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TOTAL POSITIVITY AND THE EXACT »-WIDTH
OF CERTAIN SETS IN L'

CHARLES A. MICCHELLI AND ALLAN PINKUS

In this paper we obtain the exact value of the L' n-
width, both in the sense of Kolmogorov and Gel’fand, and
characterize optimal subspaces for the set

= {Z a;ke;(t) + SlK(t, S)h(s)ds: (@, + -+, a,) € R, |kl = 1} ,

under certain total positivity assumptions on
{ki(t), ft kr(t), K(t! S)} .

A matrix analogue is also described.

1. Introduction. Let X be a normed linear space, .&” a subset
of X, and X, any m-dimensional linear subspace of X. Then the
n~-width of .97 relative to X, in the sense of Kolmogorov, is defined
to be

d.(-; X) = inf sup inf ||z — || .
X, zew yeX,
X, is called an optimal subspace for .o provided that
d.(; X) = 8(.; X,) = sup inf ||z — y|| .

ze” yelX,

The n-width of &7 relative to X, in the sense of Gel’fand, is defined as
d"(.%7; X) = inf sup 2],
L

n TENL,

where L, is any subspace of X of codimension n. If
a"(7; X) = sup ||z]|,
2eNNL,

then L, is an optimal subspace for the Gel’fand n-width of .o
A typical choice for .o is the image of the unit ball under a
compact mapping K of X into itself,

" = {Ku: ||a]| = 1} .

When X is a Hilbert space then it is possible to obtain an exact
value for d,(27"; X). This fact originated with the methods used
in Kolmogorov’s seminal paper [4]. For X = L~[0, 1], we computed
(in [6]) the n-widths of .9 when K is an integral operator determined
by a totally positive kernel.

In this paper, we obtain the exact value of the L' n-width, both
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in the sense of Kolmogorov and Gel’fand, for such .2 (translated
by some finite dimensional subspace) and identify respective optimal
subspaces.

For a general statement of the apparent duality between the
Gel’fand and Kolmogorov n-widths, see Ioffe and Tikhomirov [1].
Our problem requires, in addition, certain extensions and modifications
of our results in [6]. Let us note that Tikhomirov, in his doctoral
dissertation summary [10], indicated that the L' n-width of the
Sobolev space (see Corollary 2.1) could be computed on the basis of
the methods employed in [9]. This latter paper serves as our
original motivation for the present work.

Finally, we remark that we have made an effort to make §2 of
this paper self-contained, so that it may be read independently of
[6] and [7].

2. L'-widths. Let X = LY0,1], Y = C[0, 1], and suppose |||},
and || - ||, denote the usual L' and L* norms on [0,1]. We use |||,
as the norm on both X and Y and hence Y is a dense subset of X.
Later we will find it more convenient to consider the Gel’fand width
of .27, relative to Y.

Given functions k.(t), ---, k,.(t) defined and continuous on [0, 1],
and a kernel K(¢, s) jointly continuous in ¢, s€[0, 1], we define

97 = {S adi®) + [ K¢, 9h(s)ds: @, -+ a) e R, (0], S 1}

In this section, we compute the n-widths of .9¢,. Since the closure
of 97, in X is

T = {Z et + | K¢ 9y @, o ) e R I 51

where ||\ ||=total variation of x on [0, 1], the n-widths of .%; and .57
are the same.
We require, in what follows, that the following properties hold.
L

kl('!h) """ kl(yr+m)
K(l, Ty Xyt T > —_ kr(yl) """ kr(yr+m) > 0
Yis * s Yrs Yoty ** 5 Yrtm K(yu xl) °tt K(y'r-l—m’ xl)
K(ylr xm) et K(y'r+m7 xm)

for any points 0 <, < ++- <2, <1,0< ¥y <+ <¥Yn<1l, and
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integer m = 0. Furthermore, we require that for any fixed set of
2-points (y-points), the above determinant is not identically zero for
all y-points (x-points).

