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The notion of a Q-function and M. G. Kreϊn's formula
for the generalized resolvents of a symmetric operator are
extended to the case of a symmetric linear relation. Ap-
plications to linear non-densely defined bounded operators as
well as to semibounded linear relations are given.

In some problems related to the spectral theory in Hubert
space it is more natural and at the same time often less restric-
tive to use symmetric linear relations (in the terminology of [1],
subspaces in the terminology of [2-4]) instead of symmetric oper-
ators. Hence the question arises if the theory of generalized
resolvents of symmetric operators can be extended to symmetric
linear relations. In [4] a description of all generalized resolvents
of a symmetric linear relation was given, following the lines of
A. V. Straus [5] in the operator case. It is the aim of this paper
to generalize M. G. Kreϊn's formula for the generalized resolvents
of a symmetric operator (see [6, 7]) to the symmetric linear relation
case. This can be done rather easily by means of the Gayley trans-
formation, using the results of [8]. However, in this connection
there arise natural problems and questions: To introduce and to
study the Q-function of a linear relation, to prove criteria for the
selfadjoint extension of the given symmetric linear relation being an
operator, to study the special case of a bounded nondensely defined
operator etc.

After the necessary definitions and their simple consequences in
§1, the §2 is devoted to a study of the Q-f unction. From arguments
similar to those in [9, 10] it follows that every function Q, whose
values are bounded operators in a Hubert space and which is holo-
morphic in the upper half plane and has the property

( * ) Im Q(z) > 0 if Imz>0

is a Q-function of a symmetric linear relation. Let us remind here
that in the operator case besides (*) additional conditions appear (see
[9]). In §3 the generalization of M. G. Kreϊn's formula to symmetric
linear relations is proved. In terms of the Q-function a necessary and
sufficient condition for a minimal selfadjoint linear relation extension
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to be an operator follows. In §4 we give a description of all gen-
eralized selfadjoint contraction resolvents of a symmetric nondensely
defined contraction T, which is equivalent to a recent result of M. G.
Kreϊn and I. E. Ovcarenko [11, 12]. Moreover, we consider those
generalized resolvents of T, which correspond to minimal selfadjoint
extensions having their spectra in an interval [cc, β], -co <^α^ — 1,
1 ^ β ̂  °° As an application some statements about nonnegative
linear relations are proved, which complete corresponding results of
E. Coddington [2]1.

Finally we mention that some statements of this paper can be
generalized to the case of unequal defect numbers (for the operator
case see e.g., [14]) as well as to symmetric linear relations in a Πκ-
space, which will be considered elsewhere.

This paper ia dedicated to Professor M. G. Kreίn, to whom we
are obliged not only for many inspiring ideas in his works and
personal communications, but also for our acquaintance.

1» Preliminaries* 1. Let Q be a Hubert space. A closed linear
relation (c.l.r.) in § is a (closed) subspace of φ2 = & © Φ (see [2],
[3], [4]). Evidently, the graph of a closed linear operator in ̂  is a
c.l.r. T in ξf with the property that

(1.1) {0, g}eT implies g = 0 ,

and, vice versa, a c.l.r. T with this property is the graph of a closed
linear operator in £>. In the following we therefore identify closed
linear operators and c.l.r. with the property (1.1), that is, instead
of {/, g}zT in this case we shall also write g = Tf. If T is a c.l.r.
in φ we put

: = {/: {/, g) 6 T}f 9t(T): - {Q' {/, ί/}eΓ},

: = {g:{f,g}eT}.

The sum of two c.l.r. and the product of a c.l.r. with a complex
number are defined in the usual way (see e.g., [2]). The inverse of
a c.l.r. T is the c.l.r.

Γ"1: = {{g, /}: {/, 9) e T)

and the adjoint T* of T is defined by

T*: = {{h,k}:(g,h) = (f,k) for all {f,g}eT}.

Two c.l.r. T in φ and T in Q' are called unitarily equivalent if
there exists an isometric mapping V of § onto φ' such that {Vx, Vy} e
T if and only if {x, y} e T.

1 In the operator case deeper results are contained in [13].
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Every c.l.r. T in φ can be decomposed into a direct and orthogonal
sum

(1.2) Γ = T o θ ^ ,2

where To is a closed linear operator, S)(TΌ) = ®(^)> and T^: =
{{0, </} e Γ}.

Suppose now that the space φ is the orthogonal sum ξ> = £>0 φ &
of two subspaces φ0, & with corresponding orthogonal projectors
Po, Px resp. and that the c.l.r. Γ in § has the form T = To © T*,
where To is a c.l.r. in £>0 and Γ^ = {{0, g}: g e φ j . Let Q be a bounded
linear operator in Q with 3)(Q) = φ and suppose that the inverse
(To + POQPQ)"1 in £>0 is an operator. Then (T + Q)"1 is also an operator
and we have

(1.3) (T + QΓ = (To + PoQPoΓPo

Indeed, (T + Q)"1 - {{Qf0 + go + gί9 / J : {/0, </0} 6 Γo, ^ e &}. Now Q/o +
ô + ^ i - O implies PoQPo/o + g0 = 0, hence /0 = 0 as (To + PQQP,)~ι

is an operator. Evidently (T + O)" 1 ^ — 0,

(T + Q)-1 = {{PoQPofo + <7o + gί9 /o}: {/o, flr0} e Γo> & e &} ,

which is equivalent to (1.3).

2. A c.l.r. T is called dissipative if

{/, <?} 6 Γ implies Im (g, /) ^ 0 ,

maximal dissipative if 5P is dissipative and T z) Γ, I " dissipative
imply T = T> and symmetric if

{/, rfeϊ1 implies Im (g, f) = 0 .

It is easy to see that a c.l.r. T is symmetric if and only if Γ c Γ .
A c.l.r. T is called selfadjoint if T = T*.

By a fundamental theorem of Arens [1], the c.l.r. T is selfadjoint
if and only if To in the decomposition (1.2) is a selfadjoint operator
in £o = SKΓoo)1. '

Let T be a symmetric c.l.r. in φ If A is a bounded selfadjoint
linear operator in !Q with ®(A) = φ the symbol T ^ A means (#, /) ^
(A/, /) for all {/, g) e Γ, and Γ ^ A is defined in the usual way as
— T ^ —A. However, the writing A^T^B with two bounded
selfadjoint operators A, 5 means that T is also an operator and that
these inequalities hold in the usual operator sense. A symmetric
c.l.r. T is called nonnegative if T ^ 0.

Let T be a symmetric c.l.r. in φ. We define
2 φ denotes the orthogonal sum in £>2.
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mz: = at(r - zi), % = mi .

There exist two cardinal numbers n+ and w_, the upper and lower
defect numbers of Γ, such that we have

dim 9Ϊ7 = n± for all zeC± .3

The Cayley transform &ZQ(T) (z0 Φ z0) of the c.l.r. T in ίg is defined as

F: = E.0(Γ): - {{</ - zj, g - z0/}: {/, g}eT},

the inverse gZo of the Cayley transformation (£Zo is given by

T = % . 0 ( V ) : = {{g - /, zog - zj}: {/, g}eV}.

If T is symmetric, F is an isometric operator in ξ> with ®(F) = 3ft2o,
9ΐ(F) = 9ft;0. The Cayley transformation &Zo establishes a one-to-one
correspondence between the set of all symmetric (selfadjoint) c.l.r. T
in φ and the set of all isometric (unitary resp.) operators F in φ.
If ^0 e (7_, (£0O also defines a one-to-one correspondence between the set
of all dissipative (maximal dissipative) c.l.r. T in φ and the set of
all contractions F (contractions F with 2)(F) = «ξ> resp.) in £>. If
T, T are two c.l.r. in § and £'(=)£) resp. with TcT, then T" is
called an extension of Γ. If in this case φ' — φ, then T" is said to be
a canonical extension of Γ. Evidently TaT is equivalent to KZo(T)c
(£Z0(T') It is well known (see e.g., [4]) that every symmetric c.l.r.
admits selfadjoint extensions and that it admits canonical selfadjoint
extensions if and only if its defect numbers n+ and n_ are equal.

With the Cayley transformation &ZQ we consider the mapping

(1.4) z > X(z): = (s - zo)(z - zo)~ι

of the compact complex plane into itself. An easy calculation yields

F - X(z)I - {{g - zj, (z0 - zo)(g - zf)}: {/, g}eT},

hence

(1.5) R(V - λ(s)I) = R(T - zi).

