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TRACTIONS ON SIMPLY CONNECTED
(n + 2)-MANIFOLDS

DENNIS MCGAVRAN

In this paper we show that, for each w Ξ> 2, there is a
unique, closed, compact, connected, simply connected (n + 2)-
manifold, Mn+29 admitting an action of Tn satisfying the
following condition: there are exactly n Testability groups
TU'"fTn with each F(Tif Mn+2) connected. In this case we
have Tn = Tx X X Tn. Any other action (Tn, Mn+2), Mn+2

simply connected, can be obtained from an action (Tn, Mn+2)
by equivariantly replacing copies of D* X Tn~2 with copies
of SsxD2x Tn~\ As an application, we classify all actions
of Tn on simply connected (n + 2)-manifolds for n = 3, 4.

Several results have been obtained about T^-actions on (n + 2)-
manifolds. Orlik and Raymond have obtained various classification
theorems for the cases n = 1, 2 (see [11], [12] and [14]). Various
general results have been obtained in [4] and [5] for n > 2. This
paper is a continuation of the work done in [4]. We also obtain
classification theorems similar to those of [12] for n = 3, 4.

In [4] it was shown that, for each n, there exist actions of Tn

on simply connected (n + 2)-manifolds. Here we prove the following.

THEOREM. For each n, there is a unique closed, compact, con-
nected, simply connected (n + 2)-manifold Mn+2 admitting an action
of Tn satisfying the following conditions:

(i) There are exactly n Testability groups Tu •••, Tn.
(ii) Each F(Tif Mn+2) is connected.

Furthermore, Tn = 2\ x x Tn.

We then show that any action (Tn, Mn+2), Mn+2 a closed, compact,
connected, simply connected (n + 2)-manifold, can be obtained from
an action (Tn, Mn+2) by equivariantly replacing copies of D4 x Tn~2

with copies of S3 x D2 x Tn'\
The above results are applied to two specific cases. We show

that if Γ3 acts on a simply connected 5-manifold, M, then M is
jfβ = Sδ or a connected sum of copies of S2 x S3. For reactions
on simply connected 6-manifolds, M, we show that M is M6 = S3 x
S3 or M is a connected sum of copies of S2 x S4 and Ss x Ss.

1» Preliminaries* We shall use standard terminology and nota-
tion throughout (e.g. see [2]). Unless otherwise stated, all mani-
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folds are closed, connected and compact. All actions are assumed
to be locally smooth and effective.

Let (G, M) and (G, N) be two G-actions. We shall use (G, M) =eg

(G, N) or M = eqN to mean that M and N are equivariantly ho-
meomorphic. Given actions (G, M) and (H, N), (G x H, M x N) will
indicate the obvious product action.

The ^-dimensional torus Tn = S1 x x S 1 (w factors) can para-
meterized as:

Tn = {(e**!, , e'*») 10 ^ ^ ^ 2π} .

We simplify this as Tn = {(φ19 , φj \0 <^ φt£ 2π}. Similarly, we
write:

D* = {(rlf βw , r[ίl+1/2], fl[w+1/a]) I Σ r? ^ 1, 0 ^ ί ^ 2π ,

[̂n+i/2] = 0 if w odd} .

Of course for Sn, we have Σ r = l.

EXAMPLE 1.1. We have an action of Γ" on ΰ 4 x Tn~2 defined as
follows. If t = (φί9 '"9φn)eTn and z = ((r l f θ19 r2, θt\ (θt, , θn)) e
Ώ" x Tn~2, let

te = ((n, ^ + α u ^ + • • • + alnφn, r2, ^2 + α 2 1 ^ + + a2nφn) ,

(^8 + azγφx + + a2nφn, ---,θn + anίφ, + + annφn)) .

This action defines a matrix A — (<%). For the action to be effec-
tive, we must have det (A) Φ 0. We shall frequently define such an
action by giving the matrix A.

We shall often use the following (see [8]). Suppose M is an
m-manifold with boundary and G = Tn acts on M with m > n. If
M* is a closed cone with vertex x* and GXo = Tk, 0 <Lk^n (Γ° = id),
then (Tn, M) ~ eq(Tn~k x T\ Γ%~fc x D - +*).

