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TOTAL POSITIVITY AND THE EXACT n-WΪDTR
OF CERTAIN SETS IN U

CHARLES A. MICCHELLI AND ALLAN PINKUS

In this paper we obtain the exact value of the L1 n-
width, both in the sense of Kolmogorov and GeΓfand, and
characterize optimal subspaces for the set

[K(tf s)h(s)ds: (alf , ar)eR', \\h\U g l l
Jo J

under certain total positivity assumptions on

VcΛt), '- ,kΛt), K(t,s)}.

A matrix analogue is also described.

1* Introduction* Let X be a normed linear space, Ssf a subset
of X, and Xn any ^-dimensional linear subspace of X. Then the
n-width of jzf relative to X, in the sense of Kolmogorov, is defined
to be

dn(J^f; X ) = i n f s u p i n f \\x - y\\ .

Xn is called an optimal subspace for Jzf provided that

; X ) - δ ( j ^ ; X n ) = s u p i n f \\% - y\\ .
xejy yeXn

The ^-width of J^ relative to X, in the sense of GeΓfand, is defined as

dn(J^f; X) = inf sup | |g| | ,

where Ln is any subspace of X of codimension n. If

X)= sup |M! ,

then Ln is an optimal subspace for the GeΓfand w-width of
A typical choice for j ^ is the image of the unit ball under a

compact mapping K of X into itself,

When X is a Hubert space then it is possible to obtain an exact
value for dn{<5Γ\ X). This fact originated with the methods used
in Kolmogorov's seminal paper [4]. For X — L°°[0,1], we computed
(in [6]) the w-widths of J^Γ when K is an integral operator determined
by a totally positive kernel.

In this paper, we obtain the exact value of the L1 w-width, both
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in the sense of Kolmogorov and GeΓfand, for such J^~ (translated
by some finite dimensional subspace) and identify respective optimal
subspaces.

For a general statement of the apparent duality between the
GeΓfand and Kolmogorov ^-widths, see Ioffe and Tikhomirov [1].
Our problem requires, in addition, certain extensions and modifications
of our results in [6]. Let us note that Tikhomirov, in his doctoral
dissertation summary [10], indicated that the L1 w-width of the
Sobolev space (see Corollary 2.1) could be computed on the basis of
the methods employed in [9]. This latter paper serves as our
original motivation for the present work.

Finally, we remark that we have made an effort to make §2 of
this paper self-contained, so that it may be read independently of
[6] and [7].

2* 2Λwidths. Let X = Lx[0, 1], Y = C[0, 1], and suppose || ||,
and || H*, denote the usual L1 and L°° norms on [0, 1]. We use || ||x
as the norm on both X and Y and hence Y is a dense subset of X.
Later we will find it more convenient to consider the GeΓfand width
of 3fr relative to Y.

Given functions kx{t), •• 9kr(t) defined and continuous on [0,1],
and a kernel K(t, s) jointly continuous in t, s e [0, 1], we define

[K(t, s)h(s)ds: (aί9 , ar) eRr, \\h\\, ^ l } .
Jo )

In this section, we compute the ^-widths of S%Γr. Since the closure
of 3ίΓΨ in X is

> s)dX(s): (a19 , ar) eRr,

where | |λ| | = total variation of λ on [0, 1], the n-widths of JsΓr and
are the same.

We require, in what follows, that the following properties hold.
I.

K
1, , r, xl9 , Xγ,

Vl, '—,Vr, Vr + lf • ' • » Vr + t. K(ylf

K(yr+m)

K(yr+m9 x,)
0

K(ylf xm) K(yr+m9 xm)

for any points 0 < x1 < < xm < 1, 0 < yx < < yr+m < 1, and
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integer m ^ 0. Furthermore, we require that for any fixed set of
α -points (^/-points), the above determinant is not identically zero for
all ^-points (a -points).

II. For any 0 < y, < < yr < 1,

K
1,

Vl,

-, r

Thus we see that our conditions imply that the set of functions
) •> kr(t)} is a Chebyshev on (0, 1), while for every 0 < xι < <

> &r(<)> ΛΓ(ί, ̂ ) , , K(t9 xm)} is a weak Chebyshev system.
For fixed ζ - (ζlf . . . , ζ j , ζ0 = 0 < ζL < . < ζΛ < ζw+1 - 1, n ^ r,

we introduce the auxiliary kernel

K
1, •••, r, s

jr(t, β ; Q =

and the function hζ(t) = ( — l)j, ζ, ^ t < ζj+ι, j = 0, 1, , n.