The spectrum σ(T) of the selfadjoint c.l.r. T is l3y definition the
spectrum of its operator part TQ, the extended spectrum oe{T) of T
is σ{T) if Γ = JΓ0 and σ{T) U {^} if Γ Φ To. With the mapping λ
introduced above we have X(σe(T)) = σ(V), X(σ(T)) = σ(V)\{l}. The
resolvent set p(T) (extended resolvent set pe{T)) is the complement
of σ(T) (σe(T) resp.).

If T is a selfadjoint c.l.r. in Q and z e p{T), then (1.3) implies

(1-6) (T - «I)-1 = (To - ^ - Λ ,
3 C denotes the complex plane, C+(C~) the open upper (lower resp.) half plane.
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where Po again denotes the orthogonal projector onto ®(Γ0) =
A subspace & of £ is called a reducing subspace of the dissipative

c.l.r. T if £>! is a reducing subspace of the Cayley transform V =
(£_,0(T), Im20 > 0, that is if ®(F) decomposes as

and we have FS^cz^, FS^cz^1. Denote by VΊ the operator F|Φ l in
&. Then the c.l.r. 2\: = g L ^ F ^ is called the c.l.r. induced by Fin
the reducing subspace Qlm

3. The symmetric c.l.r. T in £> is called simple if

(1.7) £ = c.l.s. {9ί2 = ?H(T - ziy:zΦz} . 4

Evidently, (1.7) is equivalent to

nwz = {0}.

Since for arbitrary s e C and c.l.r. Γ we have ^(ϊ7^ - si) =
a simple symmetric c.l.r. is an operator. Moreover, it is not difficult
to see that for a simple c.l.r. T in ίg there is no subspace & in §
which reduces T and on which T induces a self ad joint operator.

PROPOSITION 1.1. A symmetric c.l.r. T in $ is the orthogonal
sum T = Tm@Ts of a selfadjoint c.l.r. Tm in Tt: = ΓÎ «2K« αwcZ α
simple symmetric c.l.r. Γs m SR1.

Proof. Choose z0 Φ z0 and consider the Gayley transform F: =
©^(T). It is an isometric operator and can hence be written as the
orthogonal sum of a (uniquely determined) unitary operator Vw in
a subspace 9ft': = C\\χ\φffi(V ~~ λJ) °f Φ a n d a simple isometric operator
F s in W1. (Here an isometric operator is called simple if there is
no reducing subspace on which it induces a unitary operator.) Relation
(1.4) implies 3ft' = 2B. The statement hence follows if we take Tm: =
%M0(VJ, Ts: - %ZO(VS).

4. Let © be a Hubert space. By £(©) we denote the set of all
functions z—>^(z) with the following properties:

(1) If z e C+ then ^"(z) is a maximal dissipative c.l.r. in ©.
(2) If z0 6 C+ then the Cayley transform 3^(s): - ©_Z0(^"(2;)) is

a holomorphic function of z in C+.
It can be shown [4] that this definition is correct, that is the

property (2) is independent of the point zoeC+.
We always assume that ^~ e £(©) is extended to C_ by S"{z) =
)* (2 6 C+). The domain of holomorphy SV of ^ " consists by

c.l.s. = closed linear span.
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definition of C+ U C_ as well as of those intervals of the real axis
on which Y* has unitary boundary values T{x) = l i π w + 2_τ T{z),

We put

Evidently ^~(x) is a selfadjoint c.l.r.
By %Hβ) we denote the subset of £(©) consisting of all J7~ e £(©)

which are independent of z. Then evidently 2>V = C and
is a selfadjoint c.l.r. in ©.

PROPOSITION 1.2 (see [7, §4.3]). ί
α decomposition © = ©0 0 (SL o/ £Ae space © wi£Λ £Ae following
properties:

(1) For αii ^ e 3V, ©0 α^cί ©^ are reducing subspaces of ^(z).
(2) If Im # > 0, then the induced c.l.r. J7~(z)o in ©0 is α maximal

dissipative operator and the induced c.l.r. ^(z)^ in ©^ is

Indeed, choose ^0 β C+ and consider the Cayley transform T(z) =
©_zo(^(^)). It is a holomorphic and contraction valued function if
z e 3V Π (C+ U Rι). Hence by the maximum modulus principle the
set of fixed vectors of T%(z)f that is the set of solutions / of T(z)f =
/, is independent of z if z e ®^ Π (C+ U J?1)- Now the statement
follows without difficulty.

Let J7~ € £(©), 2? 6 ®^ and suppose Q is a bounded linear operator
such that the inverse (P0QP0 + ^(z)^)~ι is also an operator. As a
consequence of (1.3) we then have

(1.8) (Q + JT{z)Γ = (P0QP0

where Po again denotes the orthogonal projector onto ©0.

2* The Q-function of a symmetric c^Lr* 1. Let S be a sym-
metric c.l.r. in Q with equal (finite or infinite) defect numbers n+ =
n_ — :n(>0). We choose a Hubert space © of dimension n. The
scalar product in © will be denoted by the same symbol ( , •) as the
scalar product in ξ>. Let S be a canonical selfadjoint extension of
S. By Γ. we denote a function on p(S) with values in [©, φ]5 and
the following properties:

(1) Γz maps © one-to-one and continuously onto 9ζ (zep(S)),

(2) z, ζ e ^(S) implies

is the set of all bounded linear operators from © into
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(z - ζΓ(Γ, - Γζ) = (S- zI)-Tζ = (S - ζI)~Tz .

From (2) it follows that after fixing a z0 e p(S) we have

(2.1) Γ, = (/ + (z - zo)(S - zI))-T,0 .

LEMMA 2.1. If z0 e p(S) and ΓZQ is an arbitrary one-to-one map-
ping from © onto %lZQ, then the function Γ. in (2.1) has properties
(1) and (2). Moreover, if S and S are bounded operators and Γ is
a mapping from © onto 9Ϊ = Φ(S)1, we have

(2.2) Γz = OS - ziyιΓ .

Proof. Property (2) of Γz is obvious from (2.1) and [4, Lemma

2.4]. If £ e © and h e 9KZ-, that is h = # — 2/ with a certain {/, 0} e

S, we have (S - zl)~\g - zf) = f and

(Λf, h) - ((Γf0 + (z ~ zo)(S - ziyιΓZ0)ξ, g - zf)

= {ΓZQξ, g-zf + (z - zo)(S - ^Z)-1^ - zf)

= (Γ,of, ^ - zj) = 0 ,

since g - zj e 2ftΓo = ^4.
In order to see that Γz is onto, take / 6 9ΐz and consider /0: =

(/ + (z0 — z)(S — zJY^f. Then a simple modification of the previous

argument yields f0 e 9ΐ̂ 0, that is f0 = ΓZof with a (unique) f e © and

Λf = ( ! + ( « - ^o)(S - zIΓ)ΓZoξ = (J + (« - ^ ( S - zJΓ)/o - /

The injectivity of Γz follows from (1.6), the last statement is a

consequence of the fact that for bounded operators S and S the

operator (S — z0I)ΓZQ maps @ onto ®(S)L.
The adjoint Γ1* of Γz is the mapping from $ into © defined by

the relation

This implies ΓfWlj = {0}, and Γ* maps %lz bijectively onto ©.
2. With the function Γ. we associate the so-called Q-function

Q of the c.l.r. S in φ in the following way. Q is defined on p(S),

its values are in [©] and it satisfies the relation

(2.3)
2 — ζ

It follows (corap. [7]) that Q is defined by (2.3) up to a selfadjoint
operator C e [($] and has the form

2) = C + (2 - *o)Γ*ΓZo + (z - ^0)(Z - ^0)Γ*0(S - zI)-Ύ,
,t= C- iy0Γ*Γl0 + (z- z,)Γ*ΓXz, z0 e p(S), zo = x + ΐ j/ 0).
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Conversely, every function of the form (2.4) satisfies (2.3). Therefore,

after choosing a selfadjoint operator C in © and the mapping ΓZQ

from ® onto 9ϊZo the Q-function Q is uniquely determined by the

pair (S, S), consisting of the symmetric c.l.r. S and one of its can-

onical selfadjoint extensions S. Evidently, Q is holomorphic on p(S).