Suppose Tn acts on a simply connected (n + 2)-manifold M. It
was shown in [4] that the orbit space, Λf*, will be D2, with points
on the boundary corresponding to singular orbits and interior points
corresponding to principal orbits. Isolated points on the boundary
correspond to orbits of type Tn~2 and the remaining boundary points
correspond to orbits of type Tn~\ The result mentioned above shows
that an invariant tubular neighborhood of an orbit of type Tn~2 will
be Z>4 x Tn~2.

It was also shown in [4] that, for all n, actions of Tn on simply
connected (n + 2)-manifolds exist. The following picture shows how
such actions can be constructed.
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M*

Each sector of the disk D2 = M* represents an invariant tubular
neighborhood of an orbit of type Tn~2 which, as mentioned above,
must be ΰ 4 x Tn~2. These are attached to one another along sub-
spaces of the boundary homeomorphic to ΰ 2 x Tn~\ Another result
of [4] is that the circle stability groups of the action must span Tn.
Hence, we must have at least n copies of ΰ 4 x τn~2.

We shall say that (T19 T2) is an adjacent pair of Testability
groups for an action (T% Mn+2), if there is an invariant D4 x Tn~2

so that the induced action (Tn, D4 x Tn~2) has stability groups T19 T2

and 2\ x T2. (T19 T2, T3) will be called an adjacent triple of in-
stability groups if (2\, T2) and (T2, T3) are adjacent pairs, with in-
variant copies of D4 x Tn~2, (D4 x Tn~2\ and {D4 x Tn~2)2} respec-
tively, such that {D4 x Tn~2\ n (D4 x Tn~2)2 ~ D2 x T%'1 and 0 x
Tn~ι £ F(T2, Mn+2). In this case (D4 x Tn~2\ and (D4 x Tn~2)2 are
said to be adjacent.

2. Orbit structure* Suppose Tn acts on a simply connected
(n + 2)-manifold M. As mentioned above, we know that the In-
stability groups span Tn. In this section we show that, in certain
cases, Γ* is the direct product of the Testability groups. If G is
a group and SQG is a subset let <S> denote the subgroup spanned
by S.

LEMMA2.1. If Tn acts on a simply connected (n + 2)-manifold M,
there exists an adjacent triple (Tlf T2, T3) such that {Tx U T2 U T3> =
Tγ x T2 x T3.

Proof. Let (Tlf T2) be an adjacent pair so that we have an in-
variant (D4 x Tn~2\ with stability groups 2\, T2 and T1 x T2. Write
Tn = Γ x x T2 x T%~2 and parameterize so that the action (T% (D4 x
T""2)!) is defined by the matrix / (see 1.1).

Consider an adjacent invariant (D4 x Tn~2)2 with Testability
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groups 7\ and C so that (T2, Tlf C) is an adjacent triple. The action
(T\ (D* x Tn~\) will be determined by a matrix of the form

/ I a12 ••• α1Λ

v

0 α22 a2n

• .

\ 0 αΛ2 aj

We may consider JV= (D*x Tn-2\\J/(D'x Tn'% where /: ^ x P " 1 ) ^
( ΰ 2 x Γ Λ is an equivariant attaching homeomorphism, as an in-
variant subspace of M. f is determined by A in the following
manner. If

M —— ((Λ* f) ΛΛ fX \ (Ci f) \\ /^ / 7")^ N/ ΠΠ <n, 1\ ( / 7~14 w Π~l n—2\

** — \ \ It ^19 2? ^2/t \^3> 9 ^n/J \ s\ •*• / I — I f / y\ JL ) \

then f(z) = ((r l f #, r2, ^2), (ίj, , θ'n)) where

u = ĉ/i un) = *l.\υγ t/fj = -At/
To show that / is equivariant, we ignore the r ' s for convenience.
Let <* = (?>!••• φj = ψ e Tn. Then

a(f(z)) = aAΘ

= Aθ + Aφ

- A(θ + ^) = f(az) .

