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THE EXISTENCE OF DISCONTINUOUS
MODULE DERIVATIONS

NICHOLAS P. JEWELL

In this paper it is shown that if a commutative Banach
algebra B with identity has a maximal ideal M whose
algebraic powers M2, M3, form a descending chain of
ideals which never becomes constant then there exists a
discontinuous module derivation from B into a Banach-B-
bimodule. This fact is linked with the known sufficient con-
ditions for every module derivation from B to be continuous
when B is separable. Some examples are given to demonstrate
unusual behaviour in such chains of ideals in particular
situations.

1* Introduction* Let B be a Banach algebra over the complex

field and let X be a Banach-β-bimodule. We say that a linear
mapping D: B—>X is a module derivation if D(ab) = a-Dib) + D(ά) b
for a, b in B where * denotes the module operation. Recently some
attention has been given to the problem of finding sufficient condi-
tions on B so that every module derivation from B to any Banach-
J5-bimodule is continuous. Two sufficient conditions for the case
when B is commutative and separable were described in [12] where
it was noted that one of the conditions was also necessary for the
automatic continuity of module derivations. In this paper we examine
the extent to which the other condition is also necessary, proving
that this is so under certain extra conditions on the maximal ideals
of B. A related problem is to investigate the continuity of homomor-
phisms from B into some Banach algebra. This has been investigated
in the general situation most recently by W. G. Bade and P. G.
Curtis, Jr. [1]. Notice that the existence of a discontinuous module
derivation from B into a Banach-β-bimodule implies the existence of
a discontinuous homomorphism from B into some Banach algebra
[20, p. 49]. We make no attempt to discuss the particular case,
B = C(Ω), where Ω is an infinite compact Hausdorff space (all module
derivations are continuous in this situation—see [12]), where the
recent spectacular work of H. G. Dales [5] and J. Esterle [8] has
shown that, assuming the continuum hypothesis, there exists a dis-
continuous homomorphism from C(Ω) into a Banach algebra. It
follows from their work that, when B is an infinite dimensional
commutative separable Banach algebra, there is a discontinuous
homomorphism from B into some Banach algebra [6, 9] and it
seems likely that the same result is true even when B is not
separable.
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Part of the significance of being able to construct a discontinu-
ous module derivation D on a commutative Banach algebra A lies
in the fact that when D vanishes on a dense subset of A it can be
used to construct a commutative Banach algebra B with two in-
equivalent complete norm topologies (see [15]). The author knows
of no example of a commutative Banach algebra with non-unique
complete norm topology which cannot be constructed in the fashion
described in [15]. The existence of a discontinuous module deriva-
tion can also be used to construct Banach algebras on which there
exist discontinuous algebra derivations. The author knows of no
other way to construct discontinuous algebra derivations.

I would like to thank A. M. Davie for several stimulating con-
versations and also H. G. Dales for some helpful correspondence. I
am also grateful to the Commonwealth Fund of New York which
has supported this research in the form of a Harkness Fellowship.

2* Preliminaries* We begin this section by quoting the theorem
of [12] which gives sufficient conditions for the continuity of module
derivations on commutative separable Banach algebras.

For a Banach algebra B and neN, Bn denotes the ideal (not
necessarily closed) spanned by w-fold products of elements of B.

THEOREM 1. Let B be a commutative separable Banach algebra
such that B2 is of finite codimension in B and which satisfies the
following two conditions:

(1) there are no closed prime ideals of infinite codimension,
(2) every maximal ideal M of B has M2 of finite codimension

in B.
Then every module derivation from B into a Banach-B-bimodule is
continuous.

REMARKS. (a ) Banach algebras for which every closed primary
ideal is maximal are discussed in [17] and are there called N*-
algebras. A commutative completely regular iV*-algebra will clearly
satisfy condition (1) and thus such algebras which also satisfy con-
dition (2) (and the conditions on the whole algebra) will always have
module derivations being continuous. Examples of algebras of this
type are the Wiener algebra of functions with absolutely convergent
Fourier series on [0, 1] and the algebra of continuous functions on
[0,1] of bounded variation as well as the more obvious example of
continuous functions on a compact Hausdorff space. Note that there
do exist commutative, unital, completely regular, semisimple, separa-
ble Banach algebras with nonmaximal proper closed prime ideals
[3].