If S and S are bounded operators we have

(2.5) Q(z) = C+ Γ*(S - zI)~T .

The relation (2.4) evidently implies the following properties of Q:
( i ) Q is piecewise holomorphic in C+ U C_ and we have Q(z) =

Q(z)*( 6 [©]).
(ii) ImQ(z)>0 if Im z > 0.6

We shall prove that these properties are characteristic for Q-
functions of c.l. relations, (comp. [9]), that is the following theorem
holds true.

THEOREM 2.2. A function Q satisfying the conditions (i) and
(ii) above is a Q-function of a simple symmetric c.l.r. S in a Hubert
space φ. The c.l.r. S and the corresponding canonical selfadjoint
extension S are up to unitary equivalence uniquely determined by Q.

Proof. If dim ® = 1 this theorem immediately follows from [10,
§1]. The proof in the general case given below is close to [9, §3].7

With every z e C+ U C_ we associate a symbol εz and consider
the linear set 2 of all finite formal sums /

/ : - Σ ezξz , ξ, 6 © (zeC+UC__),

where only finitely many elements ξz are different from zero. If
ft Q e 2, / = Σ εzξz, 9 = Σ εzVz a scalar product ( , •) is defined in £
by the equation

Condition (ii) implies that the scalar product is nonnegative, therefore
2 can be canonically embedded into a Hubert space φ. In 2 we
consider the subset

= {/ = ΣΣ 8: Σ f. = 0}
6 A y B for t w o b o u n d e d o p e r a t o r s A , B m e a n s t h a t t h e r e e x i s t s a Γ > 0 s u c h t h a t

A-B^ri.
7 A shorter proof can be given using M. A. Naϊmark's theorem on the extension

of generalized spectral functions. However, we prefer to give a direct proof as this
immediately carries over to the general case of a Πκ-sp2Lce.
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and define on 2^ the operator Sλ

SJ: = Σ ^zζz if / = Σ e.£, e®, .

It is easy to see that the relation

(SJ,g) = (f,S1g) (ΛffeΦJ

holds true. Fix ^0 e C+. The continuity of Q in z0 implies for arbitrary

(ezξ - eβ0£, eβf - εZQξ) > 0 if z > z0 .

On the other hand, if Σ εzξz e S and ξZQ = 0 we have

hence the range (S1 — £</)®i is the set of all / = Σ ezSz e 8 with the
property ξZQ = 0. Therefore this range is dense in S and the same
is true for (S1 — ̂ 0^)®i

If / e (S, - Zol)®!, that is / = (S, - zol)g, g e 2),, we define UJ: =
(Si — zol)g. As (JSJ. ~ zol)g = 0 implies ^ = 0 this definition is correct
and U1 maps the dense set (St — zo-ί)®i on^° the dense set (^ —
It can be easily checked that we have

(uj, ujf) - (/, /') (/, / ' e ($ -

therefore U^ generates a unitary operator U in
Its inverse Cayley transform S

is a selfadjoint c.l.r. by §1.2. Evidently it is an extension of Slβ

For z Φ z we define linear operators Γz from © into S by

Then (2.6) implies

(2.7) (Λ&

and it is easy to see that Γz is a continuous mapping from © into
φ. Its adjoint Γί is given by

(f,Γ£) = (Γ*f,ξ) (fe&ξe®),

and from (2.7) the relation

- ζ
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follows. Moreover, if zΦz0 and I m ^ ^ O , then (St — zl)(ezξ - eZQξ) =
(z - zo)etoξ and

ezξ = ezoξ + (z- z.χS, - zI)-%£ - εZQξ + (z - zQ)(S - zl)-%oζ .

The operators Γz therefore satisfy the equation

Consider the following (evidently closed) restriction S of S:

}eS:(g-zQf,rΊoξ) = O for all ξe®}.

This definition is independent of zQ. Indeed, we have for arbitrary
z Φ z0

(g - zf, ΓΊξ) = (g - zj + (z0 - z)f, ΓΊξ) = (g - zj, Γrf)

and it remains to show that (g — zof, Γ^ξ) — (z — zo)(f, Γ^ξ) for all

f 6 ©, {/, g) e S. Since

{ίϊiZ-ίϊoί, eiξ\ eS-z0I=(S- zJY and {/, g - zj) eS-zJ

we get

(/, s7ξ) = (g - zof, (z - ZoΓ^eiί ~ eτof)) = (flr - ^0/, (« ™ ̂ o)~^iί)

and the assertion follows.
The symmetric c.l.r. S is simple. Indeed, if z Φ z we have

St(S - «I) = to - */: to - »/, ΓΊξ) = 0 for all f 6 ©, {/, }̂ 6 S}, hence
Λ G Π^7 SR(S - ^/) implies (h, εΊξ) = 0 for all £ e ©, « Φ z. But the
elements ei£, f 6 ©, 2; =£ «, generate the space φ ^nd A = 0 follows.
By §1.3 the symmetric c.l.r. S is an operator.

It follows from the uniform positivity of Im Q and the relation
(2.7) that the range of Γ^ is closed. Therefore this range is the
exact defect space ?H(S — zl)1, and the first part of the theorem is
proved.

Let now S' be another simple symmetric c.l.r. and let S' be a
canonical selfadjoint extension of S' in φ' such that the Q-function
of S' corresponding to the selfadjoint extension S' is Q. Then we have

(28) Q(s) - Q(Q* = n Γ = Γ,*Γ ( ^ ζ e c u C )
(2.8) n Γ z Γ Γ z (^ζ e c + uC_) .

^ — ζ

Here Γ̂  denotes a mapping from © into £>' satisfying conditions (1)
and (2) of §2.1. Define a transformation V from φ' into $ by
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VΓ'zξ = Γzξ ( z e C + u C _ , ί e @ ) .

It then follows from (2.8) that V is an isometric operator. The
simplicity of S' and S implies that its domain and its range are dense
in φ' and £> resp. Therefore V can be extended to a unitary operator
from <£>' onto !Q. Moreover, we have

V{Γ[ + (z - ζ)(S' - zΓΓΎ'd = VΓ[ + (z - ζ)(S - s/ΓVT'c ,

and F(S' - zl)"1 = (S - si)"1?' follows. But this evidently implies
that the Cayley transforms <£f0(S') and K,0(S) are unitarily equivalent.
Hence the same holds true for the c.l.r. S' and S.

Now {/', g'} 6 S', Vf = /, Fflf' = g, {/, g}GS yields

to' - zf, Γ7ξ) = to - «Λ Λ-£),

which implies that V establishes a unitary equivalence between S'
and 5.

COROLLARY 2.3. A function Q satisfying the conditions (i) αwd
(ii) admits a representation

(2.9) Q(s) = C+(z- xQ)Γ*Γ + (z- zo)(z - zo)Γ*(S - zI)'ιΓ

with a Hilbert space φ, α boundedly invertible operator Γ from %
into φ, α bounded self ad joint operator C in ® and a self ad joint
c.l.r. S in $ (zQ Φ zo; z0 — xQ + ί̂ /0) with the property

(2.10) φ = c.l.s. {(/ +{z- zo)(S - ziyι)Γ®: zΦz) .

Moreover, if a representation

Q(Z) = c + (z- xo)f*f + (z- zo){z - zo)f*(S - zI)-T

holds with a Hilbert space Q, a boundedly invertible operator Γ from
® into φ, a bounded selfadjoint operator C in ® and a selfadjoint
c.l.r. S in φ, then the subspace

&: = c.l.s. {(I +(z- zo)(S - zl)'1)?®: zΦz}

is a reducing subspace for the c.l.r. S. Furthermore S[$1 and S
are unitarily equivalent.

The (up to unitary equivalence) unique c.l.r. S with properties
(2.9) and (2.10) will be denoted by SQ.

In the following theorem let S be a selfadjoint c.l.r. in φ, Γ a
boundedly invertible mapping from a Hilbert space ® into φ, C a
selfadjoint bounded operator in ® and
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Q(z) = C+(z- xo)Γ*Γ + (z - zo)(z ~ zo)Γ*(S - zI)~T

(z0 Φ z0, zQ = x0 + iyQ) .

T H E O R E M 2.4. Let ξe®,ξΦ 0. Then

( 1 ) Γξ e ©(£?) if and only if lim, too y~l{Q(iy% £) = <>,

( 2 ) Γ£ ί ®(S) i / αwd o?% i / limtf Too 2/ Im (Q(iy)ξ, ξ) = co.