II. Forany 0<y, < --- <y, <1,

1, e, n
K( >0.
Yy = Y,

Thus we see that our conditions imply that the set of functions
{k,(@), - -, k,(¢)} is a Chebyshev on (0, 1), while for every 0 <2, < -+ <
T <L, {k.(t),- -+, k), K(t,2), -, K(t, z,)} is a weak Chebyshev system.

For fixed{ = (£, -+, (), =0<(, < - <, <=1, n=7,
we introduce the auxiliary kernel

1, ---
K( ,'r,S)
Zu'",CNt

K(l’ cee, ) ’
Cu “'9Cr

and the function 2.(t) = (—1), ;=6 <84, =0,1, «--, m.

Jt, 55 €) =

Levmma 2.1. For any constants ¢, +--, €,_,, the function
1 n—r
0@ = | hI, 5 Ot — 5 eI Covy 5 0
has at most n — r distinet zeros in (0, 1).

Proof. Suppose to the contrary that there exists a g which
has m —r + 1 zeros 0 <2, < -+ <%, ,.; <1. Since the functions
k), ---, k.(@t), K(t, 2), ---, K&, Z,_,..) form a weak Chebyshev system
of dimension » + 1, there exists a nontrivial function

FO) = S aks(®) + 3 6K, 2)

which has (weak) sign changes at {, ---, {,, i.e., (—=1)if (@) = 0,
(iSt=<l;1,7=0,1, ---, m. Thus f necessarily vanishes at {,, ---, {,.
Therefore

(G e k(G k()
1 : : :
K( 1«--,o~)k,(cl>-~k,(cr> k()

Co - Gl FE) -+ £ @)

n—r+1
= z§=:'1 bJ(¢, 25 €)

f@) =
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and we have

[17@ia = 307 " redt — Feif o)

4
4

e L EYES] n—1r
= Lg‘f bll:j:o (=1y Sc~ J(¢, zi; Odt — ;ch(Cﬂn 25 C)il
n—r+1

="3 bige) = 0.
This contradiction proves the lemma.
The following result is of central importance in this section.

THEOREM 2.1. Given any integer n = r, there exist points 0 =
L <CE L o K&, <&y =1 such that the function

0. = | K, s)at
equioscillates n — r + 1 times on [0, 1], that s,
(2.1) 90 (0) = (=10l gurlle, 2=1, e, n—r+1,
Sfor some points 0 <79, < ++- < N_,, =1 and 0 = +1 or —1, fized,

and furthermore

(2'2) (hey kz) = S:he(t)kz(t)dt = 0 ) 1: = ]_’ e, r.

Proof. Our proof of Theorem 2.1 applies a technique used in [8].
Set

St = {z =, -, zn+1):g{zil - 1} ’

and define &(2) =0, &() = S, |z, i=1,+--,n +1. Let

+1

G 1) = 3 em ) |7, 9t

&

§(2)
Let {u,(s)};=r be any Chebyshev system on [0, 1], and for each z¢ S*,
let 32" ¢,(2)u,(s) denote the best L= approximation to G(s; z) from
the Chebyshev system {u,(s)}:=’. Define T(2) = (T.(2), + -+, T.(2)) by

J=0 itz

2 Ej41(2) .
T,;(Z) — {E (Sgn zj+1) Se , kz(t)dt s, = 1, cee,
il i=r e

It is easily seen that T'(z) is a continuous odd mapping of S™ into
R*. Thus, by the Borsuk Antipodality Theorem (cf. [5]), there exists
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a z* € S" for which T(z*)=0,4=1, -+, n. Furthermore, since {u,(s)}?="
is a Chebyshev system, G(s; 2*) must equioscillate on at least n —
r + 1 points, unless G(s; 2*) = 0. Since T, (*)=0,2=1, ---, 7,

G(s; 2*) = S:hc(t)J(t, s; O)dt

for some {{;}* with m = S™(2*) < n (see Definition 3.2). Therefore,
by Lemma 2.1, G(s; 2*) has at most S™(2*) — r zeros. This means
that G(s; 2*) cannot vanish identically. Therefore G(s; 2*) equioscillates
exactly n — » + 1 times on [0, 1], and S7(2*) = n, i.e., 2/2},, < 0,5 =
1, ---,n. The function g, .(s) = G(s; z*) satisfies the requirement of
the theorem and thus the theorem is proven.

