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The notion of a Q-function and M. G. Krein’s formula
for the generalized resolvents of a symmetric operator are
extended to the case of a symmetric linear relation. Ap-
plications to linear non-densely defined bounded operators as
well as to semibounded linear relations are given.

In some problems related to the spectral theory in Hilbert
space it is more natural and at the same time often less restric-
tive to use symmetric linear relations (in the terminology of [1],
subspaces in the terminology of [2-4]) instead of symmetric oper-
ators. Hence the question arises if the theory of generalized
resolvents of symmetric operators can be extended to symmetric
linear relations. In [4] a description of all generalized resolvents
of a symmetric linear relation was given, following the lines of
A. V. Straus [5] in the operator case. It is the aim of this paper
to generalize M. G. Krein’s formula for the generalized resolvents
of a symmetric operator (see [6, 7]) to the symmetric linear relation
case. This can be done rather easily by means of the Cayley trans-
formation, using the results of [8]. However, in this connection
there arise natural problems and questions: To introduce and to
study the Q-function of a linear relation, to prove criteria for the
selfadjoint extension of the given symmetric linear relation being an
operator, to study the special case of a bounded nondensely defined
operator etc.

After the necessary definitions and their simple consequences in
§1, the §2 is devoted to a study of the @-function. From arguments
similar to those in [9, 10] it follows that every function @, whose
values are bounded operators in a Hilbert space and which is holo-
morphic in the upper half plane and has the property

(*) ImQ(z) >0 if Imz>0

is a @-function of a symmetric linear relation. Let us remind here
that in the operator case besides (*) additional conditions appear (see
[9]). In §3 the generalization of M. G. Krein’s formula to symmetric
linear relations is proved. In terms of the Q-function a necessary and
sufficient condition for a minimal selfadjoint linear relation extension
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to be an operator follows. In §4 we give a description of all gen-
eralized selfadjoint contraction resolvents of a symmetric nondensely
defined contraction 7', which is equivalent to a recent result of M. G.
Krein and I. E. Ovcarenko [11, 12]. Moreover, we consider those
generalized resolvents of T, which correspond to minimal selfadjoint
extensions having their spectra in an interval [a, 8], —~ fa =1,
1< B < . As an application some statements about nonnegative
linear relations are proved, which complete corresponding results of
E. Coddington [2]".

Finally we mention that some statements of this paper can be
generalized to the case of unequal defect numbers (for the operator
case see e.g., [14]) as well as to symmetric linear relations in a /7,-
space, which will be considered elsewhere.

This paper ia dedicated to Professor M. G. Krein, to whom we
are obliged not only for many inspiring ideas in his works and
personal communications, but also for our acquaintance.

1. Preliminaries. 1. Let § be a Hilbert space. A closed linear
relation (c.l.r.) in © is a (closed) subspace of £*= 9D D (see [2],
[3], [4]). Evidently, the graph of a closed linear operator in & is a
clr. T in © with the property that

(1.1 {0,9}eT implies g=0,

and, vice versa, a c.l.r. T with this property is the graph of a closed
linear operator in . In the following we therefore identify closed
linear operators and c.l.r. with the property (1.1), that is, instead
of {f, g}eT in this case we shall also write g = T'f. If T isa c.Lr.
in  we put

DT): ={f:{/, g e T}, R(T): = {9:{f, 9} e T},

T(): ={g:{f, 9} eT}.
The sum of two c.l.r. and the product of a c.l.r. with a complex

number are defined in the usual way (see e.g., [2]). The inverse of
a c.l.r. T is the c.l.r.

T =g, 1S, 9t e T}
and the adjoint 7* of T is defined by
T*: = {{h, k}: (g, h) = (f, k) for all {f,g}eT}.

Two cl.r. T in  and T’ in ' are called unitarily equivalent if
there exists an isometric mapping V of § onto &’ such that {Vz, Vy}e
T’ if and only if {z, y}eT.

! In the oberator case deeper results are contained in [13].
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Every c.l.r. T in $ can be decomposed into a direct and orthogonal
sum

1.2) T=T,@T.,,
where T, is a closed linear operator, ¥(7,) = D(T), and T.: =
{0, g} e T}.

Suppose now that the space 9 is the orthogonal sum $ = 9, P 9,
of two subspaces 9, , with corresponding orthogonal projectors
P, P, resp. and that the c.l.r. T in § has the form 7T =T, 7.,
where T, is a c.l.r. in §, and T., = {{0, g}: g € 9,}. Let Q be a bounded
linear operator in § with D(Q) = $ and suppose that the inverse
(T, + PQP)™" in &, is an operator. Then (T + Q)* is also an operator
and we have

(1.3) (T + Q)" = (T, + PQP)'P, .

Indeed, (T + Q)" = {{Qf, + g0+ 91, fo}: {fo, 9} € Ty, 9. € 9.}, Now Qf, +
g, + 9, = 0 implies PQP,f, + g, =0, hence f, =0 as (T, + P,QP,)™
is an operator. Evidently (T + @)™'g, = 0,

(T + Q) = {PQP,fs + g, + g1y Sy {d 9t €T, 9.€ 9.},

which is equivalent to (1.3).

2. A cl.r. T is called dissipative if
" {f,9}eT implies Im(g,f) =0,

maximal dissipative if T is dissipative and T'> T, T dissipative
imply 7" = T, and symmetric if

{f,9}eT implies Im(g, f)=0.

It is easy to see that a c.l.r. T is symmetric if and only if T c T*.
A ec.l.r. T is called selfadjoint if T = T*.

By a fundamental theorem of Arens [1], the c.l.r. T is selfadjoint
if and only if T, in the decomposition (1.2) is a selfadjoint operator
in 9, = R(T..)*.

Let T be a symmetric c.l.r. in §. If A is a bounded selfadjoint
linear operator in § with D(4) = 9 the symbol T' = A means (g, f) =
(Af, f) for all {f,9}eT, and T < A is defined in the usual way as
—T = —A. However, the writing A < T < B with two bounded
selfadjoint operators A, B means that T is also an operator and that
these inequalities hold in the usual operator sense. A symmetric
ce.l.r. T is called nonnegative if T = 0.

Let T be a symmetric c.l.r. in §. We define

2 @ denotes the orthogonal sum in 92
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M2 = RT — 2I), R, = M .

There exist two cardinal numbers %, and n_, the upper and lower
defect numbers of T, such that we have

dimRN; =n, for all zeC. .}
The Cayley transform €, (T) (2,#7%,) of the c.l.r. T in § is defined as
V:=C€,(T): ={g — 2f, 9 — Zf}: {f, 9} e T},

the inverse g,, of the Cayley transformation €, is given by
T=%.(V):={{g—f,29 —2/}:{f,9teV}.

If T is symmetric, V is an isometric operator in § with D(V)=;,,
R(V)=M;,. The Cayley transformation €, establishes a one-to-one
correspondence between the set of all symmetric (selfadjoint) c.l.r. 7'
in § and the set of all isometric (unitary resp.) operators V in .
If 2,€C_, €, also defines a one-to-one correspondence between the set
of all dissipative (maximal dissipative) c.l.r. T in § and the set of
all contractions V (contractions V with (V) = § resp.) in . If
T, T are two c.l.r. in § and (D 9) resp. with T'C 7", then T is
called an extension of T. If in this case ' = 9, then T’ is said to be
a canonical extension of T. Evidently T'CT” is equivalent to €, (T)C
€., (T"). It is well known (see e.g., [4]) that every symmetric c.lr.
admits selfadjoint extensions and that it admits canonical selfadjoint
extensions if and only if its defect numbers n, and »_ are equal.
With the Cayley transformation €, we consider the mapping

1.4) 22— MR): = (2 — Z)(z — 2)"

of the compact complex plane into itself. An easy calculation yields
V=M = {{g — 2f, @ — 2)(g — 2/)}: {f, g} e T},

hence

(1.5) R(V — \z)I) = R(T — zI).

