. Let KZ%(z, %) and Kz, 7)
denote the exact Bergman kernel and the Szego kernel of G, respec-
tively. Let {Z,(z)dz}*z! denote a basis of analytic differentials which
are real along 0G. Then the following identity is known:

7R (e ) = K™, %) + 3, 3 CuZARZ,(3)

for some uniquely determined constants C,.. D. A. Hejhal [3]
established the positive definiteness of the matrix |/C,.|| by means
of the representations of C,, in terms of the theta function. In
this paper, we shall establish a similar result in a very general
situation by means of the pure theory of kernel functions in a
sense. Our result leads to a variety of the completeness theorems
of the kernels of Szego type which are established in the paper [6].

In §2, we state notation and preliminary facts and in §3, the
main theorem is given. In §4 and §5, completeness of the pro-
ducts of two kernels of Szego type is discussed. These two sections
are considered as a continuation of the paper [6]. In the final §86,
we refer to the case of the Szego kernel with characteristic of an
arbitrary compact bordered Riemann surface which is established
by J. D. Fay [1].

2. Notation and preliminary facts. Let S denote the interior
of a compact bordered Riemann surface S with boundary contours
{C.)iv4w., and genus n». Let {C}»{"" denote a canonical homology
basis. Let M denote the Hilbert space of analytic differentials
f(z)dz which are regular in S and have finite norms:

(1§, 7@ rdzay)”

<oco(z=x+y1). Let K(z, Z)dz and KZ*(z,%)dz denote the Bergman
545
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kernel of class M and the exact Bergman kernel of S, respectively.
Let L(z, 2,)dz and L*(z, z,)dz denote the adjoint L-kernels of theirs,
respectively. They are analytic on S except for z, where they
have a double pole:

1_1 _ + regular terms (dz .
T (z — 2,)°

Further they satisfy the following relations:
2.1) —K(z,%)dz= L(z, z)dz and —K*(z, z,)dz = L*(z,, z)dz along 4S.

The K-kernels K(z, %) and KZ%(z, z,) are Hermitian and L(z, z,) is
symmetric, but L*(z, z,) is not symmetric, in general (cf. [7], pp.
126-137).

Let W(z,t) denote the meromorphic function which has the
Green function g(z, t) of S with pole at # €S) as the real part of
W(z,t). The differential idW(z, t) is positive along S and has
N=2n+m —1 zeros {t,} in S. For simplicity, we assume that all
the zeros ¢, are simple. In other cases, we can modify the following
arguments slightly. Further we shall use the same notation for a
point on S and a fixed local parameter around there. For an
arbitrary integer ¢, let H/(S) denote the Hilbert space of analytic
differentials f(2)(dz)? of order ¢ on S with finite norms:

(|, @@ Gaw e, by )" < =,

where f(z) means the Fatou boundary value of f at ze€dS in the
obvious sense. Let K,,.(z, z)(dz)? denote the kernel function of
the class HSA(S) which is characterized by the following reproducing
property:

f@) = 2=\, F@de) Ko BN o)A W (2, )7
for all f(2)(dz)?e H¥S) .

Here p is a positive continuous function on 4S. Let L, , (2, 2,)(dz)" "¢
denote the adjoint L-kernel of K., ,(z, Z,)(dz)?. Then L,, (2, z)(dz)"?
is a meromorphic differential on S of order 1 — ¢ with one simple
pole at z, with residue 1 (in the obvious sense) and satisfies the
relation

(2.2) K,.1.0(2, 2,)(d2)"0(2)1d W (, £))" ™

= }—Lq,t,,,(z, z)(dz)'"7 along oS .
1
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We note that K,, (2, 7,) and L,, (2, 2,) are continuous on 4S.

From (2.2), we have

(2.3) K02y 20K, g0 0-1(2, 7,)d2
= —Lg, (2, 2)L,_,. (2, 2,)dz along 0S .

