REAL REPRESENTATIONS OF GROUPS WITH A SINGLE INVOLUTION

I. M. ISAACS

If G is a finite group containing just one involution and G has a faithful, absolutely irreducible real representation, then G has order 2.

This was proved by Jerry Malzan [2] using the classification of simple groups with dihedral Sylow 2-subgroups. The purpose of this note is to give a proof of Malzan's theorem which assumes nothing but some elementary character theory.

Let G have the unique involution z and assume $G > \langle z \rangle$. Let $\chi \in Irr(G)$ be faithful and real valued (where Irr(G) is the set of complex irreducible characters of G). By the Frobenius-Schur theory (see Lemma 4.4 and Corollary 4.15 of [1]) it follows that in order to prove that χ is not afforded by a real representation, it suffices to show that

 $\sum_{g \in G} \chi(g^2) \neq |G|$.

THEOREM. In the above situation we have

$$\sum_{g \in G} \chi(g^2) < |G|$$
 .

Proof. Each $g \in G$ may be uniquely factored as $g = \sigma c$ where σ has 2-power order and $c \in C(\sigma)$ has odd order. We write $\sigma = g_2$. For each cyclic 2-subgroup $U \subseteq G$ we set $Y(U) = \{g \in G | \langle g_2 \rangle = U\}$. Thus the sets Y(U) partition G. We shall prove

(1)
$$\sum_{g \in Y(1)} \chi(g^2) = \sum_{g \in Y(\langle z \rangle)} \chi(g^2) < |G|/2$$

$$(2)$$
 $\sum_{g \in Y(U)} \chi(g^2) \leq 0 \quad ext{if} \quad |U| = 4$

$$(3)$$
 $\sum_{g \in Y(U)} \chi(g^2) = 0 \quad ext{if} \quad |U| \ge 8.$

The theorem will then follow.

Proof of (1). Y(1) is the set of elements of G of odd order and since $z \in \mathbb{Z}(G)$, we have $Y(\langle z \rangle) = z Y(1)$ and so $\sum_{Y(1)} \chi(g^2) = \sum_{Y(\langle z \rangle)} \chi(g^2)$. Since the map $g \mapsto g^2$ is a permutation of Y(1), the common value of these sums is

$$s = \sum_{g \in Y(1)} \chi(g)$$
.

If α is any automorphism of the field $\mathbb{Q}(\chi)$, then there exists an integer m with (m, |G|) = 1 such that $\chi(g)^{\alpha} = \chi(g^m)$ for all $g \in G$. Since the map $g \mapsto g^m$ is a permutation of Y(1), it follows that $s^{\alpha} = s$ and thus s is rational.

Now let $\chi = \chi_1, \chi_2, \dots, \chi_n$ be the distinct Galois conjugates of χ and let $\theta = \sum \chi_i$. Then θ is rational valued and hence $\theta(g) \in \mathbb{Z}$ and $\theta(g) \leq \theta(g)^2$ for all $g \in G$. Furthermore, $s = \sum_{Y(1)} \chi_i(g)$ for all i since s is rational, and thus

$$ns = \sum_{g \in Y(1)} heta(g) \leq \sum_{g \in Y(1)} heta(g)^2$$
 .

Since $\chi(zg) = -\chi(g)$ for all $g \in G$, we have $\sum_{Y(1)} \theta(g)^2 = \sum_{Y(\langle z \rangle)} \theta(g)^2$ and so

$$egin{aligned} &2ns &\leq \sum\limits_{g \,\in\, Y(1) \cup Y(\langle z
angle)} heta(g)^2 \ &\leq \sum\limits_{g \,\in\, G} \, heta(g)^2 = |\,G\,|\,[heta,\, heta] = n\,|\,G\,| \ . \end{aligned}$$

Therefore, $s \leq |G|/2$. In fact, this inequality is strict since otherwise $\theta(1) = \theta(1)^2$ and hence $\chi(1) = 1$. Since χ is real-valued and faithful and |G| > 2, this is impossible and (1) follows.

Proof of (2). Let |U| = 4 with $\langle \sigma \rangle = U$. Since $C(\sigma)$ has a unique involution and a central element of order 4, it follows that $C(\sigma)$ has a cyclic Sylow 2-subgroup and therefore has a normal 2-complement N. Thus $Y(U) = \sigma N \cup \sigma^{-1}N$. Since $\sigma^2 = (\sigma^{-1})^2 = z$ and $\chi(zg) = -\chi(g)$ for all $g \in G$, we have

$$\sum_{g \,\in\, Y(U)} \chi(g^2) = -2 \sum_{g \,\in\, N} \,\chi(g^2)
onumber \ = -2 \sum_{g \,\in\, N} \,\chi(g) = -2 \,|\,N| \,[\chi_{\scriptscriptstyle N},\, 1_{\scriptscriptstyle N}] \leq 0$$

since $g \mapsto g^2$ is a permutation of N.

Proof of (3). Let $|U| \ge 8$ and let V be the subgroup of order 4 in U. If $g \in Y(U)$ and $\tau \in V$, then $\tau g \in Y(U)$ and hence Y(U) is a union of cosets of V of the form Vx with $x \in C(V)$. Now

$$\sum_{g \in Vx} \chi(g^2) = 2\chi(x^2) + 2\chi(zx^2) = 0$$
 .

References

I. M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, 1976.
 J. Malzan, On groups with a single involution, Pacific J. Math., 57 (1975), 481-489.
 ______, Corrections to On groups with a single involution, Pacific J. Math., 67 (1976), 555.

Received November 22, 1976. Research supported by Grant MCS 74-06398A02.

UNIVERSITY OF WISCONSIN-MADISON MADISON, WI 53706