The spectrum o(T) of the selfadjoint c.l.r. T is by definition the

spectrum of its operator part T, the extended spectrum o,(T) of T

iso(T) if T=T, and o(T) U {ce} if T = T,. With the mapping A

introduced above we have N\0.(T)) = o(V), Ma(T)) = a(V)\{1}. The

resolvent set o(T) (extended resolvent set p,(T)) is the complement

of o(T) (0.(T) resp.).
If T is a selfadjoint c.l.r. in § and z € p(T), then (1.3) implies

(1.6) (T — 2I) = (T, — zI)"'P, ,

3 C denotes the complex plane, C.(C-) the open upper (lower resp.) half plane.
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where P, again denotes the orthogonal projector onto D(T,) = R(T..)*.

A subspace 9, of 9 is called a reducing subspace of the dissipative
c.lr. T if §, is a reducing subspace of the Cayley transform V =
€_.(T), Imz, > 0, that is if D(V) decomposes as

DV)=D,DD, D, C Y, D.C Y

and we have V®,C9,, VDCH!. Denote by V, the operator V|, in
©,- Then the c.l.r. T\: = §_, (V) is called the c.l.r. induced by V in
the reducing subspace 9,.

3. The symmetric e.l.r. T in 9 is called stmple if

1.7 O=cls. {N,=RT —zI)':2 #7z} .}
Evidently, (1.7) is equivalent to

N, = {0}.

252

Since for arbitrary z€C and c.l.r. T we have R(T. — zI) = R(T..),
a simple symmetric c.l.r. is an operator. Moreover, it is not difficult
to see that for a simple c.l.r. T in § there is no subspace 9, in §
which reduces 7 and on which T induces a selfadjoint operator.

ProposIiTION 1.1. A symmetric cl.x. T in © is the orthogonal
sum T =Ty @T, of a selfadjoint cl.r. Ty in M: = N,z M, and o
simple symmetric c.l.r. T, in I*.

Proof. Choose z, # z, and consider the Cayley transform V: =
€, (T). It is an isometric operator and can hence be written as the
orthogonal sum of a (uniquely determined) unitary operator V. in
a subspace M': = NNV — AI) of $ and a simple isometric operator
V, in M'*. (Here an isometric operator is called simple if there is
no reducing subspace on which it induces a unitary operator.) Relation
(1.4) implies M = M. The statement hence follows if we take Ty: =
%}ZQ(VWI)) Ts: = %zo(vs)'

4. Let & be a Hilbert space. By IT(®) we denote the set of all
functions z — .7 (z) with the following properties:

(1) If zeC, then .7 (2) is a maximal dissipative c.lL.r. in &.

(2) If z,eC, then the Cayley transform 7°(z): = €_, (7 (?)) is
a holomorphic function of z in C,.

It can be shown [4] that this definition is correct, that is the
property (2) is independent of the point z,€ C,.

We always assume that 7~ € (@) is extended to C_ by .7 () =
7 (2)* (ze(C.). The domain of holomorphy ®., of .7~ consists by

4 c.l.s. = closed linear span.
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definition of C, U C_ as well as of those intervals of the real axis
on which 7" has unitary boundary values 7°(v) = lim,.c, .-, 7°(2),
zedD, N R

We put

T (@) =F_.,(7 (@) @eD-NE).

Evidently .7 (x) is a selfadjoint c.l.r.

By ,(®) we denote the subset of ¥(®) consisting of all .7~ ¢ I(S)
which are independent of z. Then evidently ®, = C and 7 (z) =
7 is a selfadjoint c.l.r. in .

PROPOSITION 1.2 (see [7, §4.3]). If 7 €3(®), then there exists
o decomposition & = &, P .. of the space & with the following
properties:

(1) For all zeD,, ®, and G, are reducing subspaces of .7 (z).

(2) IfImz>0,then the induced c.l.r. 7 (z), in &, 1s & marimal
dissipative operator and the induced c.l.r. 7 (2)., in G, is

T (#)e = {{0, g}: g € B} .

Indeed, choose z,€ C, and consider the Cayley transform 7°(z) =
€_.(7 (2)). It is a holomorphic and contraction valued function if
2€D,-N(C.UR"Y). Hence by the maximum modulus principle the
set of fixed vectors of 77°(z), that is the set of solutions f of 7°(z)f =
f, is independent of z if 2e®,-N(C,UR"). Now the statement
follows without difficulty.

Let .7 €¥(®), z€ D, and suppose Q is a bounded linear operator
such that the inverse (P,QP, + .7 (2),)"* is also an operator. As a
consequence of (1.3) we then have

1.8 @+ 7 ()" = (PRP + T (2)) P,

where P, again denotes the orthogonal projector onto &,.

2. The Q-function of a symmetric c.l.r. 1. Let S be a sym-
metric c.l.r. in § with equal (finite or infinite) defect numbers n, =
n_=:n(>0). We choose a Hilbert space @ of dimension n. The
scalar product in & will be denoted by the same symbol (-, -) as the
scalar product in §. Let S be a canonical selfadjoint extension of
S. By I'. we denote a function on o(S) with values in [®, $J and
the following properties:

(1) I, maps ® one-to-one and continuously onto %, (zep(S)),
(2) # e p(S:) implies

5 [, 9] is the set of all bounded linear operators from ® into 9, [®, ®] =: [6].
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(z—0 ', —T)=(@S —zD)"I.=8—LI)T,.
From (2) it follows that after fixing a z,¢€ ,O(S') we have
(2.1) I.=(I+ (z—2)S—zD)T,, .

LEMMA 2.1. If z,€ p(g) and I',, 18 an arbitrary one-to-one map-
ping from & onto N, , then the function I'. in (2.1) has properties

1) and (2). Moreover, if S and S are bounded operators and I' is
a mapping from & onto N = D(S)*, we have

(2.2) I,=@ -z .

Proof. Property (2) of I', is obvious from (2.1) and [4, Lemma
2.4]. If :e® and he;, that is h = g — zf with a certain {f, g}¢
S, we have (S — z2I) (g — zf) = f and

(& h) = (s + (2 — 2)(8 — 2) 7T, )8, g — Zf)
=59 -2 +(E—2)S —2)7 (g — Zf)
=(Fz0§,g—§of)=0,
since g — Z,f e M5, = N,
In order to see that I', is onto, take f e, and consider f;: =
I+ (2, — z)(S' — 2,0)™")f. Then a simple modification of the previous
argument yields f, €M, , that is f, = I, ¢ with a (unique) £€® and

Fe=+@—2)8—2De=T+ @ —2)8—2Df=1.

The injectivity of I", follows from (1.6), the last statement is a
consequence of the fact that for bounded operators S and S the
operator (S — z,I ), maps & onto D(S)*.

The adjoint I'} of I', is the mapping from £ into & defined by
the relation

4 5 =61,

This implies I'}M; = {0}, and '} maps N, bijectively onto &.