Let {Z.(2)dz}\, denote a basis of analytic differentials on S which

are real along 0S such that Z,(z) = g L&, z)d¢. Then from (2.1)
C

and (2.3), we obtain the identities

(2.4) K, (2, 2)K, g2, %) = tK"(2, Z,) + i i C..2.(2,)Z(2)

y=1 p=1

and

S G Z(2)Z.2)

1 =1

M=

(2-5) Lq,t,p(zy zl)L1—q,t,P_1(z: z1) = ELE(zu Z) -

v

for some uniquely determined constants {C,}. Our first objective
is to show the positive definiteness of the matrix ||C,.||. By sett-

ing SC Z(2)dz = P,,, from (2.4), we obtain
7

@6 23 CuPuPu = | (| Kuusts 2K gri(a, 2)d2)5,
PR AN

for ¢, 8=1,2,8, --+-,N.

Since the matrix ||P,.|| is nonsingular (cf. [7], pp. 93-97 and pp.
109-110), we shall show the positive definiteness of (2.6).

Here we note that especially K,,,(z, z,) and K, ,,(?, z,)dz are the
Rudin kernels (cf. [5]). If S is a bounded regular region on the
plane, then we can identify functions and differentials on S. Hence
we can write the reproducing property of K,,.(z, Z,)(dz)? as follows:

1
2

@) f@) = || @Kt o) (242D ) as,

for all fe HXS),

where 3/6y denotes the inner normal derivative with respect to S.
Therefore we can regard K,,.(z, Z,) as the Szego kernel with weight
0(2)(0g(z, t)/ov)* for the (Hardy) space HS(S). By this interpreta-
tion of (2.7), we can consider the kernel K,,,(z,z,) for an arbitrary
real value of ¢ and K, ,.(z, Z,)/2% is the classical Szego kernel. For
a real value of ¢, we can take a more general interpretation for
(2.7) and we shall refer to this in §6, again.
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3. Positive definiteness of K, , (2, Z2,)K,_,.; .—1(2, Z.).

THEOREM 3.1. The matrix

S <S Kq,t,ﬂ(z, é‘;1>‘K-P1_q,t,p_l(z, Esz)Ez_l{
c,\Joy,

NXN

is positive definite.

Proof. Let {p;};2, and {vy}i., denote some complete orthonormal
SYSt_e_r_Ils_ such that Kq,t,P(z9 El) = Zj @g(%)@ﬂZ) and Kl—q,t,P—'l(z, El) =
S r(z)v(z). Then we have

SC’ <g0 Kq,t,P(z) 21)K1—q,t,(’“1<z’ EJdZ)&Z

]

= 53| pemi@de| oiarieds, .

Here we see easily that the double sequence converges absolutely.
Let m denote the double index (jk) and we set

AD AP AW o AL ..
AP AP AP o AD L.
A=[AP AP A® .o 4D ...
AMAT AN cod AL

where
Ay = S pi(2(2)dz(y = 1, 2,8, -++, N) .
c,

Further we set X = (X, X,, X, -+-, Xy)€C". Then we obtain
XAA X = 3|1 X AL + X, AP + X,AD 4+ o0 + XZAY =0,

m

Here equality holds if and only if
(3.1 X AD + X,AR + ooo + Xy AY =0 for all m .
Hence we obtain, for any 2z, and z,€ S,

N

S X Kowots DK, qmila Bz = 0.

From the identity

Koty ) = 5|, KoaolCy 20 Ko G XA POGAWE, 5™ ,
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we have, by exchanging the variables,

Sas[( ﬁ“ w,(2)X, )Kl_w,p_l(z’ Z,)(d2)"

2n+1

1 & —_— -
+ (52 B X Beeale, DK 0maC, 2 )

272_' yv=1 c,
X p(z)(id W (z, t))l‘z"]Kq,t,,,(z, Z)(d2)? = 0 for all 2z, and z,€S.

Here w,(z) denotes the harmonic measure _of C, on S. Let 2(2)dz
be a nonvanishing analytic differential on S. Then since the set of
kernels {K, . (2, z,)(dz)?|2, € S} is complete in H(S), we have

|, 7@z ] (3 0.0X) K,y miz, Z)(d2
1 2n _______—___; _
+ (o B &, Koo, DR Komgm(C, 2L
X p(z)(1d W (z, t))“”il(.@(z)dz)"'1 =0 for all f(z)dze H)S).