Proo/. (1) The representation (1.6) of (S - s i)" 1 yields

X P0Γf, P 0Γί) + y-\iy - xo)((I - P«)Γf, (J - P0)Γf)

ξ, ξ)

where SQ is the (selfadjoint) operator part of S and Po denotes the
orthogonal projector onto ®(S). The arguments in [9, §3] imply
that the first term on the right hand side tends to zero if y ] oo 9

the same is obvious for the last term. Therefore

lim—(Q(iy)ξ, ξ) = 0 if and only if (I - P0)Γξ = 0

and the first statement of the theorem is proved.
( 2 ) Now we start from the identity

y Im (Q(iy)ξ, ξ)

= y*\\(I+(iy- zo)(So - iylDP.Γξψ + y*\\(I - P0)Γξ||2.

If Γξ £ S)(S), that is if (/ - P,)Γξ Φ 0 we evidently have

lim y Im (Q(iy)ξ, £) = <χ> .
a/Too

If Γζ 6 5)(S) = S5(S0) we conclude as in [9, Theorem 3.2] that the
conditions

lim y Im (Q(iy)ζ, £)=<*> and Γf ί ®(S)

are equivalent. Now (2) easily follows.

COROLLARY 2.5. Tfoe selfadjoint c.l.r. S m Corollary 2.3 is cm
operator if and only if the function Q has the property

(2.11) l i m — (Q(iy)ξ, £) = 0 / o r αZi ζe®,ξΦQ.

Indeed, by the first part of Theorem 2.4 condition (2.11) is equivalent

to Γz.® c ®(S). This yields Γz® c ®(S) for all 2 ^ ?. The subspaces



ON GENERALIZED RESOLVENTS AND Q-FUNCTIONS 147

Γβ>, z Φz, generate the space £ and it follows φ =

COROLLARY 2.6. The domain ®(S) of the simple c.l.r. S in
Theorem 2.2 is dense in ®(S) if and only if Q has the property

(2.12) lim y Im (Q(iy)ξ, ζ) = oo for all ξ e ©, ξ Φ 0
1/ Too

Indeed, S)(£) is not dense in ®(S) if and only if there exists an
element /0 e ®(S), /0 ^ 0, f01 ®(S). Consider g0: = (S ~- zJY'f, e 3)(S).
We have £ 0 1 (S - zo/)®(S), that is #0 = ΓZQζ with a certain £e®,
£ ^ 0. But by the second part of the theorem such an element g0 Φ 0
exists if and only if (2.12) does not hold.

3* Generalized resolvents of a symmetric c*Lr* with, equal
defect numbers* 1. We consider a symmetric c.l.r. S in φ with
equal finite or infinite defect numbers n+ = n_ ~:n(>0). Let the
c.l.r. S in § D § be a self ad joint extension of S. By P we denote
the orthogonal projector of |> onto φ. The function z-+Rz:

(3.1) ^-P(S-^/rU

defined for ^ e p ( S ) ( D C + U t ) and with values in [£>] is called a
generalized resolvent of S.

A selfadjoint extension S in |> of S is called minimal, if

£ = & n m : = c . l . s . { ( I + ( z - zQ)(S - ZI)-')<Q: Z Φ Z } .

The relation

((I + (« - ô)(S -ziYι)f, (/ + (C - ^o)(S -

- ([I + (* - CΓ((« - z*)(z - ^oR - (C

implies that there is a one-to-one correspondence between the set
of all generalized resolvents and the set of all minimal selfadjoint
extensions of 5, if we only identify unitarily equivalent extensions.
Evidently, given an arbitrary selfadjoint extension S of S, such that
(3.1) holds, then the minimal extension Smin in |>mil l corresponding
to Rz and the restriction of S to the reducing subspace

c.l.s. {(I +(z~ zo)(S - ziy1)®: zΦz)

are unitarily equivalent.

PROPOSITION 3.1. // Rz is a generalized resolvent of the sym-
metric c.l.r. S, then the domain of holomorphy of Rz coincides with
the resolvent set of the corresponding minimal selfadjoint extension
Smin of S.
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Proof. It is obvious that Rz is holomorphic on p(Smin). Conversely,
let x be real and suppose Rz is holomorphic at z — x. Choose a circle
C with centre x, such that Rz is holomorphic on the corresponding
closed disc. Then it easily follows from the resolvent identity and
Cauchy's integral formula that

(Sm i n - zIΓ{I + (ζ - zo)(SmiΏ - ζ l ) " 1 )/ ,

(I + (ζ' - zo)(Smin - ζΊΓ)g)dz - 0

for arbitrary f, g e$ and ζ, ζ' e C+ U C_ outside C. As the set of
elements of the form (I + (ζ — 20)(Smin — ζl)" 1)/ * s total in |>m i n, the
spectral function of (Smin)0 is constant at x, that is xep(Smin).

The generalized resolvent Rz of the symmetric c.l.r. S is called
canonical (nonnegative), if the corresponding minimal selfadjoint
extension Smin is canonical, that is |>m i n = |> (nonnegative resp.).

2. In order to describe the set of all generalized resolvents
of S we fix a canonical selfadjoint extension S, choose a Hubert
space © with dim ® = n and construct an operator family (ΓJ, 2 Φ z,
according to (2.1). By Q we again denote a corresponding Q-function
(see (2.4)). Then the following extension of Kreϊn's formula for the
generalized resolvents of symmetric operators holds true.

THEOREM 3.2. Let S be a symmetric c.l.r. in $ with equal defect
numbers n > 0. The formula

(3.2) & = ( £ - zIΓ - Γz(Q(z) + ^-{z)ΓΠ

establishes a one-to-one correspondence between the set of all gener-
alized resolvents Rz of S and the set of all J7~ 6 £(©). The generalized
resolvent Rz is canonical if and only if J7~ e

Proof. This theorem follows from [8, Theorem 4.1] with the
aid of Cayley transformation. Indeed, fix a z0 with Im z0 > 0 and
introduce in § the isometric operator

U: = &Z0(S)

and its unitary extension

U: = (£,0(S) -

Then we have dim ^(U)1 - dim 3Ϊ(U)L = n. We choose ©': =
and denote by Jo the orthogonal projector onto ©'. Furthermore
define
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Aλ: =U(U- XI)'1Λ (|λ| Φ 1), zL: = 0

and the characteristic function X of the couple Z7, U by

X(X): = X40U*(I - λΓ*)-1^ ,

where

\Uf, f
Tf =

' 0 , / e © ' .

There is a one-to-one correspondence between all unitary extensions
U of U and all self ad joint extensions S of S, given by Ϊ7 = £Zo(S).
Consider a unitary extension U = &zo(S) of Ϊ7 in a Hubert space |)D
φ. The operator-valued function V:

(3.3) t^^Pίl-λ^U

is called a generalized resolvent of C7". By [8, Theorem 4.1] the
formula

Vλ = (I - XUΓ + ΔuλP{\)ΔΪ (I λ | < 1) ,
{ ' } P(χ): {I E{X))(I X(xr^(X)rι(I - X(λ)*)

establishes a one-to-one correspondence between the set of all gener-
alized resolvents Vλ of U and the set of all functions i? with values in
[©'], holomorphic in {λ:|λ|<l} and with the property ||£?(λ)||<;i(|λ|<l).
Here Vλ is canonical (that is £7 in (3.3) can be chosen in |> = £>) if
and only if i?(λ) is a unitary operator independent of λ(|λ| < 1).

From the definition of the Gayley transformation and relation
(1.4): λ = (z - zo)/(z — s0) it follows

(3.5) 2iyQ(I - X-'ϋ)'1 - (z - zQ)I + (z - zo)(z - I0)(S - ^ " ^ I m z > 0)

and the corresponding relation between S and ?7.
Introducing the operator family (Γ'z), z Φz:

Γ'7Q: = Λ, Π: = ( ! + ( « - ^ 0 )(S - ^D"1)/^;,

it is not difficult to see that the operators Aλ and Γ'z are connected
by the following relations

1 z

2ιy0 2ιyQ

Hence (3.4) implies

(3.6) Λ, = (S - zIY1 - -l—Γ'zP(χ-ι)Γ'τ* (Im z > 0) .
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Define a Q-function Qf of S by

(3.7) Q ' ( s ) : - -iy0Γ'*Γ'Z0 + ( z - zo)Γ'*Γ'a .