THE EXISTENCE OF DISCONTINUOUS MODULE DERIVATIONS 467

(b) W. G. Bade and P. C. Curtis, Jr. [1] have shown that, for
a separable Banach algebra B with unit, condition (2) is necessary
and sufficient for the continuity of each homomorphism v\ B —> A
where A is a commutative Banach algebra with unit having a non-
trivial finite dimensional radical.

As noted in [12] the conditions that B2 is of finite codimension
in B and (2) are necessary in the sense that if either fails to hold
then there exits a discontinuous module derivation from B into some
Banach-5-bimodule. So, from this point on, we assume that these
conditions hold and we now examine the situation when condition
(1) fails. This is carried out in §§3 and 4. Note that if M is a
maximal ideal in B where B is separable and M2 is of finite
codimension in B then Mn is closed and is of finite codimension in
B for all neN (see [2]). Section 3 discusses the case where there
exists a maximal ideal M in B such that the dimension of Mn/Mn+ί

(= d(Mn/Mn+1)) is greater than or equal to 1 for all neN. Section 4
discusses the remaining possibility, i.e., for every maximal ideal M
in B, Mn = Mn+1 for some neN.

3* The case d(Mn/Mn+1) ^ 1 for all neN. In §§3 and 4 we
are interested in Banach algebras where condition (1) of Theorem 1
fails and all the other conditions hold. In establishing the existence
of discontinuous module derivations we may restrict our attention
to Banach algebras which are also integral domains. For suppose
condition (1) fails i.e., there is a closed prime ideal K of infinite
codimension in B; then B/K is an integral domain and if there exists
a discontinuous module derivation d from B/K into some Banaeh-
B/K-bimodule X then there is a discontinuous module derivation D
from B into the Banach-E-bimodule X. With π denoting the natural
map from B —* B/K, D is given by <5*π and the module actions of B
on X are given by b-x = π(b) x and x-b = x π(b) for x in X and b
in B. (By the same reasoning, to obtain a discontinuous module
derivation from B it is enough to to find one from some quotient
algebra of B.) Also the other conditions of Theorem 1 on 5 are
carried to the quotient algebra B/K, i.e. if d(B/B2) < oo and
d(M/M2) < oo for all maximal ideals M of B then d((B/K)/(B/K)2) < oo
and d(N/N2) < oo for all maximal ideals N of B/K. Thus, in short,
in order to construct a discontinuous module derivation on a com-
mutative separable Banach algebra B where condition (1) of Theorem
1 fails but all the other conditions hold it is enough to construct
one for the case where B is also an integral domain.

In this section we restrict our attention to the case where there
is a maximal ideal M in B such that d(Mn/Mn+1) ^ 1 for all neN.
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Consider first the case where d(Mn/Mn+1) — 1 for all neN. In this
situation R. J. Loy [14] has proved that JS/ΠϊUΛf* *s a Banach
algebra of power series, i.e., a subalgebra A of C[[t]] which contains
the polynomials and is a Banach algebra under a norm which makes
the inclusion map A Q C[[t]] continuous. A class of examples of
Banach algebras with a maximal ideal having this property are
separable uniform algebras with an element φ of the maximal ideal
space having a unique representing measure and a nontrivial Gleason
part at φ [18]. More generally, it is not hard to see that, if
d(Mn/Mn+ί) = C:^"1 = {n + r - l)!/(r - 1)1 nl for all neN and some
integer r ^ 1, then B/f]Mn is a Banach algebra of power series in
r commuting variables where such an algebra is given a similar
definition to the case r = 1. Now there exists a discontinuous module
derivation from a Banach algebra of power series in r variables
(r ^ 1) and so for such B we have a discontinuous module deriva-
tion. We do not prove this as it will follow from a more general
theorem which we state below. First we establish some notation
which we shall need in the proof of the theorem. For a domain U
in C, let έ?(U) denote the algebra of analytic functions on U with
the topology of uniform convergence on compact subsets of U. For
an open subset V of C let &γ be the inductive limit of the algebras
^{U), with respect to the restriction maps, for £7 an open neighbour-
hood of V, i.e., έ?γ is the algebra of germs of analytic functions on
V. For a unital algebra A, let A'1 denote the group of units in A.

THEOREM 2. Let B be a commutative Banach algebra with
identity and let φ be an element of ΦB, the maximal ideal space of
B, such that 1 ^ d(Mn/Mn+ι) < oo for all neN, where M = ker φ.
Then there exists a discontinuous derivation from B into some
Banach-B-bimodule X.