Now note that if, for each j, there exists an i > 2 with α^ ^ 0,
then / ^ P ' x Γ Λ ) ^ ^ 2 x Γ "^) is injective. In this case, it
follows that π^N) = Zn~\ Since M is obtained, as described above,
by attaching successive copies of ΰ 4 x Γ*"2, some attaching map
must kill an element of some π^D2 x Tn~ι). Hence, let us assume
that aίn = 0 for all i > 2.

It now follows that the stability group C is defined by the
following system of equations:

<Pi + «i2^2 + + aίnφn ΞΞ 0(2ττ)

^32^2 + * * + 0l,»-l9>«-l Ξ 0(2TΓ)

α»29>2 + + α,, , . . !^, ! Ξ 0(2π) .

Since the action is effective, it follows that φ2 = = φ%_x = 0.
Hence, C = {(—α1Λ9>n, 0, , 0, φn)\0 ^ 9>Λ ̂  2 π} J t i s easy to see
that <2\ U T2 U C> = T t x T2 x C.

COROLLARY 2.2. / / Tn acts on a simply connected (n + 2)-
manifold, M, there exists an invariant D2 x S 3 x T*~3
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standard product action (T1 x T2 x Tn~\ D2 x S3 x Tn~z).

Proof. By the lemma, one can find an adjacent triple of In-
stability groups (Γ2, Tlf Γ8) so that Tn = T, x T2 x T3 x Tn~\ Let
(D4 x Tn~2\ and (D4 x T*-2)2 be the adjacent copies of D* x Tn~2

corresponding to the adjacent pairs (T2, 2\) and (Tlf T3), respectively.
Let N= (D4 x Tn~2\ U / D 4 x Tn~2)2 as in the proof of 2.1 so that
we have the action {Tn, N). We have the standard action

(Tn, D2 x S* x Tn~z) = (T, x (T2 x T9) x Tn~\ D2 x S* x Tn~3)

with weighted orbit space equivalent to N*. It follows from standard
techniques that N = eqD

2 x S3 x Tn~\

In case there are only n Testability groups we have the fol-
lowing much stronger result.

THEOREM 2.3. Suppose Tn acts on a simply connected (n + 2)-
manifold, M, so that there are exactly n Testability groups Tlf •••,
Tn with each F(Tif M) connected. Then Tn ^ 2\ x x Tn.

Proof. First remove nonintersecting neighborhoods D* x Tn~2

of each orbit of type Tn~2. We obtain a T^-manifold with boundary,
N, with iNΓ* as shown below.

Using the Seifert-Van Kampen theorem, it is easy to see that
π,(N) = 0. Let Un+1 = Tn x D2 be as shown. For each i, 1 ̂  i ^ n,
choose Ut = (Dz x Tn~ι), so that F(Tif N) £ U, and Ut n Uj - Un+lf

1 ^ i < i ^ n.
Each inclusion 7c1(Un+ί)—+πί(Ui) has kernel isomorphic to Z,

generated by an element «<eτr1(ϋr

ll+1) corresponding to Tt £ Γw. Let
X"= <£i> # >^>. For each i, we have the following commutative
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diagram.
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/Pi

The vertical map is the inclusion, pn+ι is the natural projection and
pt is defined to make the diagram commute. By the Seifert-Van
Kampen theorem, we then have the commutative diagram.

Therefore ρn+ί = 0 and K = πι(Un+ί).
Label the Γ/s so that Tx x x Tk is a direct product and k

is a maximum. Suppose k<n. For each i>k we have <2\ (J U 2 )̂ =
T\ For 1 ^ i ^ fc let d = Γ, and for i > fc let C< = T1 be such
that <Ti U U Γt> = Cί x x C* and Γ, g d x x CU Para-
meterize Tn = Cx x x C B in the obvious manner. For 1 ^ i ^ k,
ϊ7. zz: {(0, , 0, φif 0, , 0) |0 ^ φi ^ 2ττ}. For i > fc, we have T, =
{(cuφif , c ^ o 0, , 0) 10 <Ξ; φi ^ 2ττ}. Let δi3 be the Kronecker
delta. If we write π^U^ = π^C,) x xπ^CJ, then for 1 ^ i ^
k, Zt = (δft, , δ<Λ) and for i > k, z,=^ (eίi9 , <?„, 0, , 0). Since
Γjflffix x Cfc) ^ id and Γ, g d x , x.d-i for i > k, we have
c^ > 1. Therefore,