Then we have

Q\z) - Q

^ — c ζ

and the relation

Xίλ"1)* = C^0(Q'(«)) ( I m * > 0 )

holds. Introducing the c.l.r. ^~\z)

(3.8) JT'(*): = {{(gf (λ"1) - I)f, -i»o(^(λ-1) + I)/}: / e ©'}

we get

J - X(X~r = {{(Q'(«) + %oi")/, 2i»,/}: / 6 ©'} ,

and it is easily seen that this last expression equals 2iyo(Q'(z) +
\ that is (3.6) has the form

(3.9) Rz = (S - zIΓ - Γ'z{Q'{z) +

Moreover, (3.8) establishes a one-to-one correspondence between the
set of functions E appearing in (3.4) and the set of all ̂ ~' e £(©').

Consider now the Hubert space @ and the operator family (Γz),
z φz, appearing in the theorem. Let J denote the partial inverse
of /γo, that is the mapping from 9t 0 = ©' onto @ with the property

JΓrQ = I I .

We then have Γ'z = Γ,J and (3.9) implies

Rz = (S - zIΓ1 - ΓJ(Q'(z) + jr\z)YιJ*n

Introducing

and the function Q: Q(JS): = J * " 1 ^ ' ^ ) / " 1 we obtain

and

Q(z) = j
z - ζ « — C
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(3.10) J(Q'(z) + ^-\z)Y'J* = (Q(z)

The statement of the theorem now follows without difficulty.
Let us mention that for z Φ z it follows from property (ii) in

§2.2 and (1.3) that (Q(z) + ^~{z))~ι in (3.2) belongs to [©] and that
the formula

(Q(z) + J Π * ) ) - 1 = (PoQ(z)Po + ^ » o Γ P o

holds true.

3. Relation (3.2) establishes a one-to-one correspondence between
£(©) and the minimal selfadjoint extensions S of the symmetric c.l.r. S
if we identify unitarily equivalent extensions. The minimal selfadjoint
extension S corresponding to ^~ e £(©) will in the following be denoted
by S^K8

PROPOSITION 3.3. Under the conditions of Theorem 3.2 the set
p(S{JΓ)) belongs to the domain of holomorphy of Jί7~ e

Proof. Evidently we can take © = ©' = ©(t/) 1. Then (3.7)
implies

(3.11) g7 (λ(z)-1) = I- 2iyo(jr'(z) + iyj)'1 (Im s > 0) .

The function gf extends to {λ: | λ | > 1} by

gf (λ) = ^(λ" 1)*)" 1

(see [8]), hence (3.11) extends to the lower half plane according to

gf (λ(z)) = I - 2ij/0(^"'(g) + iyoJ)-1 (Im z Φ 0) .

Here we put ^~'(£) = ^"'(^)*(Im s > 0). The extended function g7

is holomorphic in {λ: |λ | Φ 1}. Thus it remains to show that if is
holomorphic at λ(^)"1 if x is a real point in p{S{^]). We observe
(see [8, p. 390])

(3.12) gf (Ma;)"1) = zίo?7*λ(x)(I - ί ^ k ) K ,

therefore the statement follows if we show that Vϊι\{x) is holomorphic
at x. But from (3.5) it follows

ZiVoΫuxω = (» - zo)P(I + (a - so)(S^> - a;/)-1)^ ,

and it remains to show that the operator on the right hand side has
a bounded inverse.

Suppose there exists an element f0 e § such that
8 The correspondence ^-^S(-^) of course depends on S, the chosen Q-f unction and
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(3.13) (/o, (I+(x- Zo)(S{jr) - xl)~ι)f) - 0 for all / e £ .

Denote /0': = Po/O, where Po is the orthoprojector onto ®(S{J°) and
let 2£0 be the spectral function of the operator part S{

Q

JΓ) of S(jr).
Then we have

o - fi) = ί00 4 —

Now &ep(jS('}) implies /0' = 0 and from (3.13) we get fQ = 0. Fur-
thermore, suppose there exists a sequence (fn) in φ, | |/n | | = 1, such
that P(fn + (x - O ( S ( j n - xI)~ιL) -* 0 if n -> oo. Then a simple
modification of the previous argument gives a contradiction.

REMARK. If S ( 7 ) is a bounded operator it easily follows that
ά^ is holomorphic also at oo, which means that the corresponding
function i? from (3.8) is holomorphic at λ = 1.

PROPOSITION 3.4. Suppose the c.l.r. S and S in Theorem 3.2 are
bounded linear operators, S is nondensely defined and ΓZJ Q are
chosen according to (2.2) and (2.5) with C — 0. If the extension S{JΓ)

of S is canonical, then the inverse t^~~1 of the c.l.r. J^~ e £0(®) is
& bounded operator.

Proof. Evidently (3.2) implies that Δ(z): = (Q(s) + J Π " 1 is a
bounded operator in ©, which depends holomorphically on z if z e

0 Π p(S) and that

(3.14) || J(z)\\ ̂ K< co for all sufficiently by large \z\ (K constant)

Assume there exist elements / f t e S ( ^ ) , | |/n | | = 1, n = 1, 2, - , such
that for some gne^(fn) we have | |#J |-»0 (w->oo). It follows/Λ =
Δ(z)(Q(z)h + flr ) and 1 = ||4*)(Q(s)Λ + flrJII But if |«| and w are
large enough the right hand side is arbitrarily small, contradiction.
Therefore {/, g}e^~ implies | |# | | ^ 7 | | / | | with a certain 7 > 0, that
is ^Γ"1 is a bounded operator.

COROLLARY 3.5. Under the assumptions of Proposition 3.4

(3.15) \\Δ(x) - ^~~γ\\ >0 if x >oo.

Indeed, if J7~ is an operator we have

4a?) - J ^ " 1 = - Δ{x)Q{x)^r~ι ,

therefore (3.14) and \\Q(z)\\ -+ 0 if z-> QQ imply (3.15). If ^ ( 0 ) Φ {0}
denote by Po the orthoprojector onto S ) ( ^ ) and by ^ ^ the operator
part of ^~. Then (comp. (1.8))
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\\4x) - ^~Λ\ = \\[(P0Q(x)P0 + jTo)-1 - ^ Π P o l l

and (3.15) follows in the same way.

4. In [4, Theorem 6.7] a description of the set of all generalized
resolvents of a symmetric c.l.r. S with arbitrary (even unequal) defect
numbers is given. Here we shall establish the connection between the
parameter function V in [4] and the function ^ in Theorem 3.2.

We consider the c.l.r. Kz: = R~γ + zΓ (Im z > 0).
Then V(z) in [4] is the restriction

(I + 2iyo(Kz - iyj)~ι) I*- (z0 = iy0) ,

mapping 9ΐ;0 into 9ϊβj). On the other hand, using (3.5), it is not
difficult to check that this operator coincides with the restriction of
λ(z)(I- Vϊ,\{β)) to 9!j0. Now (3.12) implies &{X{zYι) = U*V(z) or, by
(3.7), (3.8) and Γ'*ΓH -

v(z) =

and we finally get from (3.10) and the relation U = Γz

V(z) =U-

= 17-

5. In this section S is a simple symmetric c.l.r. in § with equal
defect numbers and S a fixed canonical selfadjoint extension of S.
We give a necessary and sufficient condition on Jf in order that
S(5Π is an operator.

Let us remind that with the fixed selfadjoint extension S a Q-
function Q of S is given by (2.3) or (2.4). Now for each ^ e:
we define a function Q̂ - with values in [©]

(3.16) α,(z): - Q(z) - (Q(«) - Q(zo)*)(Q(z)

It is easy to see that for J^~ e So(@) the function Q r is a Q-function
of S corresponding to the canonical selfadjoint extension £ ( j n .

LEMMA 3.6. The function Q^- in (3.16) has the properties (i)
and (ii) 0/ §2.1.

Proof. Multiplying (3.2) from the left by (z ~ zo)(z - zo)Γ*Q9 from
the right by ΓZQ and adding C + (z — xo)Γ*ΓZQ with the operator C
from (2.4) we get

(3.17) Qj.(z) = C + (z- Xo)ΠoΓZo + (z - zo)(z - ^ 0 ) Γ * ( S ( ^ ) - zI)~TZQ ,

9 In [4] this c.l.r. is denoted by T(z).
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which implies

QΛ*) - QAQ*

= Γ?0(I + (C - z Q ) ( S ^ - HΓ){I + (z- z Q ) ( S ^ - zIΓ)ΓZQ .