2. With the function I". we associate the so-called Q-function
Q@ of the e.l.r. S in © in the following way. @ is defined on p(.§),
its values are in [®] and it satisfies the relation

— * .
(2.3) QACL = rer. (e teols)).
It follows (comp. [7]) that @ is defined by (2.3) up to a selfadjoint
operator C¢[®] and has the form
Q@) = C + (2 — &)X, + (2 — 2)(z — Z)[X(S — =)',

2.4 A
2.4) =C — Wl XI,, + (2 — Z2)[ X (2, z,€ 0(S), 2, = © + 1¥Y,) .
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Conversely, every function of the form (2.4) satisfies (2.8). Therefore,

after choosing a selfadjoint operator C in & and the mapping I,

from & onto N, the @-function @ is uniquely determined by the

pair (S, So), consisting of the symmetric c.l.r. S and one of its can-

onical selfadjoint extensions S. Evidently, @ is holomorphic on p(S’).
If S and S are bounded operators we have

(2.5) QR) = C + I'*(S — zI)'I" .

The relation (2.4) evidently implies the following properties of Q:

(i) @ is piecewise holomorphic in C, U C_ and we have Q(z) =
Q(z)*(e[®)]).

(ii) ImQz) >0 if Imz > 0.°

We shall prove that these properties are characteristic for Q-
functions of c.l. relations, (comp. [9]), that is the following theorem
holds true.

THEOREM 2.2. A function Q satisfying the conditions (i) and
(ii) above ts @ Q-function of a simple symmetric c.l.r. S in o Hilbert
space . The cl.x. S and the corresponding canonical selfadjoint
extension S are up to unitary equivalence uniquely determined by Q.

Proof. If dim ® = 1 this theorem immediately follows from [10,
§1]. The proof in the general case given below is close to [9, §3].7

With every ze€C,UC_ we associate a symbol ¢, and consider
the linear set £ of all finite formal sums f

fi=3¢et,, £€@ (zeC.UC),

where only finitely many elements &, are different from zero. If
f,0e8 f=3¢et,9=>¢m, a scalar product (-, -) is defined in &
by the equation

_ *
(2.6) (£, 00 = 5, (SR =97 ).
2z,¢ Z — C
Condition (ii) implies that the scalar product is nonnegative, therefore
8 can be canonically embedded into a Hilbert space §. In & we
consider the subset

Dy:={f=2¢6e8DE =0}

8 A>> B for two bounded operators A, B means that there exists a 7 > 0 such that
A—B=T7l

7 A shorter proof can be given using M. A. Nalmark’s theorem on the extension
of generalized spectral functions. However, we prefer to give a direct proof as this
immediately carries over to the general case of a II,-space.



ON GENERALIZED RESOLVENTS AND Q-FUNCTIONS 143

and define on ®, the operator S,
S.fi=Xze,8, if f=3¢66€9,.
It is easy to see that the relation

(8., 9)= (£, 89) (f,9¢eD)

holds true. Fix z,€ C,. The continuity of @ in z, implies for arbitrary
£e®

(6.6 — 6,8, 68—, 8)—0 if z— 2.
On the other hand, if >}¢.5,€® and &, = 0 we have
€5: — ezo z
g. = Z%ﬁ €D, (Sl - zoI)g = Zezéz ’
— %

hence the range (S, — 2,1)D, is the set of all f = 3] ¢,£, € & with the
property £, = 0. Therefore this range is dense in € and the same
is true for (S, — z,1)D..

If fe(S, — z2I)D, that is f = (S, — 2,D)g, g €D, we define U, f: =
(S, — zI)g. As (S, — z,I)g = 0 implies g = 0 this definition is correct
and U, maps the dense set (S, — 2,I)®, onto the dense set (S, — Z,I)D..
It can be easily checked that we have

(UL, UL = (£ F) (/7 e(S — 21)D)

therefore U, generates a unitary operator U in 9.
Its inverse Cayley transform S

S = {(U — Dg, (U — zI)g}: g € 9}

is a selfadjoint c.l.r. by §1.2. Evidently it is an extension of S..
For z # Z we define linear operators I, from & into £ by

rt=c¢é (£€©).
Then (2.6) implies
@) (e Ty = (YA=CQ ) o=
z2—C
and it is easy to see that I, is a continuous mapping from & into
9. Its adjoint I'} is given by
(i T8 =18 (fed, ce@),
and from (2.7) the relation

F#(e8) = I'iré = %}%@is =7
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follows. Moreover, if z+#z, and Im z =0, then (S, — z2I)(¢.6 — ¢,,8) =
(# — z,)e.,£ and

el =68 + (2 — 2)(S — 2])7e,.f = &,6 + (2 — 2)(S — 2I) 7', & .
The operators I', therefore satisfy the equation
I,=(I+ (z—2)S—zD™I,, .
Consider the following (evidently closed) restriction S of S:
S:={{f,9}eS: (g — 2f, ['36) =0 for all £e@}.

This definition is independent of 2z,. Indeed, we have for arbitrary
2 # 2,

(9 —2f,138) = (9 — 2af + (2 — 2)f, ':8) = (9 — zf, ['38)
+(zo - Z)(f, FZS)

and it remains to show that (9 — 2,f, I';€) = (z — 2z,)(f, [';¢) for all
£e®, {f, g} S. Since

{8;5_ EEOE, 5;5}€S’-— EOI: (S’— ZOI)* and {f, g — zof}e:s’_ zOI

zZ — %,
we get
(f, 676) = (g — 2of, (B — Zo) (636 — €3,8) = (9 — S, (F — Z)'e36)

and the assertion follows.
The symmetric c.l.r. S is simple. Indeed, if z # Z we have

o

RIS —zI)={g—=2f:(g —=2f, ;) =0 for all £, {f, g} €S}, hence
heN.e: R(S — 2I) implies (h, e;6) = 0 for all £, z 2. But the
elements €3¢, £€®, z + Z, generate the space § and k = 0 follows.
By §1.8 the symmetric c.l.r. S is an operator.

It follows from the uniform positivity of Im @ and the relation
(2.7) that the range of I'; is closed. Therefore this range is the
exact defect space R(S — zI)*, and the first part of the theorem is
proved.

Let now S’ be another simple symmetric c.l.r. and let § be a
canonical selfadjoint extension of S’ in §’ such that the Q-function
of S’ corresponding to the selfadjoint extension S’ is Q. Then we have

2.8) &z)z—?%@ﬁ — s, = I'*I" (2,eC,UC.).

Here I', denotes a mapping from & into 9’ satisfying conditions (1)
and (2) of §2.1. Define a transformation V from $’ into $ by
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VIig=1T% (2eC,UC_,£€0).

It then follows from (2.8) that V is an isometric operator. The
simplicity of S’ and S implies that its domain and its range are dense
in  and 9 resp. Therefore V can be extended to a unitary operator
from ' onto . Moreover, we have

VI + (2 — O — 2T =VIL + (z — O)(S — IV},

and V(S — 2I)* = (§ — 2I)"'V follows. But this evidently implies
that the Cayley transforms @,0(§’) and @,0(87) are unitarily equivalent.
Hence the same holds true for the c.l.r. § and S.

Now {f', g'}eS, Vf' = f, Vo' = g,{f, g} € S yields

(9" —=f', I'28) = (g — 2f, ['58),
which implies that V establishes a unitary equivalence between S’
and S.
COROLLARY 2.8. A function Q satisfying the conditions (i) and
(i) admits a representation
(2.9) Q@) =C+ (2 — 2 )[*I + (z — 2)(z — Z)[*(S — zI)™'T"

with o Hilbert space 9, a boundedly invertible operator I' from &
wnto 9, a bounded selfadjoint operator C in & and a selfadjoint

e.l.r. S in D (2o # %o 2, = @, + 1Y,) with the property
(2.10) $=cls. {I+ @z —2)S—2]) )V G®:z =7} .
Moreover, if a representation

Q@) =C + (2 — a)[*I" + (2 — 2)(z — Z)[*(S — 2I)™[

holds with a Hilbert space A@, a boundedly invertible operator I' from
& into @, a bounded selfadjoint operator Cin & and a selfadjoint
c.l.r. S in @, then the subspace

Pr=cls.{(I+ @z —2)S — 2)H)N'®: 2z = 7}

8 a reducing subspace for the c.l.r. S.  Furthermore S [3, and S
are unitarily equivalent.