We leave it to the reader to verify that, in Theorem 2.1, ¢ =
(_ 1)r+1_

For the remainder of our discussion we set J(¢, s; &) = J(¢, s) and
he(t) = h(t), where & = (&, ---, £&,) as defined in Theorem 2.1.

Lemma 2.2. The function g,,. of Theorem 2.1 has exactly n — »
distinct zeros in (0,1), at 0< 7, < +++ < 7,_, <1 say, and

1, ey Yy Tyttt Tuer
(2.3) K )>0.

Proof. From Theorem 2.1 and Lemma 2.1, g¢,, has exactly
n — r distinct zeros in (0, 1), since the orthogonality conditions (2.2)
imply that

0..8) = 3, (=17 | 00, spa .

We prove (2.3) by contradiction. If (2.3) fails, then there is a non-
trivial function

u(s) = z T (Esim 9)

which vanishes at 7, +++, 7,_,. Our assumptions (Property I) imply
that J(&,.y, 8), *++, J(&., 8) are linearly independent. Hence there is
az,€(0, D)\{zy, + -+, 7,_,} with u(z,)#0. Thus we may choose a constant
¢ such that the function g, ,(s) — cu(s) vanishes » — r + 1 times at
Toy Tip ** %y Tupe HOWwever, this conclusion contradicts Lemma 2.1.
Hence (2.3) is valid.

In the computation of the n-width of .97, the following proposi-
tion plays a crucial role.
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Let B = (b;;) be the n + 1 X n + 1 matrix defined as
.
gj kz(t)dty i=1,~-,r;j=1,2,-°-,'n+l

£—1

24 by =1
S- K(t’ ﬁi—r)dt; 1= r+1, ""’n'l_l;j:l) 2,"',7’&+1,
J—1

where the {7,};-7*' are points of equioscillation of g, , (see (2.1)).

PROPOSITION 2.1. The matrixz B is invertible, and furthermore,
for any @ = (o, @, +--, @,) satisfying

Zﬂ“a,v Sej+1]gi(t)dt =0, t=1,---,7,
j=0 i
we have
n &
max [3a; [“"KG, 7)dt| 2 llu. ] 1l
1gisa—r+1| j=0 &5

where HC\wa = MaXsis, | &l
We precede the proof of Proposition 2.1 with the following lemma.

The minors of a matrix A = (a,;) are denoted by

a - Q

A(if’ cee, 7/1;) _ iéh t;:ﬂk .
Jis 2%y Tk :
Gigsy *** Qigsy
LEMMA 2.3. Let n=7r and A = (a;;) be an n + 1 X n matriz
such that
1

@ A}nT)>o0
and
W A7 h =0

jn ......... y Jrtk

foral r+1=4, < <4, =N+ L1545, <+ < Jpn=<n. Then
there exists a montrivial vector a € R"™ such that a;(—1) =0, 7 =
r+1,--,n+ 1, and

aA=0.

Proof. For r =0, our hypothesis means that A is totally positive.
Hence there exists a sequence 4y, — A as N — o, such that A, is
strictly positive, [2], that is, all the minors of A, are strictly
positive. Let
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1, o005 1,541, o0, m+1
a;-V=(—1)iAN( T )

1’ . . . , n
then a4y = 0 and 8" = a”/||a"||.,, [|@" ||, = max {|aj: 1 = J = n+ 1},

has a subsequence {8¥'} converging to an a € R"" which satisfies the
demands of the lemma.

For r > 0, we define a new matrix C = (¢,;),
1, -ee, 7,14
A( r z.)
19 T
1, .-, ’
A
1, ece, 7

Then by Sylvester’s determinant identity

Cij =

r+1zit<n+Lr+15j53=n.