The operator I + (z — 20)(S( jn — zl)"1 has the bounded inverse operator
I + (#o — 3)(JS(^} — Zoί)"1 and the statement easily follows.

The main result of this section can now be stated.

THEOREM 3.7. The c.l.r. S^) is an operator if and only if

(3.18) lim ±(Qjr(iy)ξ9 ξ) = 0 for all ξ e © .
2/T00 y

Proof. It follows from Lemma 3.6 and Corollary 2.3 that the
function Qjr admits a representation (2.9) with a selfadjoint c.l.r.
S = SQjr in a Hubert space

®Qy. - c.l.s. {(I +(z- zo)(SQ^ - ziyι)ΓQh: zΦz) .

By Corollary 2.5 S ^ is an operator if and only if (3.18) holds true.
On the other hand we have the representation (3.17). Therefore the
second part of Corollary 2.3 implies that the subspace

&: - c.l.s. {(I + (z - zo)(S^ - zI)-")Γzβ'. z Φ z)

is reducing for Sι^\ and S ^ l ^ , SQ^. are unitarily equivalent and can
thus be identified.

It remains to show that S (^ } is an operator if and only if SQ^.
is an operator.

If S ( j r ) is an operator then its restriction SQάr is evidently also
an operator. Assume S( in(0) Φ {0} and SQ^(0) = {0}. The space §

Λ » ^ SK

in which S{jr) is defined has a decomposition @ = ^ φ φ . Let S ( j n =
jSρ^.φS be the corresponding decomposition of S{JΓK The assumption
SC)(0) ^ {0}, Sρ^(0) = {0} implies S^>(0) = 3(0), hence S(JΓ)(0) 1 4
We consider an element / e S ( ^ ( 0 ) . Then f:=Pf± ΓZo® and

(/, ®(S)) - (PI ®(S)) - (/, φ(S)) - {0} ,

since ®(S) c ©(S^O = S^\O)L. Therefore we have f = g0- zj\ with
a certain {/0, g0} e S, and ( 0̂ - zofo, f0) = 0, that is (#0, /0) = zo(fo, f0).
On the other hand {/0, 0̂} e S implies that (g0, f0) is real, hence f0 = 0.
Since S is simple we also have g0 = 0. We conclude / = 0, hence
f€$Q&t that is S m ( 0 ) c § Θ Φ Now it is easy to see that this
is a contradiction to the minimality of S ( j n . Therefore S(iΠ(0) φ {0}
implies SQjr(0) Φ {0} and the proof is complete.
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REMARK. We do not know if the operators SQsr and S{^) are
unitarily equivalent in general. But this is evidently true if J7~ e
£0(©), that is if the extension <$(jn is canonical.

4* Generalized resolvents of nondensely defined symmetric
contractions* 1. Recently M. G. Kreϊn and I. E. Ovcarenko [11,12]
gave a description of all generalized contraction resolvents of a
symmetric nondensely defined contraction in a Hubert space. In
this section we show that such a description can be easily obtained
from the "classical" results of M. G. Kreϊn [15] and Theorem 3.2.

Let S be a nondensely defined symmetric closed contraction in
H, that is S is an operator and we have

(Sf,g) = (f,Sg),\\Sf\\£\\f\\ (f,genS)).

A generalized resolvent Rz of S, whose corresponding minimal self-
adjoint extension S of S is a contraction, is called a selfadjoint
contraction resolvent (s.c.-resolvent).

By a classical result of M. G. Kreίn [15] with S there are
associated two canonical selfadjoint contraction (c.s.c.-)extensions Sμ

and Sx of S such that the inequalities

hold true for an arbitrary c.s.c.-extension S of S. The extensions
Sμ and SM can be characterized in the following way. If 9Ϊ: = SD(S)1,
then for an arbitrary c.s.c.-extension S we have S — Sμ (S = SM) if and
only if

d{E{X)φ, φ) = ^ /f1 d(E(X)φ, φ) = c

i 1 + λ °° \J-i 1 - λ

for all φ G % φ Φ 0(see [15, Theorem 4]). Here E denotes the spectral
function of S.

2. Let © be a Hubert space with dim © = dim Sβ, S: = Ŝ , Γ a
bijection from © onto 9Ϊ and set

(4.1) Λ: = (Sμ - ίδ/)-^, Q(«): - Γ*(Sμ - ̂ 1 ) "^

(see (2.2), (2.5)). Then the set of all generalized resolvents of S (in
the sense of (3.1)) is given by (3.2). Evidently Sιsr) = Sμ if
^μi = {{0, g}: g e ©}. Define the selfadjoint c.l.r. ^"M in © by
SM. By Proposition 3.4 J7~ΰι is a bounded operator. Moreover we
have

(4.2) j ^ - 1 = Γ-^Sj, - Sμ)Γ*-'

Indeed, (3.2) and (4.1) imply (x real, |a?| > 1)
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(sM - xiy1 - (sμ - xiγι

= -{Sμ- xI)-ψ(Q(x) + ^MΓn{S

hence

(Sμ - xI)(SM - xinSv - Sμ) = Γ(Q(x) +

The relation (4.2) now follows from Corollary 3.5 by letting aj—• ©o.
By (4.2) the c.l.r. ^~u is an operator if and only if the completely

indetermined case holds for S, which means if and only if φ e 9ΐ\{0}
implies SMφ Φ Sμφ.

PROPOSITION 4.1. The function Q in (4.1) has the properties

(4.3) 8 - lim Qία?)"1 = - J ^ 1

(4.4) s - lim Q{x)~ι = 0 .1 0

Proof. The existence of the limits on the left hand sides follows
from the monotonicity of Q, e.g.,

(4.5) i < x < y = > o < -Q(α )-1 < -Q{yYι .

For the proof of (4.3) we may evidently assume that © = 3i and that
Γ is the embedding operator of Sft into φ. Then it follows from
[15, §1. 2. d] that we have in 9ΐ

that is -Qix)-1 = Γ(xl - S^^Γ. But x \ 1 implies (xl - Sμ)Ά | (I - S,,)*,
and (4.3) follows from the identity (I - Sμ)Λ = SM - Sμ and (4.2).

To prove (4.4) (see [11, Lemma 2.1]) consider x < y < — 1 and
denote s - l i m ^ ^ Q{y)~ι = : K ̂  0. Then we have

0 ^ Q^) 1 7 2 ^^)- 1 ^^) 1 / 2 ̂  I,

therefore (# | — 1)

0 ^ Q1/2(α;)iίQ(α;)1/2 ̂  I,

which implies 0 <Ξ K1/2Q(x)Kί/2 ^ J. On the other hand we have for
arbitrary φ 6 9̂ , φ Φ 0, with the spectral function i£> of S/e

lim {Q{x)φ, φ) = [ flff'ft'to 9>) = oo ,
»T-i J-1 1 + λ

hence i ί = 0,
10 s-lim denotes the times in the strong operator topology.
11 For the definition of H* (H ^ 0) see [15].



ON GENERALIZED RESOLVENTS AND Q-FUNCTIONS 157

COROLLARY 4.2. The following inequalities hold true:

1 if x>l,QOsΓ
Q{xYι > 0 if x < - 1 .