The (up to unitary equivalence) unique c.l.r. S with properties
(2.9) and (2.10) will be denoted by S,.

In the following theorem let S be a selfadjoint c.l.r. in §, I a
boundedly invertible mapping from a Hilbert space & into §, C a
selfadjoint bounded operator in & and
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Q@) = C+ (2 — 2)[*[" + (2 — 2)(z — Z)[*(S — 2I)™'T"
(zo F 2y By = z, + iyo) .

THEOREM 2.4. Let £€®, &+ 0. Then

(1) I'¢eD(S) if and only if lim,;.. y(Q(1y)§, §) = 0,
(2) I'éeD(S) if and only if lim,;, y Im (Q(1y)E, &) = <.
Proof. (1) The representation (1.6) of (S — zI)™* yields

Q)& &) = ¥y (1Y — z)] + (Y — 2)(@Y — ZNS, — syI)™)
X POFE’ POFS) + y—l('iy - xo)((I - PO)[‘§9 (I - Po)FE)
+ ¥y~ (C¢, &)

where S, is the (selfadjoint) operator part of S and P, denotes the

orthogonal projector onto @(S). The arguments in [9, §3] imply
that the first term on the right hand side tends to zero if y { oo,
the same is obvious for the last term. Therefore

1@%@(@)& £) =0 if and only if (I — P)['& =0

and the first statement of the theorem is proved.
(2) Now we start from the identity

y Im (Q(19)¢, &)
= y*|(I + iy — 2)(S, — iy)")PLE|P + *||(I — P)Tz|.

If IeeD(S), that is if (I — P)IE = 0 we evidently have
}lifrgylm (QiY)&, &) = o .

If Fse@(S’) = ®(S,) we conclude as in [9, Theorem 3.2] that the
conditions

lim y Tm (Q(in)¢, §) = == and I'zeD(S)
are equivalent. Now (2) easily follows.

COROLLARY 2.5. The selfadjoint c.l.r. S in Corollary 2.3 is an
operator tf and only if the function Q has the property

(2.11) lim %(Q(iy)&, £ =0 forall e® c=0.

Indeed, by the first part of Theorem 2.4 condition (2.11)is equivalent
to I', & D(S). This yields I, < S)(S) for all z = z. The subspaces
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I'®, z + Z, generate the space  and it follows = @(S).

COROLLARY 2.6. The domain D(S) of the simple c.l.r. S in
Theorem 2.2 is dense in D(S) if and only if Q has the property

(2.12) limy Im (Q(iy)s, &) = = for all £€6,50.

Indeed, ©(S) is not dense in ®(S) if and only if there exists an
element f,e D(S), f, # 0, f, L D(S). Consider g,: = (S — 2,I)"'f, € D(S).
We have g, L (S — z,1)D(S), that is g, = I, & with a certain £e@,
£+ 0. But by the second part of the theorem such an element g, = 0
exists if and only if (2.12) does not hold.

3. Generalized resolvents of a symmetric c.l.r. with equal
defect numbers. 1. We consider a symmetric c.l.r. S in § with
equal finite or infinite defect numbers n, = n_ =:n(>0). Let the
c.l.r. S in $5 % be a selfadjoint extension of S. By P we denote

the orthogonal projector of  onto . The function z — R,:
(3.1) R, =PES — 2z,

defined for ze p(S)(D C,UC.) and with values in [9] is called a
generalized resolvent of S. _
A selfadjoint extension S in § of S is called minimal, if

‘6 = 'S-émin: = e¢.l.s. {(I -+ (z — zo)(g — zI)—l)Sé: P -z—} .
The relation

(I + &= 2)S — 2D T+ € — 2)(S — D)
=(I+ (=D — 2)z — Z2)E. — €~ 2)C — 2)R)S, 9)

implies that there is a one-to-one correspondence between the set
of all generalized resolvents and the set of all minimal selfadjoint
extensions of S, if we only identify unitarily equivalent extensions.
Evidently, given an arbitrary selfadjoint extension S of S, such that
(3.1) holds, then the minimal extension Sum in Y corresponding
to R, and the restriction of S to the reducing subspace

cls. {(I + (2 — 2)S — zI)™)9: 2 = 7}
are unitarily equivalent.

PropoSITION 3.1. If R, is a generalized resolvent of the sym-
metric c.l.r. S, then the domain of holomorpvhy of R, coincides with
the resolvent set of the corresponding minitmal selfadjoint extension

gmin Of S'
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Proof. Itisobvious that R, is holomorphic on p(§ mim)- Conversely,
let z be real and suppose R, is holomorphic at z = z. Choose a circle
C with centre , such that B, is holomorphic on the corresponding
closed disc. Then it easily follows from the resolvent identity and
Cauchy’s integral formula that

|, (G = 2D + (€ — 2)(S e — EDIF
I+ € = 2w — D 7g)dz = 0

for arbitrary f,ge$ and (, C’eC+~U C_ outside C. As the set of
elements of the form (I + (£ — 2)(Smin — CI)7)S is total in Quin, the
spectral function of (S.in), is constant at z, that is € p(Snn).

The generalized resolvent R, of the symmetric c.l.r. S is called
canonical (nonnegatwe), if the correspondmg minimal selfadjoint
extension S,... is canonical, that is @mm = .@ (nonnegative resp.).

2. In order to describe the set of all generalized resolvents

of S we fix a canonical selfadjoint extension S’, choose a Hilbert
space @ with dim ® = n and construct an operator family (I',), z # %,
according to (2.1). By @ we again denote a corresponding Q-function
(see (2.4)). Then the following extension of Krein’s formula for the
generalized resolvents of symmetric operators holds true.

THEOREM 3.2. Let S be a symmetric c.l.r. in § with equal defect
numbers n > 0. The formula

(3.2) B.=(S—2)" - T.QR + .7 (2)'I%

establishes a one-to-one correspondence between the set of all gemer-
alized 7'eso£vents R,of S and the set of all .7 € (B). The generalized
resolvent R, is canonical if and only if 7 € Zy(O).

Proof. This theorem follows from [8, Theorem 4.1] with the
aid of Cayley transformation. Indeed, fix a z, with Imz, > 0 and
introduce in $ the isometric operator

U:.=¢€,(5
and its unitary extension
U: =€, (S).

Then we have dim (U)* = dim R(U)* = n. We choose &": = D(U)*
and denote by 4, the orthogonal projector onto &'. Furthermore
define
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=00 — )4, (N #1), 4.2 =0
and the characteristic function X of the couple U, U by
X(\): = MU — AT*) 4, ,
where

Ur, fedU)

Tf: =
! 0, fe®.