LEMMA 2.1. For any constants cίy •••, c%_ r, ίfee function

9(8) = (fcc(i)J(i, βί Qdί - Σ V ( ζ ί + , , s; ζ)
Jo i=i

αί mosέ n — r distinct zeros in (0, 1).

Proof. Suppose to the contrary that there exists a g which
has n — r + 1 zeros 0 < zx < < ^_ r + 1 < 1. Since the functions
&i(£), , &r(£), if(ί, ^), , K(t, zn_r+1) form a weak Chebyshev system
of dimension n + 1, there exists a nontrivial function

3=1
Σ
3=1

} zs)

which has (weak) sign changes at ζlf •••, ζw, i.e., (—l)jf(t) ^ 0,
ζβ <^ t ^ ζ ί + 1 , i = 0, 1, , n. Thus / necessarily vanishes at ζu , ζw.
Therefore

UQ *α(W Ut

1, •••, r

/(Q •••/(C) /(*)
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and we have

[\f(t)\dt = Σ (-
Jo i=o

Σ ( ) Γ ( ί f « , ; Qdt - Σ V ( C / + « 2I; 0
=o J Cj i=i

= MΣ+16/ff(2θ = 0 .

This contradiction proves the lemma.

The following result is of central importance in this section.

THEOREM 2.1. Given any integer n^ r, there exist points 0 =
<?o < ίl < • • • < £ * < f%+i = 1 sw/& ίfeαί ίfee function

equioscillates n — r + 1 έίmβs ow [0, 1], ί/^αί is,

(2.1) flr.ir(ft) - (-l) 'σ| | f lr i r | U , i = 1, •••, n - r + 1 ,

/or some points 0 ^ η1 < < )7%_r+1 ^ 1 ami σ = + 1 or — 1,
furthermore

(2.2) (ft,, fc€) = \\(t)kt(t)dt = 0 , i = 1, , r .
Jo

Proof Our proof of Theorem 2.1 applies a technique used in [8].
Set

and define £0(s) = 0, ί,-^) = Σ L i l ^ i , i = 1, , n + 1. Let

fe, +1(β)

f + 1 ) ϋΓ(ί, s)dt .
Jξjiz)Σ

3=0

Let {ut(8)}iZι be any Chebyshev system on [0,1], and for each z e Sn,
let Σ?=ir Ci(z)Mi(8) denote the best L°° approximation to G(s; z) from
the Chebyshev system {u^s)}^. Define T(z) = (Γi^), •••, Γn(«)) by

i = l, -- , r

U- r (s) , ΐ = r + 1, ••-, n .

It is easily seen that Γ(^) is a continuous odd mapping of Sn into
jβ%. Thus, by the Borsuk Antipodality Theorem (cf. [5]), there exists
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a z* e Sn for which Γi(^*) = 0, i = l , , w. Furthermore, since {Ui(s)}2=[
is a Chebyshev system, G(s; z*) must equioscillate on at least n —
r + 1 points, unless G(s; z*) == 0. Since TiO?*) = 0, i = 1, , r,

for some {ζjΓ with m — S (z*) ̂  w (see Definition 3.2). Therefore,
by Lemma 2.1, G(s; z*) has at most S~(z*) — r zeros. This means
that G(s; z*) cannot vanish identically. Therefore G(s; z*) equioscillates
exactly n — r + 1 times on [0,1], and S~(z*) == n, i.e., «y*«*+1 < 0, j =
1, •••, w. The function ^rw,r(s) = G(s; z*) satisfies the requirement of
the theorem and thus the theorem is proven.

We leave it to the reader to verify that, in Theorem 2.1, σ =
(- l ) r + ι .

For the remainder of our discussion we set J(t, s; ξ) — J(t, s) and
hξ(t) = Λ0(ί), where ξ = (ξlf , ξn) as defined in Theorem 2.1.