Proof. By Theorem 4.1 of Read [16] ΦB contains a nontrivial
analytic variety at φ which is a neighborhood of φ in the metric
topology. By an analytic variety at φ we mean the image of a one-
to-one continuous mapping F of a subvariety V containing 0 of a
domain in some Cm where F: V —>ΦB is such that F(0) = φ and for
each b in B the map b o F is analytic on V. If {Wίf , Wr} is a
basis for M/M2 then by Corollary 3.3 of [16] there are s(:>l) elements
of this set (which we may take to be Wu •••, W8) such that, for
each n, the set of homogeneous monomials of degree n in W19 , Ws

is linearly independent in Mn/Mn+1. Using this fact it is possible to
construct a discontinuous module derivation in a similar fashion to
the method used to construct one for the disc algebra in [4].
However we can deduce our conclusion more directly from the result
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in [4] as follows. First note that Read showed in Theorem 3.5 of
[16] that the dimension p of the variety V at the origin is equal
to q + 1 where q is the degree of the polynomial π such that
π(n) = d(Mn/Mn+1) for all large n (where we assign to the zero
polynomial the degree —1). Thus since d(Mn/Mn+1)^l for all n, q^O
and so p is nonzero. Thus the origin in a nonisolated point of V.
We state the following nontrivial fact concerning analytic varieties:
let U be an open subset of Cm and let V be an analytic subvariety
of U; then for each nonisolated point s in V, there exists a one-
to-one continuous map G of the open unit disc A into V, with
G(0) = s, such that foQ is analytic in A whenever / is analytic in
V. We refer to Gunning and Rossi [10, Chapter 3] for the details
of the proof. The basic idea is that, as a consequence of the
Weierstrass preparation theorem [10, p. 68] the variety V is locally
like a Riemann surface. The result then follows by choosing suitable
local parameters for this surface.

Returning to our argument we can thus embed the open unit
disc Δ analytically in ΦB at φ, i.e., there exists H: A-+ΦB with H(0) = φ
and $oH is analytic in A for all b in B.

The next part of the argument is due to H. G. Dales and I am
grateful for his permission to use it here. Take b0 in B with
1>o(Φ) = 0 a n d ô ° H Φ 0. This is clearly possible since A is embedded
nontrivially in ΦB. Let f0 = b0 o H so that /0(0) = 0. Choose a neigh-
bourhood U of 0 such that f0 has no zeros in Ϊ7\{O}. Then f0 = zpgQ

for some peN and some function g^^iU)'1. Let gί = gl/p be
defined on U and put f1 — zgγ. Then f1 is analytic on U, /i(0) Φ 0 and
//(0) Φ 0. Thus there exists an open neighbourhood W of 0 such that
/ί: U—>W is one-to-one and onto (reducing U if necessary). Let h
be the inverse of fλ so that heέ?(W). By reducing W if necessary
we may assume that h e έ?w. Define Θ: B —* έ?w as follows: for each
6 in B9 put θ(b) = boHoh. Then θ(b) e έ?w and θ: B—Gw is a continuous
homomorphism. Now θ(bo)(s) = fQ(h(s)) = [/1(/^(s))]3) = s*. So if a0 =
exp&0eJ3 then θ(ao)(έ) = exp(«p). Clearly £7: s —> exp (sp) is transcen-
dental with respect to the usual polynomials on W. Now applying
the method of [4] as described in [20, p. 53-54] there exists a Banach
space X which is an ^-module and a derivation d from &ψ into X
that is zero on the polynomials on W and d(E) Φ 0. (Briefly we
choose a Banach space X and a continuous linear operator Γ on I
with spectrum contained in W, and regard X as an ^-module by
f.χ = f(T)x where f(T) is given by the analytic functional calculus.
We also choose T to satisfy some additional restrictions as described
on page 53 of [20]. Then we define δ to be zero on the polynomials
on W and by Theorem 8.7 of [20] we can extend δ to a derivation
from έ?w into X that is nonzero at E.) Thinking of θ mapping B
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to A(S) (where A(S) is the set of analytic functions on S that are
continuous on S) where S is some disc, centre 0, with SQW, X
can be regarded as a Banach-i?-bimodule (b x = θ(b)*x etc. and
||ft.x|| = \\θ(b)(T)x\\ ^ £Ί|6| | | |a?| | where K is a constant, by the con-
tinuity of the single variable functional calculus). So D = δoθ is a
module derivation from B into X with D(b0) = 0 but J5(α0) =
D(exp (δ0)) =£ 0. Hence i) is discontinuous.