There is a one-to-one correspondence between all unitary extensions
U of U and all selfadjoint extensions S of S, given by U = @,O(S)
Consider a unitary extension U = €, (S) of U in a Hilbert space $O
$. The operator-valued function V:

(8.3) V, = P — \0) s

is called a generalized resolvent of U. By [8, Theorem 4.1] the
formula

Vo= —A0)" + 4,,P(\4E (M <1),

@4 P(): = (I — EO)YUI — X()*& (W) — X(A)*)

establishes a one-to-one correspondence between the set of all gener-
alized resolvents V,; of U and the set of all functions & with values in
[®'], holomorphic in {3: M <1} and with the property ||& (\)[|S1(M<1).
Here V, is canonical (that is U in (3.3) can be chosen in § = 9) if
and only if & (\) is a unitary operator independent of A\(|An| < 1).

From the definition of the Cayley transformation and relation
(1.4): A = (2 — Z))/(z — 2,) it follows

(8.5) 2y (I —N0) " = (2 — Z2) + (2 — 2)(& — Z)(S — zI)*(Im z > 0)

and the corresponding relation between S and U.
Introducing the operator family (I)), z # z:

It:=4, Tk =+ (2 — 2)S — ) ™),

it is not difficult to see that the operators 4, and I', are connected
by the following relations

4, = — z-—zOF, o z——zorf* .
21y, 21y,

Hence (3.4) implies

(3.6) B=(S—2) — 2l1 rPOYTE (Imz > 0).

0
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Define a Q-function Q' of S by
3.7 Q'(r): = —iy 2, + (2 — 2)[ T, .

Then we have

e~ QQ° _ ey
4

2 —
and the relation
XOW)* =€, (Q(2) (Imz>0)
holds. Introducing the c.l.r. 7 '()
38 T ={EN) - DS, —iyENT) + D} f e}
we get
I— X0 = {{((QR) + ) f, 2iy.f}: fe®},

I = X0z 0" = {fi — Q@) — DS, L E0HA
= Q@) + w.Df; 1, e ®},

PO = {(@Q@) + iy ) f, — Q@) — iy)E ()1,
2iy(I — & (NS} fie®F,

and it is easily seen that this last expression equals 2iy,(Q'(z) +
7 '(z))!, that is (3.6) has the form

(3.9) R =(S—z2D)" —I'(Q() + 7 '()"TY .

Moreover, (3.8) establishes a one-to-one correspondence between the
set of functions E appearing in (8.4) and the set of all .77’ e I(®).

Consider now the Hilbert space ® and the operator family (I",),
z # Z, appearing in the theorem. Let J denote the partial inverse
of I';, that is the mapping from N; = @ onto & with the property

JIr; =1 .
We then have I', = I',J and (8.9) implies
RB.=@ -z — IJQR + T @) s .
Introducing
T @): ={f, gp: (TS, J*gt e T (2)}
and the function Q: Q(z): = J*'Q’(z)J* we obtain

Qz) — Q(C)* = J*1 Q'(z) — Q'(C)*J—1 = J*TIUR JL = [
2 — C 2 — z ¢ 2 [l

and
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(3.10) JQ'@) + 7)) = QR + .7 ().

The statement of the theorem now follows without difficulty.

Let us mention that for z # z it follows from property (ii) in
§2.2 and (1.3) that (Q(z) + .77 (2))™* in (3.2) belongs to [®] and that
the formula

Q) + 7 ()7 = (PR(R)P, + .7 (2)) P,

holds true.

3. Relation (3.2) establishes a one-to-one correspondence between
Z(®) and the minimal selfadjoint extensions S of the symmetric c.l.r. S
if we identify unitarily equivalent extensions. The minimal selfadjoint

extension S corresponding to .7~ € I(®) will in the following be denoted
by S¢.2

PrOPOSITION 3.3. Under the conditions of Theorem 3.2 the set
0(S*7) belongs to the domain of holomorphy of 7 € Z(S).

Proof. Evidently we can take © =& = D(U)*. Then (38.7)
implies
(3.11) Z0Me)) =1 — 21y(F () + 1y,[)™" (Imz>0).
The function & extends to {\:|\]| > 1} by
g =0 )™
(see [8]), hence (3.11) extends to the lower half plane according to
Z0z) = I — 2iy(F'?) + ) (Imz=0).

Here we put 9 '(z) = .7 '(z)*(Im 2z > 0). The extended function &
is holomorphic in {\: |N| = 1}. Thus it remains to show that & is
holomorphic at Mz)™ if = is a real point in o(S“’). We observe
(see [8, p. 390])

(3.12) & (M@)™) = AU Ma)I — Vi) »

therefore the statement follows if we show that V.., is holomorphic
at . But from (3.5) it follows

20y, Voswr = (@ = Z)PUI + (@ — 2)(S7 — &) 7)]s

and it remains to show that the operator on the right hand side has
a bounded inverse.
Suppose there exists an element f, €9 such that

8 The correspondence .7~ — 8¢ of course depends on S, the chosen Q-function and
Is
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3.13) (o +(@—2)S —al)™)f)=0 forall fe9.

Denote f;: = P,f,, where P, is the orthoprojector onto D(S“’) and
let E, be the spectral function of the operator part S{”’ of S“.
Then we have

0= (fi fi + (@ = a)(S7 — o)D) = |~ L= 2a®m 0152, 1

Now 2z € p(S”’) implies f; = 0 and from (3.13) we get f, =0. Fur-
thermore, suppose there exists a sequence (f,) in 9, ||/.]| =1, such
that P(f, + (x — 2))(S¥? — 2I)7'f,) — 0 if m — c. Then a simple
modification of the previous argument gives a contradiction.

REMARK. If S is a bounded operator it easily follows that
7 is holomorphic also at oo, which means that the corresponding
function & from (3.8) is holomorphic at » = 1.

PROPOSITION 3.4. Suppose the c.l.r. S and S in Theorem 3.2 are
bounded linear operators, S is mondensely defined and I', Q are
chosen according to (2.2) and (2.5) with C = 0. If the extension S
of S is canontcal, then the inverse .7 ' of the c.l.r. 7 €I () is
a bounded operator.

Proof. Evidently (3.2) implies that 4(:): = (@) + 7)) is a
bounded operator in &, which depends holomorphically on z if ze
0(S”) N p(S) and that

(8.14) ||4(2)|| = K< = for all sufficiently by large |z| (K constant) .

Assume there exist elements f,edD(9), ||f.ll=1,n=1,2, ---, such
that for some g, € .7 (f,) we have ||g,||—0 (n—). It follows f, =

A2) Q) S, + 9.) and 1 = || 4(z)( Q) f. + 9.)||. But if |z| and n are
large enough the right hand side is arbitrarily small, contradiction.

Therefore {f, g} €.7 implies ||g|| = 7||f|| with a certain ¥ > 0, that
is 7 ' is a bounded operator.

COROLLARY 3.5. Under the assumptions of Proposition 3.4
(3.15) |d(x) — | —>0 if x— 0,
Indeed, if .9 is an operator we have
d@) — T 7 = —d@)RQ@)T ",

therefore (3.14) and ||Q(z)|| — 0 if z — « imply (3.15). If .7 (0) + {0}
denote by P, the orthoprojector onto ®(7 ) and by .7, the operator
part of .. Then (comp. (1.8))
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14() — 77 = [[[(PR®)P, + 7)™ — T 1P|

and (3.15) follows in the same way.

4, In [4, Theorem 6.7] a description of the set of all generalized
resolvents of a symmetric c.l.r. S with arbitrary (even unequal) defect
numbers is given. Here we shall establish the connection between the
parameter function V in [4] and the function .7~ in Theorem 3.2.

We consider the c.l.r. K,: = R + zI° (Im z > 0).