3. THEOREM 4.3. Let S be a symmetric nondensely defined
closed contraction in φ, S = Sμ and let Γ, Q be chosen according to
(4.1). Then the relation

(4.7) Rz = (Sμ - zIΓ ~ Γz(Q(z) + ^(z))-Tf

establishes a one-to-one correspondence between the set of all s.c-
resolvents Rz of S and the set of all ^~ e £(©) with the following
properties:

(1) άΓ is holomorphic in Ext [ — 1,1] (including °o).
(2) If x 6 ΛM--1, 1], then 0 ^

Proo/. Suppose S m , ^ e ϊ ( @ ) , is an s.c.-extension of S. We
consider a real #0, |α;0| > 1, assuming e.g., x0 > 1, and the selfadjoint
c.l.r. S~ (x0). According to Theorem 3.2 it generates a canonical
selfadjoint extension S{9~{x°]) of S, and we evidently have

(4.8) (S<-(*o)> _ χj)-ι

The c.l.r. S1^**" is an operator. Indeed, (S(^< o» _ ^ I ) " ^ = 0 implies

o = ((ŝ > - ααry ^

that is /0 = 0. Now from (4.8) the numerical range of (S^^-xJ)-1

is contained in the interval [1/(1 + x0), l/(x0 — 1)], therefore S{SΓ{XQ))

is even a contraction and we must have

This implies

(4.9) (S* - xiγι ^ (S( "̂(fl;o)) __ xIyi ^ ( ^ _ a.j)-i f

and from (4.9) it follows

(Q(x) + ^ " ω ) - 1 ^ 0, (Q(x) + jr(xo)Γ ^ (Q(x)

Letting x —> co we get 0 ^ ^"(α^o)"1 ^ ^ ϊ " 1 by Corollary 3.5, that is
άΓ 6 S(@) satisfies condition (2). Condition (1) is satisfied by Prop-
osition 3.3 and the following remark in §3.3.

Let now ^e%{%) with properties (1) and (2) be given. The
Cayley transform
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SU^ΊOO = I - 2i(jT(z) + iiy1 (I z I > 1)

can be analytically continued to z = °° by (1). Moreover for real
z = χf I x I > 1 it follows from

= - / + 2ί(iJ - jTix)-1)-1 ( M > 1)

and (2) that the spectrum of E_<(,̂ ~)(aO has a uniformly positive
distance from — 1 . Therefore

(XΓ = i(I ~ 2(1 + QL

is holomorphic in x, \ x | > 1 and the limit

: = lim ^ ( a ? ) " 1 = lim <((J - 2(1

exists as a bounded operator. Furthermore, as ||Q(α;)|| —»Ό if α?
we have from (1.8)

oo .

\im(Q(x) + JTix))-1 = lim ^"(ajJo-^PoQίccJ^-ίa V1 + 1 ) " ^

Now it is easy to see that the c.l.r. S (^ ) is an operator. Indeed,
suppose (S ( ^ ) - xl)~% = 0 (\x\ > 1). By (4.7)

/o = Γ(Q(x) + ^-(x)rτ*(Sμ - α JΓ/o ,

and tending α? —> oo we get /0 = 0.
The proof of the theorem will be complete, if we show that

(Q(x) + J7~(x)Yι is holomorphic for real x, \x\ > 1.
Suppose first that J7~ is an operator valued function, that is

©oo = {0} in Proposition 1.2. Then

(Q(χ) + ^-(x))-1 = ^-(xΠQix)-1 + ^-(xΓΓQ^Γ ,

and it remains to show that Q(^)"1 + J7~(x)~ι has a bounded inverse
if I a? I > 1. But (4.6) and (2) imply

Qix)-1 + ^(x)-1 < - ^ i " 1 + ^"(x)-1 ^ 0 (a? > 1) ,

Q{x)~ι + ^"(α;)- 1 > 0 (α? < -1) ,

and the conclusion follows. If ©«, ^ {0} in Proposition 1.2, we have
with the orthogonal projector Po onto ©0 (see (1.8))

(Q(x) + JT{x)Γ - (P0Q(α;)P0

and the same argument can be repeated.

4. Let again S be a symmetric nondensely defined contraction
in φ. We consider an interval [a, β], where — o o < ^ < — 1, l < / 3 < c o .
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From M.G. Kreίn's results quoted above it immediately follows that
in the set of all canonical selfadjoint bounded extensions S of S with
the property σ(S) a [a, β] there are two extremal extensions Sιμtβ)

9

and SMJ), such that for all such extensions S we have

Here Sμ

a'β)(S{M>β)) is characterized by the property

(4.10) [MEMML = „((' d(E«W, f) = „ r e s p \
)a X - a \J« β - X )

for all /eS)(S) J , where Eμ{EM resp.) denotes the spectral function
of &?»{&£-» resp.). It is evident that S ^ " = S'"'1' and S&β » = Sir1-")-
We shall show that these conditions are satisfied, if in (4.7) we put

= -Q(a) (JT(Z) = -Q(β) resp.) .

Indeed, we have e.g., for x < a, f 6$

(S'-β'«» - xIΓf = (Sμ - xl)-1 - Γx(Q(x) - Q(a))-T f,

lim (x - α)((S(-«""' - xIΓf, f) = -{Q\a)-ψ*J, Γ*f) ,

and the statement follows if we show that / e ® ( S ) L , / Φ 0, implies
Γ*f Φ 0. But from f0 e S(S) 1 , Γ*f = 0 we get /0 = (S - αi)flr0 for
a certain gQ e ®(S) and ((S — ^/)^0» ô) = 0, that is gQ = 0 and /0 = 0.

PROPOSITION 4.4. Iw ί/̂ β seί of all selfadjoint extensions of the
symmetric nondensely defined contraction S the extension S{

μ

a'β)(S{M'β))
is characterized by the following property: <x (β resp.) is an isolated
eigenvalue of Sμa>β) (S{M>β) resp.) with corresponding eigenspace

$ί(S - aiy (ΪR(S - βI)L resp.) .

Proof. We shall only prove the statement about Sι

μ"
}β). Relation

(4.5) implies that (Q(z) — Q(α))"1 is holomorphic in z in a neighbor-
hood of a(z Φ a). We obtain the corresponding projector Pa onto
the eigenspace e.g., from (4.11)

Pa = -ΓaQ'(a)-Ύ* ,

hence Sμ

a>β) has the stated property.
Conversely it is easy to see that xn e ®(S),yn 6 ?H(S—aI)L, xn—yn—>0

(%->oo) implies α^-+0. Indeed, we have (yn, (S — ccl)xn) = 0 and
(xn, (S - al)xn) = (xn - yn, (S - al)xn)->0 (n ->oo), therefore ||xn\\ ->
0. This proves that ®(S) + 3ΐ(S — aI)L is a closed subspace of φ.
With the argument used above it follows § = ®(S) + 3t(S -
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and it is easy to see that the operator

[Sf, /
S f' =Jm ]af, felR(S-aiy

is a self ad joint extension of S. Hence S = Sμ

a'β).
These considerations can easily be extended to the case of an

infinite interval.

PROPOSITION 4.5. If S is a symmetric nondensely defined con-
traction in φ and — oo < a <̂  — 1, then there exist two extremal
selfadjoint extensions S{

μ

ίOO): — S{

μ

a>1) and Sβ'^ of S such that each
canonical selfadjoint c.l.r. extension S of S with S ^ al has the
property

(4.12) (S{

μ

a^ - xiy1 ^ (S - xiy1 ^ (Sfϊ'TO) - xiy1

for all x < a. The extensions Sμ

ά>oo) and <Sϊ)0O) resp. are characterized
by the properties

d(Eμ(\)f, f) =

(4.13) J α λ - a

Eμ denotes the spectral function of Sμ

ayOO).

Proof. We introduce the transformation φ

φ(S): - I + 2(x - a)(S - xl)'1 .

Then φ(S) is a symmetric contraction, and if S is a selfadjoint
extension of S, S ^ αj, the operator φ(S) is a c.s.c.-extension of

Then

(4.14) φ(S)μ ^ φ(S) ^ φ(S)M ,

and φ(S)μ is characterized by the relation

(4.15) Γ
J-i λ + 1 = oo for all

where Fμ denotes the spectral function of φ{S)μ.
If we define

S'α ~>: = xl + 2(x - a)(<p(S)μ - I ) " 1 ,

Sϊ-»: = «7 + 2(* - αJ^S)^ - I)"1 ,

the inequalities (4.12) easily follow from (4.14). Furthermore the
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first condition in (4.13) in equivalent to (4.15) by a simple transfor-
mation. Proposition 4.4 implies that ΪR(φ(S) — I)1 is the null space
of φ(S)M - J, that is ϋt(φ(S) - I)1 = ©OSίf 0 0 ' ) ' . On the other hand
3ΐ(<p(S) — I)1 = S(S) 1 and the statement follows, since the given
characterizations of S{

μ

a>co) and S^)OO) are independent of x. Moreover,
the first relations in (4.12) and (4.13) imply

(4.16) S^ - Sμ

a ι) .

COROLLARY 4.6. // a = —1 we have Sμ~
ltOO) = Sμ, if a < —1 the

extension Sμ

atO0)(SlMt0O)) corresponds in (4.7) to ^~(z) = —Q(a) (^~(z) =
0 resp.).