1; ety Ty Ty vty 7’/0)

e
Ty 20y U 1)"':"’9.719"'7.’“
Cl. L= 1 eee. 7
Jup oy G A(’ ’
1, e, P
Hence all the minors of C are nonnegative and by the above remarks
there is a nontrivial 6 € R* " such that

8C=0,0,(—1)*" =0, j=1+-,m—2r+1.

Let a = (e, -+, @,, 0,y *++, 0,_,4,) Where «,, +--, &, are chosen so that

r n+1
2 Ay = — 3, 0,4, i=1 00,7,
Jj=1 j=r+1
Then it is easily verified that a satisfies the requirements of the
lemma. The proof is complete.

Observe that vector @ = («,, ---, @,,,) constructed above has the
property that

741

2 la;[>0.

j=r+1
On the basis of this lemma, we now prove Proposition 2.1.
Proof. According to Lemma 2.3 and Properties I and II, there
exists an » + 1 X n + 1 matrix E such that EB = D, E,;(—1)'* = 0,

1::1, ---,'n+1,j='r+1, "',n_!'landZ?:rl+1lEij[>0’7:=1’ Y
n + 1, where D = diag {d,, ++-, d,..}.

Let



506 CHARLES A. MICCHELLI AND ALLAN PINKUS

¢ = (09 A 0’ ("‘1)?! 0y (_1)”)

and
7= (19 '—17 ) ('—1)”) .
Then according to Theorem 2.1, B, = ||g,..||.¢. Hence

dy = (=1 D = (=17 | gn,, 1 (EE)s

:l|gn,r“°°j§+l|Ek.7'|>O! k=1,"’,n+1.

We conclude that B is invertible and B ' = D™'E.
Now, if a e R** satisfies (Ba), = 0,¢ =1, ---, r then «, =

»f1,, Bij(Ba); and therefore

el = nBauwmax{ S Billsk=n+ 1}
j=r+1
= || Ba||.. max {(—1)* (B e): 1 < b < n + 1)
= || Ba|l/|| g |l -

The proposition is proven.
We are now prepared to prove our main results.
Let X} denote the linear space spanned by the functions k,(¢), - -,

kr(t)’ K(t, Tl), %y K(ty T,,,_,.),
X£ = [ku ) kw K(': 7'-1)7 ) K('9 T,,,,_,.)]

and suppose S is the linear mapping from C[0, 1] onto X,, defined
by the interpolation conditions

SAE)=SfE), +=1,+-+,m, feC[0,1].
From Lemma 2.2, this is a well-defined linear map. We recall that
a (s X) = }fﬁf’;‘?}?,{fn”f =gl
where X, is any wn-dimensional subspace of X = L'[0, 1].

THEOREM 2.2.

, n<r

d. (>, X) =
( ) Ngnrllw, nZ=7r

and for n=7r, X; is an optimal subspace for the n-width of %,.
Furthermore, when n = r,

a,(>2,; X) = sup Nf—Srfl.
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Proof. If @, is the subspace spanned by k, ---, k,, then since
Q, & 2%,,d,(5%,; X) = - when n < r. Now, let us suppose n = 7.
We will first prove a lower bound for the n-width.

Let X, be any n-dimensional subspace of X, and define the
characteristic functions

1, &<t=éin

i(t) =
2:(0) 0, otherwise

for j=0,1, -+, n. In computing the n-width of .5%;, it is sufficient
to consider only those subspaces containing @,. Choose

B = (180’ 1817 ) Bn)

such that ||B8|l. =1, and hy = 37, B;X; is orthogonal to X,. Since

Nhsllw = ||Blle =1, and f— (f, hy) = S S()hs(t)dt is a norm one linear
0

functional which annihilates X,, we conclude that

0>z X,) =z sup{|(f, he)|: fe oz} .