LEMMA 2.2. The function gn>r of Theorem 2.1 has exactly n — r
distinct zeros in (0,1), at 0 < τx < < τn_r < 1 say, and

(2.3) (

Proof. From Theorem 2.1 and Lemma 2.1, #„,,. has exactly
n — r distinct zeros in (0,1), since the orthogonality conditions (2.2)
imply that

j=0

We prove (2.3) by contradiction. If (2.3) fails, then there is a non-
trivial function

n—r

Φ) = Σ CjJ{ζό+r, S)

which vanishes at τlf •• ,rw_ r. Our assumptions (Property I) imply
that J(ζr+it s), '' *, J(ξ«.j s) are linearly independent. Hence there is
a τ0 e (0, l)\{τ19 , τn_r] with u(τo)Φϋ. Thus we may choose a constant
c such that the function gn>r(s) — cu(s) vanishes n — r + 1 times at
?"o> Tit ' •> Γ^-r However, this conclusion contradicts Lemma 2.1.
Hence (2.3) is valid.

In the computation of the n-width of 3fr, the following proposi-
tion plays a crucial role.
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Let B = φii) be the n + 1 xn + 1 matrix defined as

([*' kS)dt , i = 1, , r; j = 1, 2, .. , n + 1

K(t, Vi-r)dt, i = r + 1, , w + 1; i = 1, 2, , w + 1,
vjy-i

where the {̂ J?=Γ+1 are points of equioscillation of gn,r (see (2.1)).

(2.4)

PROPOSITION 2.1. The matrix B is invertϊble, and furthermore,
for any a = (a0, al9 , an) satisfying

= 0 , i = 1, « , r ,

max
3=0

where ||α||oo = maxos<s;n 1^1.

We precede the proof of Proposition 2.1 with the following lemma.

The minors of a matrix A = (ati) are denoted by

LEMMA 2.3. Lei n ^ r and A = (aid) be an n + 1 x n matrix
such that

and

for all r + 1 ^iί< < ifc <£ w + 1,1 <; JΊ < < ir+/b

ίfeere eα isίs α nontrivial vector aeRn+1 such that a^—
r + 1, , n + 1, α̂ cZ

a A = 0 .

>̂ 0, j =

Proof. For r = 0, our hypothesis means that A is totally positive.
Hence there exists a sequence A^—* A as N—+oof such that A^ is
strictly positive, [2], that is, all the minors of AN are strictly
positive. Let
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II, •-, j -1, j + 1, ~,n + 1)
a? = (-!)'A J

\ 1 n

t h e n a N A N = 0 a n d β N = a N / \ \ a N \ \ m , \ \ a N \ \ m = m a x { | α f | : l ^ j ^ n + 1},
has a subsequence {βN'} converging to an a e Rn+1 which satisfies the
demands of the lemma.

For r > 0, we define a new matrix C = (c^ ),

β,

Then by Sylvester's determinant identity

{1, •••, r, ix, •••, ik

X, •",

Hence all the minors of C are nonnegative and by the above remarks
there is a nontrivial δ e Rn~r+1 such that

δC - 0, δ y (- l ) i + r ^ 0 , j = 1, , Λ - r + 1 .

Let α — (a19 , α r, δ19 , δw_r+1) where «„ , ar are chosen so that

r n+1

Σ î̂ Lii = - Σ ^-r .̂/i , i = 1, , r .

Then it is easily verified that α satisfies the requirements of the
lemma. The proof is complete.

Observe that vector a = (a19 , an+1) constructed above has the
property that

On the basis of this lemma, we now prove Proposition 2.1.

Proof. According to Lemma 2.3 and Properties I and II, there
exists anw + l x w + 1 matrix E such that EB = D, Eiό{ — l)ί+j ^ 0,
i = 1, , n + 1, j = r + 1, . . , n + 1 and Σ;ir+ 11 J&<y| > 0, i = 1, ,
n + 1, where D = diag 1^, , dn+ι}.

Let
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and

Then according to Theorem 2.1, Bγ = \\gn,r\\ooe. Hence

dk = (-iγ-wr)k = (-Dk-ι\\gM\UEe)>

= \\9n,r\U Σ l ^ i l > 0 , lC= 1, .. ., Λ + l .

We conclude that 1? is invertible and B1 = D~XE.
Now, if α e i2%+1 satisfies (£«)< = 0, i = 1, , r then ah =

Σiίr+i Bk}(Ba)ό and therefore

| |α|L ^ ||JBα|UmaxJΣ |Br/|:l ^ jfc ^ n + l l
Lj = r+1 J

= \\Ba\U\\gn,r\U .

The proposition is proven.
We are now prepared to prove our main results.
Let XI denote the linear space spanned by the functions kt(t), ,

fcr(t),

XI = \K , K, JT(., τx), , JΓ(., τn.r)\

and suppose S is the linear mapping from C[0,1] onto X°, defined
by the interpolation conditions

(Sf)(ξi) = /(&) > i = 1, , n, / 6 C[0, 1] .