The first statement immediately follows from the characterization
(4.13) of S}rloo) and the corresponding property of Sμ. The statement
about SI?'00*, a < — 1, follows from (4.16) and the considerations after
(4.12). Finally, put in (A.Ί)^(z) = 0. It follows

(S - zI)~ιΓ - (Sμ - ziyT - (Sμ - ziγιΓQ(zYιΓ*(Sμ - ZIYT = 0 ,

that is S(Q) D(S)(S)1. On the other hand S(O)1 = ®(S)=)®(S), hence
S(0) = ©(S)1. It follows from Proposition 4.5 that S = SVαoo).

5. We shall now generalize the statement of Theorem 4.3. If
S is a nondensely defined symmetric contraction with the Q-function
Q as in Theorem 4.3, we extend the inverse Q(α )"1 to [ — <*>, °o]\( — l, 1)
by defining (in accordance with Proposition 4.1)

Q{xYι , x e (— °o, oo)\[-1, 1] ,

*s M 9 $ — i ,

0 , x= - 1

+ o o n , x = — oo

— oo f X = + oo .

Let -co <; a ^ — 1, 1 ^ / 5 ^ +oo. The generalized resolvent Rz is
called an [α, /S]-resoϊvβ^ if the corresponding minimal selfadjoint
extension S of S has the property

(4.17) al^S S βl.

Here, e.g., -co <^ S <^ βl, β < oo should be read as S <: # ί .

THEOREM 4.7. Let S, S = S ,̂ Γ, Q 6β as m Theorem 4.3 ami
suppose — oo <;#<; — 1, l ^ / 3 ^ o o . Tfee^ ίfee relation (4.7) establishes
a one-to-one correspondence between the set of all [a, β]-resolvents

11 Of course the values ±00 have only a formal meaning, which will become clear
from the following.
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of S and the set of all ^" e £(©) with the following
(1) ^ is holomorphic in Ext [a, β] (including oo if a and

β are both finite).
(2) If x 6 ( - oo, + oo)\[α, β], then ~Q(a)+ ^ ^{x)~ι ^ -Q(β)+.

Proof. If a = — 1, β = 1 this statement coincides with Theorem
4.3. In the proof we shall consider only the case a — — 1, β = +°°,
the other cases being similar.

Suppose S(jr) is an extension of S with the property SiJΓ) 2̂  —/.
Choose x0 < — 1 and consider the canonical extension S{jr{xo)). The
relation

implies SίJr{X0)) ^ - / . By Proposition 4.5

(S(̂ (*o)) _ ^j)-! ^ ( ^ __ a.j)-i for all x < - 1 ,

hence

(4.18) (Q(B) + ^"(aJo))"1 ^ 0 for all x < -1 .

But we have Q(x) + ^(x0) == {{/, Q(cc)/ + g}: {/, g}eJΓ(x0)}, therefore
(4.18) implies

(Q(x)f + g, f) ^ 0 for all {/, g) ejT(xQ) and α; < - 1 .

Letting x —> — oo we get (gr, /) ^ 0, that is ^~(x0) ^ 0. By Proposition
3.3, &~ is holomorphic on (—©o, —1).

Suppose now conversely that a c.l.r. ^" 6 £(©) is given, which
is holomorphic in (—oo, —1) and has the property ^(x) ^ 0 if xe
( - oo, -1). From Q(x) > 0 (x < -1) we have Q(x) + J ^ » > 0, hence
(Q(α ) + ^(x))"1 is an operator. Moreover this operator depends
holomorphically on x. To show this we may assume that _̂ ~(α?) is
an operator. Then we have

+ U)~V + (<J(α) - il){^-{x) + ίl)"1)-1 (a? < -1)

and since J7~ is holomorphic in (— oo, — l) the operator on the right
hand side is holomorphic in the same interval. Therefore P(Sι^)—zI)~1

is holomorphic in (—°°, —1), and the statement follows from Prop-
osition 3.1.

6. Let A be a nonnegative c.l.r. in φ. Then the range 9ΐ(A+J)
is closed and the inverse (A + I ) " 1 is an operator. Indeed, {fn, gn) e
-A, £ • + / • — 0 ( n — o o ) implies | | / J Γ ( < ^ /•) + ll/.ll — 0. But as
(gn, f%) ^ 0 we get fn —> 0, gn —> 0 and the conclusion easily follows.
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The c.l.r. S

(4.19) S:= -1 + 2(A + I)'1

is therefore also an operator and it is easy to see that it is even a
(generally nondensely defined) contraction. Moreover, there is a
one-to-one correspondence between the set of all nonnegative extensions
A of A and the set of all contractions S, which are extensions of
S, given by the relation

S - - / + 2(Ά + / ) " 1 .

Defining two extremal extensions AM and Aμ9 corresponding in this
way to SM and Sμ resp., M. G. Kreίn's results quoted above or (4.19)
and (4.8) imply the following proposition.

PROPOSITION 4.8. Let A be a nonnegative c.l.r. in SQ% Then there
exist two nonnegative extensions Aμ and AM of Ay such that for each
nonnegative extension A of A and for arbitrary x < 0 the inequalities

(4.20) (Aμ - xl)~\ ^ P(Ά xl)-1 ^ (AM - xiy1

hold true.

Here Aμ coincides with the Friedrichs' extension of the c.l.r. A
introduced in [2]. The relation (4.20) implies

(4.21) AM(0) c Ά(0) (Z 4,(0) .

In order to give a description if all nonnegative extensions of A
we may assume that A = Aμ n AM holds (otherwise we consider the
uniquely determined nonnegative extension Aμ n AM of A instead of
A). If in this case A is an operator, then (4.21) implies that AM is
also an operator. As was shown in [2], Aμ is an operator if and
only if S)(A) is dense in Q.

Theorem 4.3 implies a description of all nonnegative generalized
resolvents of A through the Cayley transformation (4.19). The for-
mulation of this result can be left to the reader. We give here a
different description of the nonnegative generalized resolvents of A
using a special Q-function in the case that the defect numbers of A
are finite and equal. This is an immediate generalization of the main
result of [15] to the case of c.l.r. In order to get a similar result for
arbitrary (including infinite) equal defect numbers a more sophisticated
definition of the Q-function has to be used (comp. [13]).

Let A be a nonnegative c.l.r. in φ with finite and equal defect
numbers and assume A = AM Π Aμ. By FM{EM) we denote the spectral
function of the operator part {AM\ of AM (of the maximal extension
SM of the Cayley transform S in (4.19) resp.). Then we have from [15]
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Γ d(E«W<P> ^ = co if φ
J-i 1 — t

if<
+ 1

and these relations imply

\°—d(FM(\)φ, φ) = - if ^ G 3t(A + I ) 1 ,
Jo λ

φ)<oo if φ e ?H(A + J)' .

Hence 3ί(A + 7)J c S((i ¥ )ί ' 2 ), and (A^J''2/1^ is a bounded operator.
Consider the Q-function QQ:

Q0(z): = CQ + Γ ί / ^ + (z

with

where the operators Γz are defined according to (2.1) with A =
Then we have for ξe®,ξΦθ

lim Q0(x) = Co + Γ^Γ^ + lim (x + 1) p
a j-oo »i-oo Jθ λ — X

_1 = 0 ,

lim (Q0(»)ί, f) - (Cof, f) + 2||Γ_tί ||
2 + {h^Γ^F^Γ^ζ, ζ) = °° .

a TO J o X

The proof of the following theorem is similar to the proof of
Theorem 4.7, and we omit the details.

THEOREM 4.9. Let A be a nonnegative c.l.r. in φ with finite
and equal defect numbers n (0 < n < co) and assume A — AM Π Aμ.
Then the relation

(4.22) Rz = (AM - zIΓ - ΓXQlz) + ^ ( 2 ) ) " ^ ?

establishes a one-to-one correspondence between the set of all non-
negative generalized resolvents Rz of A and the set of all functions
^Γ e %(®) with the following properties:

(1) J7~ is holomorphic in Ext [0, co).

(2) JT~(aO ^0 if x<0.
The canonical nonnegative resolvents of A correspond to ^ e
with property (2), in particular the extension Aμ is given
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In the case of a linear nonnegative and densely defined operator A
with arbitrary defect number n(^<^) a formula of type (4.22) was
given in [13].
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