Then V(z) in [4] is the restriction

(I + 27:?/0(Kz — 7:7101')—1”9&;0 (zo = ”:yo) ’
mapping ; into N,. On the other hand, using (3.5), it is not
difficult to check that this operator coincides with the restriction of
Me)I — Vi) to M. Now (3.12) implies & (M(2)™) =U*V(2) or, by
(8.7), 8.8) and 131", = Ils;,

V(2) = U — 2iy/Q'(2)) + 7'(2))™) ,
and we finally get from (3.10) and the relation U = r,

V(z) =U — 2iy,Ul';(Q(z,) + 7 (2)) ' T'5*
=U — 20,0 (Qzy) + T (2))'T'% .

5. In this section S is a simple symmetric c.l.r. in § with equal
defect numbers and S a fixed canonical selfadjoint extension of S.
We give a necessary and sufficient condition on .7~ in order that
S is an operator.

Let us remind that with the fixed selfadjoint extension S a Q-
function @ of S is given by (2.3) or (2.4). Now for each .7~ € I(®)
we define a function @, with values in [®]

(3.16) Q. (2): = Q(2) — (Q(») — Q(z)*)QR) + 7 (2))(Q(2) — Q(z,)) .
It is easy to see that for 7 € Z(®) the function @ - is a @-function

of S corresponding to the canonical selfadjoint extension S,

LEMMA 3.6. The function Q. in (3.16) has the properties (i)
and (i) of §2.1.

Proof. Multiplying (3.2) from the left by (z — z,)(z — Z)I'%, from
the right by I',, and adding C + (z — «,)I"AI",, with the operator C
from (2.4) we get
(B.17) Q-(2)=C + (2 — @) 5, + (2 — 2)(z — Z)[}(SY — =I)7'T,,,
9 In [4] this c.l.r. is denoted by T(2).
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which implies

Q-(2) — Qf(C)*
z2—C
=TI+ € — 2)( 8 = TN + (2 — 2 )8 — D)), .
The operator I + (z — 2,)(S* — zI)™* has the bounded inverse operator

I+ (2, — 2)(SY? — 2,I)™* and the statement easily follows.
The main result of this section can now be stated.

THEOREM 3.7. The c.l.r. S is an operator if and only if

(3.18) lim —;—(Qf(iy)é, =0 forall £¢G.

Proof. It follows from Lemma 3.6 and Corollary 2.3 that the
function Q- admits a representation (2.9) with a selfadjoint c.l.r.
S =8, in a Hilbert space

Dot =cls  {(I + (2 — 2)(Se, — 2I) )®: 2 = Z} .

By Corollary 2.5 S, is an operator if and only if (3.18) holds true.
On the other hand we have the representation (3.17). Therefore the
second part of Corollary 2.3 implies that the subspace

©.: = cls. (I + (2 — 2)(SY — 2I)™)[, ®: 2 + 7}

is reducing for S, and S*[3,, Sy, are unitarily equivalent and can
thus be identified.

It remains to show that S is an operator if and only if S,
is an operator.

If 8“7 is an operator then its restriction S,  is evidently also
an operator. Assume S“7(0) # {0} and S,_(0) = {0}. The space B
in which S is defined has a decomposition .‘?5 = él@é. Let SV =
So D S be the corresponding decomposition of S¢. The assumption
S(0) # {0}, Sq.(0) = {0} implies S*(0) = .§(O), hence S“7(0) L 51.
We consider an element feS(0). Then f: = Pf L I',® and

(£, D)) = (PF, D)) = (F, DAS)) = {0},

since D(S) = D(S¥) = S(0)*. Therefore we have f = g, — z,f, with
a certain {f, g.} €S, and (g9, — 2./, fo) = 0, that is (g, /o) = z(f, fo)-
On the other hand {f, g} € S implies that (g,, f,) is real, hence f, = 0.
Since S is simple we also have g, = 0. We conclude f = 0, hence
FedO 9, that is S(0)c PO $. Now it is easy to see that this
is a contradiction to the minimality of S“”. Therefore S'"(0) = {0}
implies S,_(0) # {0} and the proof is complete.




ON GENERALIZED RESOLVENTS AND Q-FUNCTIONS 155

REMARK. We do not know if the operators S,, and S are
unitarily equivalent in general. But this is evidently true if 7 ¢
T(®), that is if the extension S“ is canonical.

4. Generalized resolvents of nondensely defined symmetric
contractions. 1. Recently M. G. Krein and I. E. Ovéarenko [11, 12]
gave a description of all generalized contraction resolvents of a
symmetric nondensely defined contraction in a Hilbert space. In
this section we show that such a description can be easily obtained
from the “classical” results of M. G. Krein [15] and Theorem 3.2.

Let S be a nondensely defined symmetric closed contraction in
H, that is S is an operator and we have

(81, 9) = (£, Sa), ISFI = 1Al (S g€DAS)) .

A generalized resolyent R, of S, whose corresponding minimal self-
adjoint extension S of S is a contraction, is called a selfadjoint

contraction resolvent (s.c.-resolvent).
By a classical result of M. G. Krein [15] with S there are

associated two canonical selfadjoint contraction (c.s.c.-)extensions S,
and S, of S such that the inequalities

(8.1, ) = (SF, /) S Sufi F) (fe$)

hold true for an arbitrary c.s.c.-extension S of S. The extensions
S. and Sy can be characterized in the following way. If 9t = ¥(S),
then for an arbitrary c.s.c.-extension S we have S =S, (S = S,) if and

only if
L dENe, ) _ S‘ dENe, @) _
S—l 1+ < -1 1— - resp.)
for all pe ‘R,:p + O(see [15, Theorem 4]). Here £ denotes the spectral

function of S.
2. Let ® be a Hilbert space with dim ® = dim®, S: =S, I a
bijection from & onto N and set

4.1) I'y: = (S, — 2I)7'I", Q(): = I'*(S, — 2zI)'I"

(see (2.2), (2.5)). Then the set of all generalized resolvents of S (in
the sense of (3.1)) is given by (3.2). Evidently S =8, if 7 =
T ={{0, g}: g € ®}. Define the selfadjoint c.l.r. .7, in @ by S» =
Si. By Proposition 3.4 77! is a bounded operator. Moreover we
have

4.2) Tut =TSy — S)r+" .
Indeed, (3.2) and (4.1) imply (x real, |z| > 1)
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Sy —2I)™ — (S, — «I)™*
= —(8, — 2I) Q@) + ) ' *(S, — »I)™,
hence
(S, — 2I)Sy — «I)(Sy — S,) =T'Q®) + T 'T*.

The relation (4.2) now follows from Corollary 8.5 by letting x — .
By (4.2) the c.l.r. .77 is an operator if and only if the completely
indetermined case holds for S, which means if and only if @ e R\{0}

implies Sy@ # S.p.

PROPOSITION 4.1. The function Q in (4.1) has the properties

(4.3) s — lifn Q)™ = — !
(4.4) s — th_rl Qx)=0.°

Proof. The existence of the limits on the left hand sides follows
from the monotonicity of @, e.g.,

(4.5) 1< <y=—0< —Q@@) "' <K —Qu) .

For the proof of (4.8) we may evidently assume that & = & and that
I' is the embedding operator of N into . Then it follows from
[15, §1. 2. 6] that we have in N

('@l — 8)u) = —Q(x) )

that is —Q)™ = I'(®l — S,)xI". But x| 1 implies (I — S.)s | (I — Sy,
and (4.3) follows from the identity (I — S.), = Sy — S. and (4.2).