From Lemma 2.2, this is a well-defined linear map. We recall that

dn(3ίΓr\ X) — inf sup inf 11 / — g \ |x ,

where Xn is any ^-dimensional subspace of X = Lx[0,1].

THEOREM 2.2.

and for n 2: r, XI is an optimal subspace for the n-width of
Furthermore, when n~ίzr,

p |
fe y, r
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Proof. If Qr is the subspace spanned by kίf * ,kr, then since
Qr S ^It dn(St"r; X) = co when n < r. Now, let us suppose w ^ r.
We will first prove a lower bound for the w-width.

Let Xn be any ^-dimensional subspace of X, and define the
characteristic functions

0 , otherwise

for j = 0, 1, , n. In computing the w-width of J?t~r, it is sufficient
to consider only those subspaces containing Qr. Choose

such that Il/Slloo = 1, and hβ = Σi=oftχi is orthogonal to Xw. Since

ll&flloo = | |£IU = 1, and /i-> (/, ^ ) = \ f(t)hβ(t)dt is a norm one linear
Jo

functional which annihilates Xn, we conclude that

r; Xn) ^ s u p { | ( / , h β ) \ : f e

Since Qr Q Xn, we have

[K(t,8)hβ(t)dt
Jo

The last inequality follows from Proposition 2.1, and the orthogonality
conditions (ki9 hβ) = 0, ί = 1, , r. Thus we have shown that
δ(^5^; XJ ^ ||flf»,r||oo for all ^-dimensional subspaces Xn of X which
contain Qr. Hence,

We will now show that

/ 6 J

To this end, observe that

/I, , r, τlf

/(t) - Sf(t) = [ ™ ' ' '
Jo /I , . . . , r , τl9

τn_r,

,v

for some g eX^lg]]^ 1. Thus,
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max|(Λf/-S/)|
MMIoo^l

max

1, •••, r , τ19 •••, vn_rf έ
-r^\ -*-) 9 ' 9 w 19 9 w % — T9 " I

( — ^ L-l*L±lh(t)dt
Jo / I , . . - , r , τlf •••, τ Λ _ r \

ft

1,

= m a x

,ί",τ1,

r \g» , L,
Jo / I , - - - . r , r l f •• , τ , _ ,

Si,

w h e r e ho(t) = (—1)', ξ3- < t ^ fi+1, i = 0 , 1 , ••-,%. S i n c e (h0, k%) = 0,
i = 1, , r, and (h0, K( , zf)) = 0, i — 1, •••, ̂  — r, it follows that

I , - - ' . r , Γi, •• , r n _ r ,

Γ ' ^ ' ' ' ' ' ζ»'\>ha(t)dt = [Kit, s)ho(t)dt = (/„„(«) .

U , , ξ.)

r | | / — Sf\l ^ llffβ.rlU and since necessarilyThus,

we obtain

= sup | | / -
/ e jar

Thus the theorem is proven.
Let us observe that Theorem 2.2 also expresses the fact that

simply interpolating / 6 ̂ ?~r by means of the function Sf is as good
as approximating 3ίΓr in the ZΛnorm by any fixed ^-dimensional
subspace of Lx[0,1]. Clearly, then S represents an optimal linear
method for approximating 3ίΓr (see also [7]).

Recall the GeΓfand width

s u p \\f\\lf

where Ln is any subspace of Y = C[0,1] of codimension n.
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THEOREM 2.3.

f oo , n < r
dn(STr;Y)= ^

and for n ^ r,

LI - {/: / e C[0,1], /(&) = 0, i = 1, , n}

is an optimal subspace for 3ίΓr.

Proof. As previously, it is easily shown that dn(^?~r; Y) = oo if
n < r . For ^ ^ r, we have s u p / 6 ^ r | | / — S/IL = ||flr»,rlU. Thus

=i II 0n,rlU, and c?w(J^; Y") ̂  | |^, r | |oo.