We note a corollary of the first part of the proof of Theorem 2
which relates the finiteness of d(Mn/Mn+1) for all neN for some
maximal ideal M in B with the failure of condition (1) of Theorem 1.

COROLLARY 3. Let B be a commutative Banach algebra with
identity and let <ρeΦB with 1 <; d(Mn/Mn+1) < °o for all neN, where
M = ker φ. Then B contains a closed prime ideal of infinite
codimension.

Proof. As in the first part of the proof of Theorem 2 we have
a continuous one-to-one map H: Δ—>ΦB with H(0) = φ and b oH
analytic in Δ for each b in j?. Let K = Π^eίπj) Λ£̂  where Mψ = ker ψ.
Then if is prime since if fg eK then fgoH = 0 on J and so
(foH)(goH) = 0 on J. Thus either / o i J ^ O o r t / o i f ^ O o n J (since
both/off and goH are analytic) i.e., either feK or geif. Since
ί ί is one-to-one it is clear that K has infinite codimension.

REMARKS. In §4 we give an example of a commutative Banach
algebra which is an integral domain for which there exists only one
maximal ideal M and d(M/M2) = 1 and d(Mn/Mn+ί) = 0 for n > 1.
This shows that the converse of Corollary 3 is not true. Negating
Corollary 3 shows that if every closed prime ideal of B is maximal
then, for every maximal ideal M of B, d(Mn/Mn+1) e {0, oo} for some
neN. The Banach algebra Cn[0, 1] shows that the infinite case is pos-
sible (see [17, p. 300]). It would be of interest to know whether by
strengthening the hypothesis that every closed prime ideal is maximal
we can make it impossible for the infinite case to occur. For ex-
ample, a possible question might be: if B is completely regular and
if Jφ, given by Jφ = {feB:f vanishes on a neighbourhood of φ in ΦB},
satisfies Jφ = Mφ = ker φ for all φeΦB is d(Mφ/Mφ) < oo for all φ in

ΦBΊ
Note that the "non-appearance" of closures in the hypothesis of

Theorem 2 is crucial for the proof. Indeed S. J. Sidney [19, Example
5.18] has constructed a Swiss cheese algebra whose maximal ideal
space contains an element φ such that d((Mφ)~/(M^+1)~) = 1 for each
n, where M = ker φ. Clearly the maximal ideal space has no analytic
structure of any kind.
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Theorem 2 yields little indication of how the discontinuous
derivation operates on the Banach algebra B. In particular examples,
however, it is easy to glean some more information. In [4] H. G.
Dales constructed a discontinuous module derivation from the disc
algebra, A(Δ), which is zero on the polynomials in z and nonzero at
exp 2, for example. An immediate consequence of this is the ex-
istence of a discontinuous module derivation from A(B) and A(An)
(where A(B) and A(Δn) are the algebras of analytic functions on the
open unit ball and the open polydisc in Cn, resp. which are continu-
ous on B and Δn, resp.) which is zero- on the polynomials in the
coordinate functions, zί9 •• ,zn9 and nonzero at expz* for some i.
In fact we can say more.

PROPOSITION 4. There exists a discontinuous module derivation
from both A{B) and. A(Δn) which is zero on the polynomials in
z19 •••, zn and nonzero at exp^ for all ί9 1 ̂  i ^.nf in each case.

Proof. Let v = (v19 •••, vn)edB be such that vt Φ 0 for all i.
We imbed Δ in ΦMB) by the following map: H(X) = Xv, (XeΔ). If
Ω is the closed disc, centred at 0, of radius 1/2, say, then by [4]
there exists a discontinuous module derivation δ from A{Ω) which is
zero on the polynomials in z and nonzero at exp z. Define θ: B—>A(Ω)
by θ(b) = boH and, as at the end of the proof of Theorem 2, put
D = δ o θ. Notice that Θ(z3-/vd)(z) = z for z e Ω and 1 S 3 ̂  n, and
so D is zero on the polynomials in z19 , zn but is nonzero at exp zt

for 1 ̂  i ^ n.
The proof for A(Δn) follows in a similar fashion replacing the

map H by the map G: Δ —• ΦA^) given by G(λ) = (λ, λ, , λ).