Since @, < X,, we have

s 001 = | [ o= [, |
Z [ Gnrlloll Bl = 1 Gnrlleo

The last inequality follows from Proposition 2.1, and the orthogonality
conditions (k;, hg)) = 0, ¢ =1, +-«, . Thus we have shown that
o(o%,; X,) = ||9a,.1le for all n-dimensional subspaces X, of X which
contain Q,. Hence,

Gn.rllee = du( 2275 X)
We will now show that

supl|f — 8fI < [lgu.[l- -

To this end, observe that

1, cee, 7, Ty voey Turs 8
)
f& - spe) = |ttt Sl g
K( ’ ? Ty » "n—r
& * ° &

for some ge X, ||g|, £1. Thus,
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If = SFIl, = max | (&, f — S7)|

IK(]-; ey Ty Tttty Ty S)

&y * ° ° ’ Em t k(t)dt :
K(l’ oy Ty Ty 0ty Tur

\&i, ° ¢ ¢ y &

< max S
0

0=s=1Lhrll.=1

IK(]-’ ey Py Tyt Ty S

ST, ’5”’t)ho(t)dt:0§s§1

0 K(l’ ey Py Ty o0ty T'n—'r)
& * ° * y &

= max S

where ho(t) = (_l)jr 5.7’ <t= Ei+1; j = 07 1: s, M. Since (hoy kl) = 0’
4=1,---,7, and (h, K(-, 7)) =0,2=1, ---, n — #, it follows that

17 ey My Ty oy Ty S

S &+ - v, Gnl )ho(t)dt - SIK(t, o)At = ga.(s) -
0 K(l, Py Tyttt Taer 0

Su * * <, &

Thus, supse., || f — Sfll < 1|g...l. and since necessarily

857 X2) = sup [If = SF .,

we obtain

19nrllo = du(277; X) = 827 X3) = sup [|f — SF .

Thus the theorem is proven.

Let us observe that Theorem 2.2 also expresses the fact that
simply interpolating f €., by means of the function Sf is as good
as approximating .97, in the L'-norm by any fixed n-dimensional
subspace of L0, 1]. Clearly, then S represents an optimal linear
method for approximating .27, (see also [7]).

Recall the Gel’fand width

d"(2¢,;Y) = inf sup || f]l,,
L, fedr 0Ly,

where L, is any subspace of Y = C[0, 1] of codimension «.
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THEOREM 2.3.

o ., m<r
an(;Y) =
o) =gl nzr

and for n =7,
1;2 = Lf:.f € ()[0, 1]:-f(€i) = 07 1= 1: ) 7@}

s an optimal subspace for °F,.

Proof. As previously, it is easily shown that d"(°7,;Y) = « if
n < r. For m=r, we have sups. . ||f — Sfl=Ign-ll-. Thus
suPse 8 | F 1l = 1l Gurllwy and d*( 2755 Y) = {1 G, |loe

To prove the reverse inequality we now suppose that L, is any
subspace of Y of codimension n. Choose the vector ¥ = (7, ***, Vut1)s
v # 0, such that the function

r n—r+1
F(t) = ng Vik;(8) + JZZL Vi K(E5 75)

is in L,. We may normalize ¥ so that >,*%%,, |7;| = 1, since otherwise

L, would contain a nonzero element of @, and thus supsenz, || fll; =

oo, In addition, we define the vector ¢ = (6, - -+, 0,) such that i, =
7, 0,); satisfies

(k) =0, i=1, 00,7
(o KC» 7)) = 20700 ) | Grlle s 4= 1, 0oeym =+ 1,

This is possible since the matrix B of (2.4) was shown in Proposition

2.1 to be invertible. Now, ||%;|l. = |/0]l. and FeL,N .9, since
%17l = 1. Thus,

sup ||l = [|Fl, z Lkl
rekenLy 6]l

From Proposition 2.1, ||d]|. = 1 and thus

L850 (1]l = [(F, k)|

= (S 1%1)l1gurlle

j=r+
= |[ga,rlle

The proof is complete.