Hence from the theorem of Cauchy-Read [4], we obtain, by a
function F,, € H;(S),

(2 0@ XKy B2y + (52 3 K| Koo, DY

2n+1

X K, _qn.0-1(C Ez)dC>p(z)(idW(z, t))l“ﬂ(!?(z)dz)"" = F.(2) a.e. on 3S.

From the relation (2.2),

2n+1

(S 00X Koo 2@ + o S X Lgaol, ey
2wt v=1 c,
X K aniG )AL (@2 = F(9) ace. on 35S

At first, from the Lusin-Riesz-Privalow theorem, we see that all
the {X,}) ..., are zero. Next since L,,.(z, {) has a simple pole at
z = {, from the property of Cauchy integral, we see that the con-
stants {X, )i, are also zero. Thus we have completed the proof of
the theorem.

From the theorem, we obtain

COROLLARY 3.1. The matrixz ||C,.|| ts positive definite. Es-
pectally we have the imequality

K, .2, 2)K,_,,0,~1(2,2) > K",z for all zeS.
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COROLLARY 3.2. The periods as anti-analytic differentials in
2z, €8,
N

1

{1, Kaal, 2K gt, 2)d2)
are linearly independent.

Here we note that Theorem 3.1 and its corollaries are valid for
an arbitrary real value of ¢, when S is a bounded regular region in
the plane and we regard K, ,.(2, z,) as the weighted Szego kernel.

4. Completeness of {K, . .(2, 2)K,_,.0,1(2, 2)dz|2,€S} in M.
Let{Z;}7, (Z; + Z;, for j + j') denote any point set of S such that
lim; .. Z; = Z, for some Z,€S. Then, as we see from the repro-
ducing property, the set of kernels {K,.,(z, Z;)(dz)"};..is complete
in H#S). In the following two sections we shall show that the
set (K002, Z)K,_g.0.0-1(2, Z;)d2}7, is complete in both M and HJ(S).
These theorems are a variety of the completeness theorems which
are given in the paper [6].

As in the representations (2.4) and (2.5), we obtain

N N _
4.1) Kooz 2K q00m(2, 2) = 7K (2, 2) + 3 ;zl C.hZ (2,)Z (2)
and
N N
(42) Lq,t,p<z’ zl)Ll-q,t,p-l(z’ z1) = TCL(Z’ zl) - Z‘i FZ‘JI C,tZ,,(Zl)Zp(Z) .

Here we note that the constants C,% are real symmetric by virtue
of Hermitian of the K-kernels and symmetry of L, ; (2, 2,)L,_q,.,0~1(Z, 2,)
and L(z, z,). Note that L,, (2, 2,) = — L,_,:,-1(%, 2)([5]). As to the
constants C,%, we obtain

LEMMA 4.1. The matrix

NXN

H S CiPy, — 7,

18 nomsingular.
Proof. Suppose that
; Y#S K,,.,0(2, Z)K,_g,0,0-1(7, Z)d2

Cpu

= SV, (7K 7) + 55 CAZE 4@z = 0.
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Then from the identity
S K(z, 7)dz = —SS Kz, 2)Z.2)dw dy
0!1 S
= —Z,2) (cf. [7], pp. 102-105) ,

we have

—Zﬂ‘, Y, Z(2) + ; 2 ; Y.CoisZo(2)Pp = 0 .

Hence we obtain

—Y,+ >3, CxP. Y, =0 for ¢=1,28,---,N.
Falar

Thus Corollary 3.2 is equivalent to the lemma.
Now we obtain

THEOREM 4.1. The set {K,, (2, Z;)K,_4...0-1(2, Z;)dz}; 18 complete
wn M.

Proof. Suppose that for any f(z)dze M,

gg F@E, 0% Z)Ks—g iz, Z)dwdy =0 for all j .
S

Hence from (4.1) and the identity
wy || roZ@dsdy = —Scuf(z)dz (cf. [7], p. 102) ,
we have |
wf@) = $ 30324\, Sz
Thus from the identities

71'50 f(z)dz, = 3, % C;;P,,,FS fdz £=1,2,8 -+, N,

[ %

and Lemma 4.1, we obtain the desired result.