To prove the reverse inequality we now suppose that Ln is any
subspace of Y of codimension n. Choose the vector 7 = (Ύίf , 7n + ι),
7 ^ 0 , such that the function

is in Ln. We may normalize 7 so that Σ?ίί+i l 7il = 1> since otherwise
Ln would contain a nonzero element of Qr and thus sup /€jrrniw ll/lli =
oo. In addition, we define the vector d = (δ0, , δΛ) such that hδ =
Σ?=o^<Zt satisfies

(Λ,, &,) = 0 , i = 1, « , r

(ΛJf ίΓ( , ηt)) =

This is possible since the matrix B of (2.4) was shown in Proposition

2.1 to be invertible. Now, HAalU = P I U and F G L . Π X since

Σ?ί ί + i 1^1 = 1. Thus,

sup

From Proposition 2.1, ||δ||oo ^ 1 and thus

sup

The proof is complete.
Let r ^ 2, and TF**'1 = {/: / ( r ~ υ absolutely continuous on [0,1],

| | / ( r ) | | i ^ 1}- Then, as a corollary to Theorems 2.2 and 2.3, we
have
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C O R O L L A R Y 2 . 1 .

oo , n < r

where Pn,r is a perfect spline

ί Z " 1 } ' (fi+1(« - s)r-dt
r — 1)! Jfj

0 = fo < fi < < f < f +i = 1 *wA ίΛαt PiVr(0) = Piί >(1) = 0, i = 0,
1, , r — 1, which equioscillates at n — r + 1 points of (0,1).

x%° = [l, t; ., r-1, (t - r,);-1, , (ί - r . _ r ) r ι ] ,

(t7^1 = V~\ t ^ 0, zero elsewhere) where τXf *",τn_r are the unique
zeros of Pn>r, is optimal for the Kolmogorov n-width of WrA

f while
LI = {/: f(ξt) = 0, i = 1, , n, f e C[0,1]} is optimal for the GeVfand
n-width of Wr>\

Proof. This result follows by specializing Theorems 2.2 and 2.3
to the choice &<(«) = ί*'1, i = 1, , r, and iΓ(ί, s) = l/(r - l)!(ί - s);-1.
The fact that this choice satisfies Properties I and II is a well-known
property of spline functions, see [2].

When n = r, then Pr>r is explicitly given by

PrΛs) - , * t Γtsgn r;+1(«)](ί - « ) r d ί ,
(r — 1)! Jo

where Tr+1 is the (r + l)st Ghebyshev polynomial on [0,1]. This is a
consequence of a classical result of Bernstein on best Lι approximation
by polynomials.

In Corollary 2.1, we assumed r ^ 2 in order to satisfy the
continuity assumption on K{t, s). However, it can be easily verified
that the result remains valid for the case r = 1.

For additional examples of {A?i(ί)}Γ=i &n(l K(tf s) satisfying Pro-
perties I and II, see [6].

3* w-widths in IK The purpose of this section is to briefly
describe a matrix version of Theorems 2.2 and 2.3, complementing
work done in [6]. The results are stated for the most part without
proof. However, proofs may be reconstructed based on the analysis
of §2.

It is convenient to begin by recalling some definitions and properties
of totally positive matrices. We adhere to the notation in [6].
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DEFINITION 3.1. An N x M matrix A is said to be totally positive
of order I (TPt) if

(3.1)
\ 3k

^ 0

for all 1 ^ ^ < < ik ^ N, 1 ^ j \ < < j k ^ ikf, and k = 1, , ϊ.
A is said to be strictly totally positive of order l(STPι) if strict
inequality holds in (3.1).

DEFINITION 3.2. Let x = (»„ •••,»,) be a real vector of ϊ com-
ponents.

( i ) S~(x) denotes the number of actual sign changes in the
sequence xlf " ,Xι with zero terms discarded.

(ii) S+(x) counts the maximum number of sign changes in the
sequence xlf •••, xt where zero terms are assigned values +1 or — 1,
arbitrarily.

For example, S~( — 1, 0, 1, — 1, 0, — 1) = 2, and

S + (- l ,0 , l , -1,0, -1) = 4 .

THEOREM 3.1. If A is an N x M matrix which is STPn+ι, and
if x is any nontrivial M-vector such that S~(x) ̂  n, then

( i ) S+(Ax) ^ S~(x)
(ii) If S+(Ax) = S~(x) then the first (and last) component of Ax

(if zero, then the sign given in determining S+(Ax)), agrees in sign
with the first (and last) nonzero component of x.

The above theorem is to be found in Karlin [2, p. 223] in a
slightly different form. The complete statement of the above theorem
is found in Karlin and Pinkus [3].