Let ur°°(J) be the Banach algebra of bounded analytic functions
on Δ. Let & be the subalgebra of &$ of polynomials in one vari-
able. We have the following result which contains in its proof a
proof of the fact that a function / in HCO{Δ)\A{Δ) cannot satisfy an
equation of the form:

(*) vMimr + + PiOOΛO + Po(s) = 0 (zeΔ),

where p-d is a polynomial, 1 ̂  j ^ m. This fact may be interesting
in its own right.

PROPOSITION 5. There exists a discontinuous module derivation
from jfiΓ°°(J) which is zero on a dense subset of H°°(Δ).

Proof. Let 7: H°°(Δ) -> ̂  be defined by (7/)(s) - f(z/2) for all
z in 2Δ and all / in H°°(Δ). Then 7 is a monomorphism from H°°(Δ)
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into ^2 and 7(H°°(A)) contains an element of έ?2 that is transcendental
over & e.g., expz.

Let f e H°°(A)\A(A); we claim that / cannot satisfy an equation
of the form (*). For suppose / does satisfy such an equation.
Taking radial limits we have pm,{z)[f{z)\m + + pQ(z) = 0 for
z 6 {z 6 C: I z I = 1} = ^ 7 where we use / to represent the function
o n j ^ given by f(z) = limr^ f(rz). Now, by hypothesis, / has some
point of discontinuity on J7~, say λ. Let Cr be the set of cluster
points of f(z) as z-+X from the 'right' on ^ 7 and Ct the set of
cluster points of f(z) as 2 —>X from the 'left' on ^ . Note that
since / satisfies (*) f(Xk) -*> oo as λfc —> λ for any sequence {λfc} in ^~.
C = Cr{jCι must be infinite; for suppose otherwise, i.e., Cr = {μ19 ,μj ,
d = [ηl9 , ηt}^ Choose a polynomial P so that P(/O = =
P(μs) = 0 and P(^) = . . . = P(ηt) = 1. Then Λ(s) = P(/(s)), when
extended to the disc, is in H°°(A). But as ^ ̂ λ from the 'right'
h(z)—»0 and as z-+X from the 'left' &(£)—»1, i.e., h has a simple
'jump' discontinuity which is impossible for an H°°(A) function ex-
tended to J7~. Hence C is infinite. We may assume that (z — λ) is
not a factor of all the polynomials ps, 1 <; j ^ m. Gonsider the
equation in w: pm(X)wm + + Pi(λ)w + po(λ») — 0. Not all the coef-
ficients are zero. However each point of C is a root of this equation.
Thus we have a contradiction and so / cannot satisfy an equation
of the form (*). It follows from this that for any feH°°(A)\A(A),
7(/) is transcendental over &>. As before it follows from Theorem
8.7 of [20] that there is a derivation δ from έ?z to an ^-module X
which is zero on & and may be arbitrarily defined on any subset
of ^ containing elements transcendental over &. Choose δ so that
δ is zero on & and on Ύ(H°°(A)\A(A)) but is nonzero at 7(exp z). As
before we can make X into a Banach-if°°(J)-bimodule using the single
variable functional calculus. Then D = δ ° 7 is a discontinuous module
derivation from H°°(A) into X that is zero on the polynomials and
on H°°(A)\A(A). Hence D is zero on a dense subset of H°°(A).

With regard to the module derivation D constructed in Theorem
2 it is clear from the ideas used in the proof of Proposition 5 that
D need not, in general, be zero on a dense subset of B (e.g., in the
proof of Proposition 5 we can choose δ arbitrarily on 7(H°°(A)\A(A))
and so we could choose it to be nonzero everywhere there). How-
ever, in the notation of the proof of Theorem 2, D is a nonzero
module derivation on the Banach subalgebra A generated by the
element b0 and the identity, and D is zero on a dense subset of A.

4. The case d(Mn/Mn+1) = 0 for some n 6 N for every maximal
ideal M. As before let 5 be a commutative separable Banach
algebra which is an integral domain such that d(B/B2) < oo and
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d(M/M2) < oo for all maximal ideals M in B. We have now shown
that there exists a discontinuous module derivation in every case
except when d(Mn/Mn+1) = 0 for some n e N for every maximal ideal
M. If d(Mn/Mn+ί) = 0 put A = Λf*. As noted previously, separability
implies that A is closed, and clearly A is an integral domain and
A2 = A. Thus it seems reasonable at first to restrict our attention
to integral domains B where B2 = B. If we further suppose that
B is radical then S 0 C 1 (where 1 is a unit for B) gives us the
simplest example of the type of behaviour we are interested in.
The typical example of this sort of algebra is the weighted convolu-
tion algebra, L\R+, w), on the half-line, i.e., L\R+, w) is the space
of complex measurable functions / on R+ such that | | / | | =