det

This would imply that K Φ a contradiction. Therefore

3* The manifolds Mn+2 and the construction of actions
(Tn, Mn+2)* In this section we show the existence of basic simply
connected (n + 2)-manifolds admitting actions of Tn. We then show
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how any action of Tn on a simply connected (n + 2)-manifold can
be obtained from some action (Tn, Mn+2).

THEOREM 3.1. For each n = 2 there exists a unique manifold
Mn+2 admitting an action of Tn satisfying the following condition:
there are exactly n Testability groups with each F(Ti9 Mn+2) con-
nected.

Proof. By the construction in [4] there exists a simply con-
nected (n + 2)-manifold M and an action θ: Tn x M-+M with In-
stability groups Tlf' ',Tn satisfying the stated conditions. Let
φ:TnxN—*N be another such action with Testability groups
Cίf •••, Cn. We assume the 27 s and C/s are labeled in a clockwise
direction going around the orbit spaces. We must show that M = N.

By 2.3, Tn = 2\ x . x Tn = C, x Cn. We have the obvious
isomorphism / : Tn-+Tn with / ( Q = 2V Define an action θ': Tn x
J l ί ^ M by 0'(i, m) = θ(f(t(, m). It is easy to see that the weighted
orbit space of this action is equivalent to that for φ. By the
equivariant classification theorem of [4], M = N.

While it is not true that all actions of Γ^ on Mn+2 are equiva-
lent, the above proof shows the following

COROLLARY 3.2. Any two actions of Tn on Mn+2 are weakly
equivalent.

The standard actions (T% S4), (T3, S5) and (Γ5, S3 x S3) show
that Λf4 = S\ Mδ = Sδ and M6 = S3 x S3. The manifolds ikfw+2, w > 4,
have not been identified at this time.

The manifolds Mn+2 provide a starting point for the construc-
tion of Tractions on simply connected (n + 2)-manifolds.

THEOREM 3.3. Suppose Tn acts on a simply connected (n + 2)-
manifold M. Then the action (Tn, M) can be obtained from an
action (Tn, Mn+2) by equivariantly replacing copies of D* x Tn~2

with copies of S3 x D2 x Tn~3:

Proof. Consider the action (Tn, M). By 2.2, M contains an in-
variant S3 x D2 x Tn~3. When this is replaced equivariantly with
a D4 x Tn~2, the number of Tw~2-orbits is decreased by one. If
this process is continued, M^+2 will be obtained. Reversing the
process proves the theorem.

From [4] we know that if Tn acts on a simply connected (n + 2)-
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manifold, M, then the Testability groups span T \ We now have
the following.

COROLLARY 3.4. Suppose Tn acts on a simply connected (n + 2)-
manifold M. Then there are Testability groups Tlf * ,Tn such
that Tn = Tx x x Tn.

Proof. Obtain Mn+2 from M as in the proof of 3.3. Then Tn ~
Tt x ••• x Tn where T19 •••, Tn are the Testability groups of the
resulting action (Tn, Mn+2). However these will also be Testability
groups for the original action (Γ*, M).

4* The cases n = 3, 4* It was noted that M, - S\ M5 = S5

and Mβ = Sz x S3. These are the only Mn+2s identified. In fact no
explicit actions of Γw on simply connected (n + 2)-manifolds have
been identified for n > 4.

In [12], Orlik and Raymond classify actions of T2 on simply
connected 4-manifolds. In this section we use results of Wall, [16],
and Barden, [1], to classify actions of T3 and T4 on simply connected
5- and 6-manifolds, respectively.

Recall that the orbit space, D2, of an action (T% Mn+2) has
isolated points on the boundary, each corresponding to an orbit of
type Tn~\

THEOREM 4.1. Suppose T3 acts on a simply connected ^-mani-
fold M so that there are k distinct orbits of type T1. If k — 3,
M = S5. // k > 3, M is a connected sum ofk~2 copies of S2 x Sz.