5. Completeness of (K, ..z, Z)K,_,..(2, Z;)dz}; in H}(S).
The following lemma is essential for our purpose:

LEMMA 5.1. For the critical points {t,})_, of the Green func-
tion g(z, t), the matriz

NxN

||S Lovon(®, )L s (2, £,)d2
Cu
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18 nonsingular.
If not all t, is simple, we modify the above matriz slightly, as
usual.

Proof. We proceed as in Theorem 2.1 in [6], but in this case
the proof is more delicate. From the reproducing property of
K, ..z, %,)dz, we have

K,,.o(2, 2)K, g0, 0-1(2,, Z)

_ 1 S K00 DK, _g,0.0-1(E, 2)ALK, +1(C, Z)dE
or Jas dw (e, t) )

Hence from (2.3) and the residue theorem, we obtain

K2 2)Y _ _ - -
(5.1) < W'(z, £) > = — K402, 2)K,_q,1,0-1(2, Z,)

—_— Kl.,t.i(tv’ El)
E»: < W"(t., t) >Lq"”’(z’ t) Ly _q,e0-1(2, 2,)

and
62 Kus@2) = ~{| Kol BIK, g (G, 2)L

K1,t,1(tw z) (* ’
RIS ) A A 4 LACTY

From (5.1), we obtain
Kl 1 tw —1
6.8) DB Looste t)Lsiimte 1)
= —SC Kq,t,p<z9 EL)K1—q,t,P"1<z; El)dz # = 19 2: 3; M) N.

o

Let {X,} be any solution of system (5.3); i.e.,
S X[, Lo, )L gz, 1)d2
v JZ

= _SC Kq,t,p(z’ EL)Kl—q,t,P_l(zy El)dz ©= 1: 2, 3; M) N ’

p

and we shall define
Rty 2) = ~{( Ko€, 20K a0 C, 208
+ 3 X L@y L@ )AL W2, )

Then K, ..(z,z)dze HXS) and from the definition of X, and the
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identity (2.5), we see that

(K108 Z)Ksg0,0-1(8 Z) + 30 XiLig 0,08 6 Lcg,tom(&s 8))AC

is exact. (We assume that ¢,¢C, for all v and #.) For any analy-
tic differential f(z)dz on S (in fact in S such that f(z)dze HXS)),
we set

I= _l_S f(2)dzK,,..(2, Z)dz
2r Jas dW(z, t)

= L1 @[] (KurC B Ko@)

21

3 XL oGy 8 i Gy ) [

Let D, be a tiny dise of radius r, in the plane of a local para-
meter at t,, with center ¢, and let D denote the union of the D,
v=1,28,---, N. Then from the Green’s formula, we obtain

I-3 =] 7@ | Kl D)Kol B

PRy )

5 X L&y 8§, 1) Jd2

= _1-§§ f(Z)(Kq,t,p<Z, Zl)K-q,t,p—i(z, 2‘1)
TJJs-D

+ ZI Xqu,t,P(zy tv)Ll-q,t,P“l(z’ tu))dx dy .

By letting >, |7,| tend to zero, we obtain

1 _ -
I= ;“Sf () K g,1,0(2, 2.) K\ _g,0,0-1(2, Z,)da dy

+ %E X, p.v. Sgsf (®)Lyg,1,0(2, t,)Ly_q,4,0-1(2, t,)da dy ,

(cf. (2.5) and [7], pp. 118-120). Hence if we can show that I = f(z,),
we obtain the lemma as in Theorem 2.1 in [6].
From (4.1), (4.2), (4.3), and the fact

po.|| f@ L& Bazdy = 0
for all f(z)dze M (cf. [7], pp. 121-126),

we have
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Hence we must show that

(5-4) Z C;;Za(zl) — Z Z chﬂzza(tv) =0 :8 = 1, 2’ 3; ] N.

From the definition of X,, by making use of (4.1) and (4.2), we
obtain

DI SANEDIDIDIP AT ACH
=1Z(2) — 2 %: Ci5Zo(2,) Py,
and hence
(5.5) @3 X Zu(t) — Z ()
- ;Za, (; X, Z(t) — Z2))CPs, =0 p=1,23, .-+, N.