DEFINITION 3.3. Given 0 = j0 < j \ < < j t < j ι + 1 = Λf + 1,
and a vector x e RM, we say that x alternates between jlf , j t

provided that there exists a sign σ, σ2 = 1, such that xk = ( —l)^"1^,
ii-i < k < j i f i = 1, , I + 1. (Note that no requirement is placed
on the components xJί9 •••,&/,.) When σ = 1 we will say that x
alternates with positive orientation.

DEFINITION 3.4. A vector yeRN equioscillates on il9 . ,iι+ίf

1 ^ ix < < it+1 ^ JV, provided that there exists a σ, σ2 — 1, such
that yih = (-l)*σ\\y\\M, k = 1, , I + 1.

We shall also denote by a3' the i th column vector of A. We
now state an analogue of Theorem 2.1.
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THEOREM 3.2. Let A be an N x M STPn+1 matrix and suppose
0 ^ r ^ n < min {N, M). Then there exists j° = (j°lf , j% 1 ^
j?< < jl ^ M, and a vector x° eRM such that

(1) x° alternates between J°lf , j°n

( 2 ) I|^°|U = 1
( 3 ) (Aafy = 0, i = 1, . . . , r
( 4 ) A#° equioscillates n — r + 1 times.

Proof. Fix i = (;?!, , i j , and if n > r, define the N — r x
ilf - r matr ix J? = (δ^.), i = r + 1, , N; j = 1, ---, M9 j Φ j h I = 1,
•• , r , by

The column vectors fr^1, , 6 i% of 5 form a Chebyshev system since
by Sylvester's determinant identity,

j = J
JJ Δ(l \

\Jlf t Jr

for r + 1 ^ ii < < in_r ^ ΛΓ.
Let / be the M — r vector / = (/y), i = 1, , M, j Φ Ju I = 1,

•••, r obtained from the ikf-vector / with fdι, 1 = 1, •••, r deleted,
where / alternates between j ί 9 , j n and fh = 0, i = 1, , w.

The error I?/ — Σ?=ir dsb
jr+s, in approximating i?/ by linear com-

binations of bίr+1, •• ,6 i %, in the ϊ°°-norm, necessarily equioscillates
n — r + 1 times on some rows r + 1 <Ξ ̂  < < ίn_r+i ^ N. Now,
for ^ ^ r, we define Xj e RM by setting

(»j)i = (/)y, i = l, , AT, i e {iw , i j

( ^ ) i r + . = - d » β = 1, •• , w - r

(A^), = 0 , % = 1, « , r .

Thus a?j alternates between i x, •••, i%, \\xj\\co ^ 1, and since

Axj e q u i o s c i l l a t e s on ίlf , i Λ _ r + 1 W e define j ° = (j?, •••, i ί ) b y
r e q u i r i n g t h a t
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(3.2)

for all j . We claim that x° = xdo satisfies the requirements of the
theorem. To prove this is the case, we must show that | (α?°)yo | <; 1,
k — 1, , n.

Multiplying by — 1 , if necessary, we shall assume that x5 alternates
with positive orientation for each j .

First, let us suppose that jl > k. Let I be the largest integer
less than jl such that I Φ jϊ, i = 1, , k — 1. Define j = (j\, , jn)
where {jί9 . . , jn} is the set of indices {j°19 -- ,jl-lf jl+1, -- ,Λ, 1}
arranged in increasing order. Since x3 alternates with positive orien-
tation, we have (Xj)j°k — ( —1)*. Now, consider the vector Axj — Ax° =
A(xj - x°). If xj - x° = 0 then | (a?°)yo | = 1. If Xj - χ° Φ 0 then, from
(3.2) and the fact that Axj equioscillates on some n — r + 1 rows,
and (Axj)i = 0, i = 1, , r, we conclude that S + ( A ^ — Ax°) ^ w.
Since Xj — x° has, by construction, at most n + 1 nonzero components,
that is, the components corresponding to the columns j°19 —-,jl,l,
we conclude that S~(xj — α;0) ̂  n. From Theorem 3.1, S+(A(xj — α;0)) =
S~(%j — xQ) = n and the sign patterns must agree.