Let » =2, and W' = {f: f"™ absolutely continuous on [0, 1],
[[f™]], <1}. Then, as a corollary to Theorems 2.2 and 2.3, we
have
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COROLLARY 2.1.

o, n<l7r
Ppplle, mZw

a\(w~; C) =d, (W L") = {
where P, ., is a perfect spline

n ( 1).7 S€j+1 . f—t
P = 20Ty ), €= ot
0=5<E< oo <&, < Epy =1 such that PP(0) = P(1) =0, : =0,
1, ..., r —1, which equioscillates at n» — r + 1 points of (0,1). The
subspace

X'r(::[l,tv trly(t_fl—% ""’(t'— nr+l]9

@t =1¢t"%%t =0, zero elsewhere) where 7, «++, T,_, are the unique
zeros of P,,., ts optimal for the Kolmogorov n-width of W', while

={f:f()=0,9=1,.---,mn, feC[0, 1]} 1s optimal for the Gel’ fand
n-width of W',

Proof. This result follows by specializing Theorems 2.2 and 2.3
to the choice k,(t) =t i =1, -+, 7, and K(¢, s) = 1/(r — D)1 (¢t — s)i%.
The fact that this choice satisfies Properties I and II is a well-known
property of spline functions, see [2].

When n = », then P, , is explicitly given by

L {"lsgn 7.1t — s)-dt ,

Pl = oy |,

where T,,, is the (r 4+ 1)st Chebyshev polynomial on [0, 1]. This is a
consequence of a classical result of Bernstein on best L' approximation
by polynomials.

In Corollary 2.1, we assumed » =2 in order to satisfy the
continuity assumption on K(t, s). However, it can be easily verified
that the result remains valid for the case r = 1.

For additional examples of {k.(¢)}i-, and K(t, s) satisfying Pro-
perties I and II, see [6].

3. m-widths in I'. The purpose of this section is to briefly
describe a matrix version of Theorems 2.2 and 2.3, complementing
work done in [6]. The results are stated for the most part without
proof. However, proofs may be reconstructed based on the analysis
of §2.

It is convenient to begin by recalling some definitions and properties
of totally positive matrices. We adhere to the notation in [6].



TOTAL POSITIVITY AND THE EXACT »-WIDTH OF CERTAIN SETS IN L! 511

DEFINITION 8.1. An N x M matrix A is said to be totally positive
of order | (TP) if

Gipgy = * " Qirgy

\
=)

(3.1) A(%.” Zf‘) =
Jis ** 9 Tk
iriy *°° Qi
foralll<i <+ <4, <N, 1<, << =M,andk=1,---,1.
A is said to be strictly totally positive of order I(STP,) if strict
inequality holds in (3.1).

DEFINITION 3.2. Let 2 = (%, -+, ;) be a real vector of [ com-
ponents.

(i) S (») denotes the number of actual sign changes in the
sequence %, --+, £, wWith zero terms discarded.

(ii) S*(x) counts the maximum number of sign changes in the
sequence z,, --+, &; where zero terms are assigned values +1 or —1,
arbitrarily.

For example, S°(—1,0,1, —1,0, —1) = 2, and

S*(—1,0,1, —1,0, —1) = 4 .

THEOREM 3.1. If A is an N X M matriz which is STP,.,, and
of © s any nontrivial M-vector such that S™(x) < n, then

(i) S*(42) = S (w)

(ii) If S*(Ax) = S™(x) then the first (and last) component of Ax
(if zero, then the sign given in determining S*(4x)), agrees in sign
with the first (and last) nonzero component of x.

The above theorem is to be found in Karlin [2, p. 223] in a
slightly different form. The complete statement of the above theorem
is found in Karlin and Pinkus [3].

DEFINITION 8.3. Given 0 = j, < 7, < ++- < 5, < Jirn, = M + 1,
and a vector xe RY, we say that x alternates between j, ---, 7,
provided that there exists a sign o, ¢* = 1, such that z, = (—1)""'o,
Jin<k<jg,i=1,---,1+1. (Note that no requirement is placed
on the components ;, +++,;.) When 0 =1 we will say that z
alternates with positive orientation.

DEFINITION 3.4. A vector y <€ RY equioscillates on %, «--, 4,4,
1514, <+ <%y <N, provided that there exists a o, 0> = 1, such
that y,, = (=)o |ylle, b =1, -+, 1 + L.