Hence from Lemma 4.1, we obtain

ZXVZII(ty)_Zp(zl):O #:1, 2, 3, "',N.

Thus from the regularity of the matrix || Ps.|| and (5.5), we obtain
the desired result (5.4).
Now as in the proof of Theorem 2.2 in [6], we obtain

THEOREM 5.1. The set {K, (2, Z)K,_,...0-1(2, Z;)dz}; is complete
an HYS).
Here we note that for the set

{8”Kq;,,,,(z, ZOK,_g.1.0-1(7, 7,)d2 }“’
0z

=0

for any fixed 2z, €S, Theorems 4.1 and 5.1 are valid, as we see easily
from those theorems. The circumstances are similar for Theorems
2.2 and 3.3 in [6].

6. Szego kernels with characteristicc. Let U ={U,} be a
covering of S such that to each U, there is associated a unique
local uniformizing parameter z,: U,— C and 2z, and z; are analyti-
cally related on U, N U;. Then, for a real value of ¢, a differential
F(&)(dz)? of order q is defined as a collection of variables which
satisfy the transformation laws
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Pa :--«kp(_gzi ) i U.0T.

Of course, this function (dz,/dz.)? is not unique, in general and we
must show that we can choose them consistently; i.e., such that

(@GN =1 vowns,
o T

This is a crucial point, in the treatment of differentials f(z)(dz)?
for a noninteger value of ¢ (cf. [8], pp. 249-251 and [2], pp. 215-
218). In the case of ¢ = 1/2, which is considered as an especially
important case, N. S. Hawley and M. Schiffer [2] for the first time
had investigated “the Szego kernel” of half-order differentials and
then D. A. Hejhal [3] in the case of planar regions and J. D. Fay
[1] in the case of arbitrary compact bordered Riemann surfaces
had investigated.

In this final section, we shall see that our results are valid
even if in the case of the Szego kernels with characteristic on an
arbitrary compact bordered Riemann surface.

In order to save space, we shall use the same notations and
results freely in Chapter VI in [1].

For any even half period ee T,, the Szego kernel o,(%, y) of a
compact bordered Riemann surface R with characteristic [e] is
defined as follows:

1 flel(y — )

(6.1) 7Y = T el E w7

Here 0[¢](2) is the first order theta function with characteristic [e],
E(y, %) is the prime form and Z is the symmetric point of = on
the double C of R ([1], p. 124, Proposition 6.14 and cf. Chapters I
and II). Then o,(%, y) is holomorphic in Z and y except for a pole
along ¥y = x and satisfies

(6.2) o0&, y) = —0,(y,%) = —o,x,y) forall x,yecC.

For any section ® of L, holomorphic on R, 0,(Z, y) has the repro-
ducing property

o) = gm@(y)"‘@_’ 7) forall zeR.

Again 0,(T, y) is represented by 3, ?,(x)@;(y) for a complete ortho-
normal system {®;} of holomorphic sections of L, on R. Further
we see that o,(Z, ) is a single-valued analytic differential on C x C
except for a double pole along ¥ = x and satisfies
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blel(y — 2)° )
4m*0[e](0YE(y, T)°

___ blel@ — @)
4n*0[e)(0)E(Y, »)*

=o,(x, Yy along yeiR.

(6.3) @ = —(

Hence in our case, we obtain the following representations as in
(4.1) and (4.2):

68  4r0G, o =K E) + 5 3 CZE )
and
65) - 4705, 2 = 1L, ) — 5, 3 CaZi2)Z,2)

i

v=1ly=

Therefore for 4xn%0,(Z,, z)°, we obtain the same results as
Kq,t,P(z’ El)Kl—q,t,P_l(z7 51)dz ‘E; ’

by a slight modification. In the proof of the main Theorem 3.1, for
example we need a nonvanishing section @, of L, holomorphic on S,
but the existence of such a @, is clear. As to this fact, we recall
that there exists a single-valued function which is analytic and non-
vanishing on S except for poles and zeros of prescribed order at
prescribed points (cf. [4], §2.5).
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