Proof. If k = 3, then M = Mδ — Sδ. Suppose the theorem is
true for some k ^ 3. Let T3 act on M with k + 1 orbits of type
T1. Λf is obtained from a manifold N by equivariantly replacing
an S1 x Ό" with a D2 x S\ Since N has k orbits of type T1, N is
a connected sum of k — 3 copies of S2 x S 3 or Sb if & — 3 = 0. By
the Mayer-Vietoris sequence

Hp(M) =

Z p - 0, 5

Zk~2 p = 2, 3

0 otherwise

By results in [1], the above construction can be done in RΊ so
M embeds in R7. It follows that (ok(v2) = 0 for all & ^ 1, where v2

is the normal bundle of M and ωk is the &th Stiefel-Whitney class.
By Whitney Duality, ω2(M) = 0. Therefore, by [1], M is a connected
sum of k — 2 copies of S2 x S3.
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It is worthwhile to note that M will not be an equivariant con-
nected sum. In fact, equivariant connected sums of codimension
two actions cannot exist for n >̂ 3 since Tn cannot act on Sn+1 for
n ^ 3.

It was noted that all Tractions on Mn+2 are weakly equivalent.
The following example shows that this is not true for Tractions
on other simply connected (n + 2)-manifolds.

EXAMPLE 4.2. Let T3 act on S5 with Testability groups Tί9 T2

and T3 so that T3 = T, x T2 x T3. Define an action (T3, S3 x D2)
as follows:

tz = ((rw θι

J

rφι- φ2y T2t θ2 + φ1 - <p3), (r3, 03 + ̂ )) .

This action has Testability groups T2, T3 and

T4 — {(φlf φ2, φ9) \ φγ = φ2 — φz) .

Replace the D4 x S1 £ S5 containing ,P(T2 x T3) with S3 x D2 to ob-
tain an action (T3, S2 x S3) with Testability groups Tί9 T2, T3 and
T4. However, we have another action (T3, S2 x S3)2 = (T, x (T2 x T3),
S2 x S3) with Testability groups Γlf T2 and T3 where F(Tl9 S2 x S3)
has two components. It is obvious that these actions are not weakly
equivalent.

We now consider Tractions on 6-manifolds.

THEOREM 4.2. Suppose T4 acts on a simply connected 6-mani-
fold, M, with k orbits of type T2. Then M is a connected sum of
k — 4 copies of S2 x S4 and k — 3 copies of S3 x S3.

Proof. For k = 4, M = M6 = S3 x S3. Assume the theorem is
true for some k ^ 4, and let T4 act on M with k + 1 orbits of type
T2. If is obtained from a T4-manifold JV by equivariantly replacing
Vι = D 4 x T2 with F2 = S 3 x ί ) 2 x T1. Since JV has fc orbits of
type T2, N is a connected sum of A; — 4 copies of S2 x S4 and k — 3
copies of S3 x S3. We may assume N= U\JV19 M= UΌ V2 and
y. n 17 = S3 x T2. Applying the Mayer-Vietoris sequence, it is easy
to see that H2(U) S Zk~\ Also, by examining the pair (17, 317),
one can show that H\dU)-+H\U,dU) is injective so that H2{U)-»
H\dU) = H\T2 x S3) is trivial. Therefore, the following sequence
is exact.

0 > H\V2) > H\U U V2) > H\M) > H\U) > 0 .

It follows that H\M) = Zk~3 = H\M). Since there are no fixed
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points, χ(M) = 0, so H\M) ^ Z2k~'.
Since ω2(N) = 0, ω2(U) = 0, so if ω2{M)Φθ, it must be the

generator of K = ker (JEf2(ikf) —̂  H\U)) (with ^-coefficients). One
can choose as a generator of K a two cochain vanishing off L where
L* is as shown below.

Now L is a closed, compact 4-manifold admitting an action of T3

so, by [13], L = L(p, #) x S1. Since each factor of L is par^llelizable,
L is and o)2(L) = 0. Therefore α>2(Λf) = 0. The result follows from
[16].
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