We shall also denote by a’ the jth column vector of A. We

now state an analogue of Theorem 2.1.
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THEOREM 3.2. Let A be an N x M STP,,, matrixz and suppose
0<7r=n<min{N, M}. Then there exists j° = (53, +++, J2), 1 =
N oo < 0 < M, and a vector x°e R such that

(1) 2° alternates between 33, ---, 75

(2) [[#ll.=1

(3) (Axo)i:()’i:l""”r

(4) Ax° equioscillates n — r + 1 times.

Proof. Fix j=(j, ++-, 3.), and if n > r, define the N — r X
M — r matrix B= (b)), i =r+1,---,N; j=1,---, M, j#j, 1l =1,

e, 7, by
1, cee, 1y
o)
Jiy 25 Jrs ]

1, cee,
(5007
Jise*9dr
The column vectors bi-+, --., b’» of B form a Chebyshev system since
by Sylvester’s determinant identity,

b“' =

1’ ey Ty Uyttt Uy

’iu"',in_, A(j ces 7 j cee .7)
B ): 1 7.71-7 r419 s Jn >0

Jrt1s %9 In A<]:’ "',’I’i)
Jis 0y Jr
forr+1=0, < <4,_,=N.

Let f be the M — r vector f=(f;),i=1,++,M,j#35,1=1,
-++, 7 obtained from the M-vector f with f;,l =1, ---, r deleted,
where f alternates between j, ---, j, and f;, = 0,1l =1, -, n.

The error Bf — 3»7 d,bir+s, in approximating Bf by linear com-
binations of b+, ... bi» in the l*-norm, necessarily equioscillates
n — 7+ 1 times on some rows r +1 <4, < +o+ < %y = N. Now,
for n = r, we define z; € R” by setting

@)=y G=1 e, My Ge(dy -, i)
(wj)jr+s —ds ’ s = 1, e, — T
(ij)i':o, ’I;:l’...,/r.

Il

Thus «; alternates between 7, «--, 4,, ||%;]l. = 1, and since

(Aw,), = (Bf — jz:dsbw) , i=r+1 - N,

i

Az; equioscillates on <, +--, %, ,.,. We define j°= (4, -+, 5%) by
requiring that
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3.2) Azl = [| Azl

for all j. We claim that 2° = z; satisfies the requirements of the
theorem. To prove this is the case, we must show that |(2")2] =<1,
E=1,---,m.

Multiplying by —1, if necessary, we shall assume that z; alternates
with positive orientation for each J.

First, let us suppose that j; > k. Let I be the largest integer
less than j} such thatl = 5%, ¢=1,---,k — 1. Define j = (4,, -+, Jn)
where {ju ] jn} is the set of indices {j(l)y ] jg—u jz+1y ) j?m l}
arranged in increasing order. Since z; alternates with positive orien-
tation, we have (z;);2 = (—1)*. Now, consider the vector Az; — Az’ =
A(z; — a°). If »; — 2° = 0 then [(2")0| = 1. Ifz; — 2° # 0 then, from
(3.2) and the fact that Az; equioscillates on some n — 7 + 1 rows,
and (Az;);, =0, =1, ---, 7, we conclude that S*(4z; — Az°) = n.
Since z; — 2° has, by construction, at most » + 1 nonzero components,
that is, the components corresponding to the columns j¢, ---, 53,1,
we conclude that S7(z; — 2°) < n. From Theorem 3.1, S*(A(z; — 2°) =
S™(z; — 2°) = » and the sign patterns must agree.

Since 4 is STP,,,, A(z; — °) cannot have n + 1 zero components.
Because the sign pattern in S*(Az;) begins with a plus and || A2°||.. =
l| Az;|.., it follows that the sign pattern in S*(A(x; — 2°)) begins with
a plus. Applying Theorem 3.1(ii), we see that sgn((%;); — (2°)5) =
(—1)*. Since (x);0 = (—1)* we conclude that 1> (¢");0(—1)*. Similarly,
if %< M—n+k, we let I be the smallest integer greater than ji
such that 1 # 34, +=%k+ 1, ---,n. Then, as above, we may show
that 1> (2°);0(—1)**". Hence, if both ji >k and i< M —n + &k we
obtain the desired conclusion that [(2");0| < 1.