To prove (4.4) (see [11, Lemma 2.1]) consider z < y < — 1 and
denote s — lim,;_, Q(y)* =: K= 0. Then we have

0= Q@R ') =1,
therefore (y | —1)
0 =< Q@KQ@)*=1I,
which implies 0 < K'*Q(x)K'/* < I. On the other hand we have for
arbitrary @ €, ¢ # 0, with the spectral function E, of S,

. Y UBMNP, @)
lim (Q(2)p, @) = LW = oo,

hence K =0,

10 glim denotes the times in the strong operator topology.
1 For the definition of Hxz (H = 0) see [15].
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COROLLARY 4.2. The following inequalities hold true:

Qe)'K 7 if =>1,

(4.6) Q)™ >0 if z< —1.

3. THEOREM 4.3. Let S be a symmetric mnondensely defined

closed contraction in 9, S = S, and let I', Q be chosen according to
(4.1). Then the relation

(4.7) R, =(S.— )" = Q) + 7 ()%

establishes a one-to-one correspondence between the set of all s.c.-
resolvents B, of S and the set of all 7 ¢ I®) with the following
properties:

(1) 7 s holomorphic in Ext[—1, 1] (including o).
(2) If xeR\[—1,1], then 0 < 7 () £ T

Proof. Suppose S, 7 € Z(®), is an s.c.-extension of S. We
consider a real z,, |2,] > 1, assuming e.g., %, > 1, and the selfadjoint
clr. 9 (%). According to Theorem 8.2 it generates a canonical
selfadjoint extension S‘” = of S, and we evidently have

(4.8) (S = — g 1)t = P8 — ) .

The c.l.r. S ig an operator. Indeed, (S“" o — 2, I)7'f, = 0 implies

0= (S — D) fu ) = —L A",
z,— 1

that is f; = 0. Now from (4.8) the numerical range of (S*“ ¢ —g )™
is contained in the interval [1/(1 + 2,), 1/(z, — 1)], therefore S*” ‘o
is even a contraction and we must have

S, = SV < S,
This implies
(4.9) (Sy — &)™ = (874 — 2I)™ = (S — @)™,
and from (4.9) it follows
Q@ + .7 (@) 20, Q@) + I (@) = Q@) + 7).

Letting £ — c we get 0 < 7 (2,)* < 9 x" by Corollary 3.5, that is
7 € Z(®) satisfies condition (2). Condition (1) is satisfied by Prop-
osition 3.3 and the following remark in §3.8.

Let now 7 € ¥(®) with properties (1) and (2) be given. The
Cayley transform
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C (I )e) =I—2i(T () + i) (z]>1)

can be analytically continued to z = o« by (1). Moreover for real
z =g, 2| > 1 it follows from

C_ (T )w)= =T+ 29(¢] — 7 ()™ (x| >1)
and (2) that the spectrum of €_,( 7 )(x) has a uniformly positive
distance from —1. Therefore
T (@) =9I —2( + C_(T)x)™)
is holomorphic in z, |#| > 1 and the limit

T ()" = lim (@)™ = lim (I — 2(I + €_(F)(@)™)

T—o z

exists as a bounded operator. Furthermore, as ||Q(z)|| — 0if ¥ — <,
we have from (1.8)

lim (Q(zx) + 7 (x)) ™ = 1i_’m T (@) (PR(x).7 (x);* + I)'P, = T ()" .
Now it is easy to see that the c.l.r. 8" is an operator. Indeed,
suppose (S — zI)™'f, =0 (lz| > 1). By (4.7)

fo=T'(Q®) + 7 ()'I'*(S, — zI)'f,,

and tending x — «~ we get f, = 0.

The proof of the theorem will be complete, if we show that
(Q(x) + .7 (x))™* is holomorphic for real z, |z| > 1.

Suppose first that .7~ is an operator valued function, that is
®.. = {0} in Proposition 1.2. Then

Q@) + 7 @) =7 (@7QE@™ + 7 (2)) Q)"

and it remains to show that Q(x)™* + .7 ()™ has a bounded inverse
if |z| > 1. But (4.6) and (2) imply

Q)"+ I (@) 'K - I '+ T (@)*1<0 (x>1),
Q)™+ 7 (@)*>0 (< —1),

and the conclusion follows. If &. s {0} in Proposition 1.2, we have
with the orthogonal projector P, onto &, (see (1.8))

(Q(x) + j—(w))—l = (PoQ(x)Po + 7 (%)) P,

and the same argument can be repeated.

4. Let again S be a symmetric nondensely defined contraction
in . We consider an interval [e, 8], where —cc< @< —1,1 <8< co.
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From M.G. Krein’s results quoted above it immediately follows that
in the set of all canonical selfadjoint bounded extensions S of S with
the property o(S)C[e, 8] there are two extremal extensions S,
and S, such that for all such extensions S we have

S < § < 857
Here S»?(Si#) is characterized by the property

1) [UEWLD ([ LEBWED )

for all fe®(S)*, where E.(E, resp.) denotes the spectral function
of Si=P(S# resp.). It is evident that S = S»» and Si# = Si#).
We shall show that these conditions are satisfied, if in (4.7) we put

T (2) = —Q(@) (J (;) = —Q(B) resp.) .
Indeed, we have e.g., for z < ¢, fbe@

@.11) (ST —gI)'f = (Sy — «l)™ — Q@) — Q) I'Lf,
T lim @ — (ST D), ) = —(@ @I, T2,

and the statement follows if we show that f e ®(S)*, f # 0, implies
T':f+0. But from f,eDS), I'*f =0 we get f, = (S — al)g, for
a certain g,€D(S) and (S — al)g,, 9,) = 0, that is g, = 0 and f, = 0.

PROPOSITION 4.4. In the set of all selfadjoint extensions of the
symmetric nondensely defined comtraction S the extension Si?(SiF?)
is characterized by the following property: c (B resp.) is an isolated
etgenvalue of S? (S§P resp.) with corresponding eigenspace

RS — al)t (RS — BI)* resp.) .

Proof. We shall only prove the statement about S*?. Relation
(4.5) implies that (Q(z) — Q(«))™ is holomorphic in z in a neighbor-
hood of a(z # @). We obtain the corresponding projector P, onto
the eigenspace e.g., from (4.11)

Pa = _FaQ’(a)—IF: ’

hence S{*# has the stated property.

Conversely it is easy to see that x, € O(S), v, € R(S—eal)*,x,—y,—0
(n — o) implies z,— 0. Indeed, we have (y,, (S — al)z,) =0 and
(., (S — al),) = (X, — Ya, (S — al)z,)— 0 (v — o), therefore |z,||—
0. This proves that D(S) + R(S — al)* is a closed subspace of .
With the argument used above it follows § = (S) + R(S — al)*,
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and it is easy to see that the operator

ce  [SF, FeDS)
8f: = af, feRS — al)'

is a selfadjoint extension of S. Hence S = Si»?.
These considerations can easily be extended to the case of an
infinite interval.

PROPOSITION 4.5. If S is a symmetric nondensely defined con-
traction tn O and —oo < @< —1, then there exist two extremal
selfadjoint extemsions Si=: = S and S§= of S such that each
canonical selfadjoint c.l.r. extemnsion S of S with S = al has the

property

(4.12) (S — ) = (8 — al)™ = (S — al)™

for all x < . The extensions S and S resp. are characterized
by the properties

Swﬁ@;—ﬂ(—fﬁéﬁ = o for all feDS), f=0, and
Si@='(0) = D(S)* resp. ,

where E, denotes the spectral function of Si™>.

(4.13)

Proof. We introduce the transformation @
P(S): =1+ 2(x — a)(S — xI)™.