Since A is STPn+ι, A(xj — α;0) cannot have n + 1 zero components.
Because the sign pattern in S+(Axj) begins with a plus and || Aα?0!^ <5
|| Axj I |oo, it follows that the sign pattern in S+(A(Xj — #0)) begins with
a plus. Applying Theorem 3.1(ii), we see that sgn ((α?j)/j> — (»°)ij>) =
( - l) fc. Since (ajj)^ = ( - l)fc we conclude that 1 > (α; 0),^-1)\ Similarly,
if j°k < M — n + k, we let ϊ be the smallest integer greater than jl
such that I Φ j% i = k + 1, •••,%. Then, as above, we may show
that 1 > (a?°)iθ(-l)*+1. Hence, if both jl > k and j°k< M- n + k we
obtain the desired conclusion that |(#°)i°| ^ 1.

In the case that jl = k we have j \ = i, i = 1, , k — 1, and thus
sgn (ce0)^ = ( — l)k+\ However n < M, which implies jl < M — n + k.
Thus by our above remarks \(x°)ji\ = ( — l)*+1(a?°)ij ^ 1. Similarly, if
jl = M - n + k, then i£ > fc and | (α?°)y« I = (-l) fc(^°)4 ^ L Thus in
all cases, we arrive at the desired conclusion.

We will now state an ^-analogue of Theorems 2.2 and 2.3.
Let x G RM, πrx = (0, , 0, xr+1, , xM), \\x\\, = Σf=i 1^1, and

define

If A is STPn+ί, then so is Aτ = transpose of A. Thus from Theorem
3.2, there exists a vector z° e RN which alternates between some 1 <̂
5\ < < Λ ^ ^ II«ΊU = 1, (^V)i = 0, i = 1, , r, and i V equi-
oscillates w — r + 1 times.

THEOREM 3.3. Let A be an N x M STPn+1 matrix, Q <L n <
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min {N, M}. Then

oo , n <r

and for n ^ r, Ln — {x: x e RN, (x)^ = 0, k = 1, , n) is an optimal
subspace for

For a matrix version of Theorem 2.2, we observe that from
Theorem 3.1, S+(Aτz°) = S~(z°) = n and since (Aτz°)d = 0, i = 1, , r,
and AV 'equioscillates w — r + 1 times, (Aτz°)r+1(Aτz°)M Φ 0, and if
{Aτz% = 0, r + 1 < i < M, then ( A ^ V ^ A V ) ^ < 0. For i = r + 1,
•• ,w, the ith weak sign change of Aτz° "occurs at" an index kt in
one of two possible ways. Either

(a) (i'Ani^A, < 0,
or

(b) (AV)ki = 0, and (A'zX^A^0)^ < 0,
where r + 1 < kr+1 < < kn ^ Λί. For each ΐ, i = r + 1, , n,
we define an M-dimensional vector eί as follows. If (a) holds, put

0 , otherwise .

If (b) arises, set (e*)* = δkilf I = 1, , M. In addition, let e\ i — 1,
• , r be the first r unit vectors in RM, i.e., (e*)z = 8a, i = 1, , r;
I = 1, , M. Thus (AV, e*) = 0, i = 1, , w.

Now, we define an Λf x M matrix P by the condition that for
any x e RM, the vector y — Px is in the linear space spanned by
e\ , en, and {Ax — APα?)yj> = 0, k — 1, , n. Px exists since other-
wise there exists a nonzero \y = Σ*=i c i e i s u c ^ ^ a t (A?/)^ = 0, fc =
1, ••-,%. Hence S+(A^/) ̂  tι. But, by the construction of the vectors
e\ •••, ew, it is clear that S~{y) ^ n — 1. Applying Theorem 3.1, we
arrive at a contradiction, and so P# exists.

Let B = AP and note that JB is an N x Λf matrix of rank nf

whose column space is spanned by the set of vectors {Ae1, •••, Aen).

THEOREM 3.4. Let A be an N x M STPn+1 matrix, 0 ̂  n <
min {N, M). Then,

oo n < r

/or w ̂  r, ίfee linear space spanned by the set of vectors
{Ae\ •••, Aen} is an optimal subspace for j ^ . Furthermore,

ϊ]v) = m a x || Aa; — B^Hi .
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The proofs of Theorems 3.3 and 3.4 are similar to the proofs
given in §2. We omit the details.

Finally, let us point out that we may, by a standard continuity
argument, give an alternative proof of Theorem 2.1 by using Theorem
3.2, see [6] for a detailed discussion of this matter in L°°. The
advantage of this approach is that it avoids the use of Borsuk's
theorem and thus is "elementary." In addition, Theorems 3.2, 3.3,
and 3.4 afford us great flexibility in computing w-widths when N
and/or M = °o, again see [6 ] for a detailed description of these
matters in L™.
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