i \f(t)\w(t)dt < oo where w: R+ —• iί+\{0} is a continuous weight
Jo

function with w(0) = 1 and w(x + y) ^ w(x)w(y). Multiplication is

S t
f(β)9(t — s)ds. By choosing w

0

carefully we can make L\R+

9 w) a radical Banach algebra which is
an integral domain and which has a bounded approximate identity
(see [7]). We have been unable to settle the question of the con-
tinuity of module derivations from this algebra and so the problem
remains: with L\R+, w) as above, is there a discontinuous module
derivation from L1(R+, w)1 Classifying the closed ideals of L\R+, w)
is a well-known open problem and even if we could do this it is
still not clear whether every module derivation is continuous. The
problem seems to require some new techniques. It follows from [13]
that every derivation: L\R+, w) —> Lι(R+, w) is continuous. Another
area of study here is to decide how typical L\R+, w) is amongst
radical Banach algebras with bounded approximate identities. A
specific task might be to find a radical Banach algebra with a bound-
ed approximate identity which is not isomorphic to a quotient of
L\R+, w) by some closed ideal. Recent results on algebras with
bounded approximate identities which may be related to this question
can be found in [21].

We now give an example of a Banach algebra which is an
integral domain for which d(Mn/Mn+1) < oo for all neN for every
maximal ideal M but which has a maximal ideal N such that
d(N/N2) = 1 and d(Nn/Nn+1) = 0 for n > 1. In other words, the
chain of descending ideals of powers of N starts nontrivially but
then stops. It is not hard to extend the idea of the example to
construct a similar Banach algebra which is an integral domain for
which d(Nn/Nn+1) Φθ for 1 ^ n ^ k and d(Nn/Nn+1) = 0 for n > k
(where k is some integer ^ 1). In [16, Example 5.2] Read describes
a rather complicated uniform algebra A with a maximal ideal N
such that d(Nn/Nn+1) = 1 for 1 ^ n ^ k and Nk+ί = Nk+2. This algebra,
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however, is constructed as the closure of the sum of two algebras
each of which are algebraic tensor products of smaller algebras and
so it is clear that A is not an integral domain. It is the fact that
the following simple example is an integral domain which makes it
more interesting in our context.

EXAMPLE. Let A = L\R+, w) as above with w chosen so that
A is radical, is an integral domain, and has a bounded approximate
identity. By [11] there exists a positive Borel measure μ on R+

which is singular (w.r.t. Lebesgue measure on R+) such that μ*μ
is absolutely continuous w.r.t. Lebesgue measure. We can choose
μ to have compact support. Let B = Cl 0 Cμ 0 A where 1 is an
identity for B and all the other multiplications are given by con-
volution. Note that μ*f is in A for all feA. Also d{BjB2) = 1
and the only maximal ideal in B is Cμ 0 A = N, say. B is an
integral domain by the Titchmarsh convolution theorem extended to
measures. Finally d(N/N2) = 1 but d(Nn/Nn+1) = 0 for n > 1.

We conclude by describing an example due to H. G. Dales which
shows that there exist Banach algebras B with d(M/M2) ̂  k(M) < <*>
for all maximal ideals M where k(M) has no upper bound.

EXAMPLE. Let Δn be the closed unit polydisc in Cn and let An

be the polydisc algebra, A(Δn), defined earlier. Let Cβ0 ={z — {zQ9z1r •):
Zi^C f o r a l l i^0}. L e t Δ n = {z: z0 = 1/n, a n d , | z λ | ^ 1/n, , \zn\ ^
1/n, zn+1 = zn+2 = = 0} S C°°, so that Δn is a copy of Δn. Thus
we can regard An as an algebra of functions on Δn. Let

x=LM*u{(0, o, ...)}.
Λ = l

X is a compact subset of C°°. Let 5 = {/e C(X):f\2n e AJ. It is easy
to see that the maximal ideal space of B is X. If M is the maximal
ideal associated with (0, 0, ) then M2 = M since M has a bounded
approximate identity. Every other maximal ideal corresponds to a
maximal ideal of An so that d(M/M2) < °o for all maximal ideals M
of B. However if Mn - {/:/(l/n, 0, 0, •) = 0} then d(MJM2) = w.
Hence there does not exist a constant iΓ such that d(M/M2) <; if for
all maximal ideals M.
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