In the case that j = k wehave j¢=14,¢=1, --+, k — 1, and thus
sgn (2°);0 = (—1)**'. However n < M, which implies j; <M — n + k.
Thus by our above remarks |(2°)] = (—1)*"'(2");y = 1. Similarly, if
Ji=M~—mn+Fk, then 73>k and [(2°);| = (—1)*2");2 = 1. Thus in
all cases, we arrive at the desired coneclusion.

We will now state an [/'-analogue of Theorems 2.2 and 2.3.

Let e RY, m,a = ©, -+, 0, 2,y ---, Ty), [|lz]l, = g{=1 ]le’ and
define

o = {Aw: |7l = 1) .

If A is STP,.,, then so is A7 = transpose of A. Thus from Theorem
3.2, there exists a vector 2°c RY which alternates between some 1 <
P KPEN, |2 =1,(472);=0,7 =1, ---, 7, and A"z equi-

oscillates n» — r» + 1 times.

THEOREM 3.3. Let A be an N x M STP,., matriz, 0 = n <
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min {N, M}. Then
co , n<7r

ar(7; 1y) =

= ara), nze
and for n =7, L, ={z:xeR", (%) =0,k=1,---,n} s an optimal
subspace for &7.

For a matrix version of Theorem 2.2, we observe that from
Theorem 3.1, S*(472°) = S~(2°) = » and since (A"2"); = 0,5 =1, -++, 7,
and A’2° 'equioscillates n — r + 1 times, (A72°),,.,(A"2°), # 0, and if
(A7), =0, r + 1 <1 < M, then (472°),_,(A"2%,;,, < 0. Fori=17r+1,
.++,m, the tth weak sign change of A"z° “occurs at” an index k, in
one of two possible ways. Either

(a) (A2, (A72"), <0,
or

() (A7), =0, and (A72");,(A"2s, 1 < O,
where r + 1<k, < -+ <k, < M. For each 4,2=7r+1, .-+, n,
we define an M-dimensional vector e‘ as follows. If (a) holds, put

|(ATzo)l|_1 ’ l= k, — 1; kz
0 , otherwise.

(ei)z =

If (b) arises, set (¢°), = 0,0 =1, ---, M. In addition, let e, i =1,
«++, 7 be the first » unit vectors in R¥, i.e., (¢9), =0y, 0t =1, ++«, 7}
l=1,--+, M. Thus (A72%¢) =0,2=1, -, n.

Now, we define an M X M matrix P by the condition that for
any x € R¥, the vector y = Px is in the linear space spanned by
¢, -+, ¢ and (Az — APx);y =0,k =1, ---, n. Pux exists since other-
wise there exists a nonzero jy = >}, ¢c;e? such that (Ay); =0,k =
1, ..., n. Hence St(4Ay) = n. But, by the construction of the vectors
e, +++, e, it is clear that S~ (y) < n — 1. Applying Theorem 3.1, we
arrive at a contradiction, and so Px exists.

Let B = AP and note that B is an N X M matrix of rank =,
whose column space is spanned by the set of vectors {Ae', :--, Ae"}.

THEOREM 3.4. Let A be an N X M STP,., matriz, 0 = n <
min {N, M}. Then,
, n<r

G543 B) = {IIATz“IIm , nzr

and for m=r, the linear space spanned by the set of wvectors
{Aet, ---, Ae"} is an optimal subspace for 7. Furthermore,

d.(27; ly) = max ||Ax — Bz||, .

Hrpellys1
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The proofs of Theorems 3.3 and 8.4 are similar to the proofs
given in §2. We omit the details.

Finally, let us point out that we may, by a standard continuity
argument, give an alternative proof of Theorem 2.1 by using Theorem
3.2, see [6] for a detailed discussion of this matter in L~. The
advantage of this approach is that it avoids the use of Borsuk’s
theorem and thus is “elementary.” In addition, Theorems 3.2, 3.3,
and 3.4 afford us great flexibility in computing n-widths when N
and/or M = -, again see [6] for a detailed description of these
matters in L.
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