Then @(S) is a~symmetric contraction, and if S is a selfadjoint
extension of S, S = al, the operator o(S) is a c.s.c.-extension of
@(S). Then

(4.14) P(8), = @(S) = P(S)

and ¢(S), is characterized by the relation

(4.15) S UEMNL S o for all feD(p(S)): = RS — zI)*
-1 M+ 1
F#0,
where F', denotes the spectral function of ¢(S),.
If we define

Sl = ol + 2(x — a)((S), — I)™*,
Sip: = ol 4 2w — a)(@(S)y — )7,

the inequalities (4.12) easily follow from (4.14). Furthermore the
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first condition in (4.18) in equivalent to (4.15) by a simple transfor-
mation. Proposition 4.4 implies that R(e(S) — I)* is the null space
of ¢(8),, — I, that is R(p(S) — I)* = D(Si¥=). On the other hand
R(@(S) — I)* = D(S)* and the statement follows, since the given
characterizations of S{*=’ and S}’ are independent of #. Moreover,
the first relations in (4.12) and (4.13) imply

(4.16) Sy = Sgen

COROLLARY 4.6. If a = —1 we have S = S, of @ < —1 the
extension S(Si=) corresponds in (4.7) to .7 (z) = —Q(a) (J (2) =
0 resp.).

The first statement immediately follows from the characterization
(4.13) of S, "= and the corresponding property of S,. The statement
about Si»=, « < —1, follows from (4.16) and the considerations after
(4.12). Finally, put in (4.7).9 () = 0. It follows

(8 — 2Iy'T = (S, — 2I)"'T" — (S, — 2I)"'T'Q(z)"I'*(S, — 2I)" =0,

that is S(0) > ®(S)*. On the other hand S(0)* = D) > D(S), hence
S0) = (S)*. It follows from Proposition 4.5 that S = S,

5. We shall now generalize the statement of Theorem 4.3. If
S is a nondensely defined symmetric contraction with the @-function
Q as in Theorem 4.3, we extend the inverse Q(x)™ to [— <o, ]\(—1, 1)
by defining (in accordance with Proposition 4.1)

Q@)™ , we(—e, =)\[-1,1],

~Ju, ®=1,

Qz)t: = , ©=—1
+0011 ’ x:—-oo
— o0 , & = 400,

Let — <a< —1,1<B < +oc. The generalized resolvent E, is
called an ch, Bl-resolvent if the corresponding minimal selfadjoint
extension S of S has the property

(4.17) al <8 < pBI.
Here, e.g., — <8 < BI, 8 < = should be read as S < BI.
Tueorem 4.7. Let S,S= S, I',Q be as in Theorem 4.3 and

suppose —o < @< —1,1<B < . Then the relation (4.7) establishes
a one-to-one correspondence between the set of all [a, B]-resolvents

L Of course the values oo have only a formal meaning, which will become clear
from the following.
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of S and the set of all 7 € Y®) with the following properties:
(1) 7 4s holomorphic in Ext[a, B] (including « if a and
B are both finite).
(2) If ze(—oc0, +o)\[a, B], then —Q(a)" < .7 (2)' < —Q(B)".

Proof. If ¢ = —1, 8 =1 this statement coincides with Theorem
4.3. In the proof we shall consider only the case @« = —1, 8 = + o,
the other cases being similar.

Suppose S~ is an extension of S with the property S“ = —1I.
Choose z, < —1 and consider the canonical extension S ¢,  The
relation

(S — g I)™ = PS8V — x,I)™
implies S > —J. By Proposition 4.5
(S — gt < (S, — zI)™ for all 2 < —1,
hence
(4.18) Q@)+ T (@) =0 foral z< —1.

But we have Q(x) + 7 (%) = {{f, Q) f + g}: {f, 9} € 7 (x,)}, therefore
(4.18) implies

Q) +9g,f)=0 for all {f,g}e 7 (x,) and 2 < —1.

Letting z — — o we get (g, f) =0, that is .7 (%) = 0. By Proposition
3.3, .7 is holomorphic on (— <, —1).

Suppose now conversely that a c.l.r. .7 € ¥(®) is given, which
is holomorphic in (—<, —1) and has the property .7 (x) =0 if z¢
(—o0, —1). From Q(x) » 0 (x < —1) we have Q(x) + .7 (x) > 0, hence
(Q(x) + 7 (%)) is an operator. Moreover this operator depends
holomorphically on . To show this we may assume that .7 () is
an operator. Then we have

Q@) + 7 (@)™
= ( (@) + i) + Q@) — )T (@) + i) (&< —1)

and since .7~ is holomorphic in (—c, —1) the operator on the right
hand side is holomorphic in the same interval. Therefore P(S“—zI)™
is holomorphic in (—<, —1), and the statement follows from Prop-
osition 3.1.

6. Let A be a nonnegative c.l.r. in §. Then the range R(A+1I)
is closed and the inverse (A + I)™* is an operator. Indeed, {f,, 9.} €
A, g, + fo— 0(n — o) implies [|f,I7*(ga fa) + |[fall = 0. But as
(Gn [2) =0 we get f,—0, g,— 0 and the conclusion easily follows.
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The c.l.xr. S
(4.19) S:=—-I+2A4+ 1)

is therefore also an operator and it is easy to see that it is even a
(generally nondensely defined) contraction. Moreover, there is a
one-to-one correspondence between the set of all nonnegative extensions
A of A and the set of all contractions S, which are extensions of
S, given by the relation

S=—-I+2A+ID".

Defining two extremal extensions A, and A,, corresponding in this
way to Sy and S, resp., M. G. Krein’s results quoted above or (4.19)
and (4.8) imply the following proposition.

ProPOSITION 4.8. Let A be a nonnegative c.l.r. in . Then there
exist two nmonnegative extensions A, and A, of A, such that for each
nonnegative extension A of A and for arbitrary x < 0 the inequalities

(4.20) A, —a)'<PA 2D <Ay, - z])
hold true.

Here A, coincides with the Friedrichs’ extension of the c.l.r. A
introduced in [2]. The relation (4.20) implies

(4.21) A,(0) C A(0) = A,0) .

In order to give a description if all nonnegative extensions of A
we may assume that A = A, N A, holds (otherwise we consider the
uniquely determined nonnegative extension 4, N A4, of A instead of
A). If in this case A is an operator, then (4.21) implies that 4, is
also an operator. As was shown in [2], 4. is an operator if and
only if ®(A) is dense in 9.

Theorem 4.3 implies a description of all nonnegative generalized
resolvents of A through the Cayley transformation (4.19). The for-
mulation of this result can be left to the reader. We give here a
different description of the nonnegative generalized resolvents of A
using a special @-function in the case that the defect numbers of 4
are finite and equal. This is an immediate generalization of the main
result of [15] to the case of c.l.r. In order to get a similar result for
arbitrary (including infinite) equal defect numbers a more sophisticated
definition of the Q-function has to be used (comp. [13]).

Let A be a nonnegative c.l.r. in § with finite and equal defect
numbers and assume A = A, N A,. By F,(E,) we denote the spectral
function of the operator part (AM)0 of A, (of the maximal extension
Sy of the Cayley transform S in (4.19) resp.). Then we have from [15]
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Sl _(Z('E_—M(M: oo if ¢e@(S)J,@#—‘0,

S 1—¢
LAl e ) L
| A2 < o it pens),

and these relations imply
Ej%d(FM(x)cp, P)=co if peRA+1I),p=0,
[MFNP, 9) < = it peRA+ D)

Hence R(A + I)' DA%, and (A,)y*_, is a bounded operator.
Consider the Q-function Q,:

QR):=Co+T*TI'_ +E+1)I*(I+ =+ 1)A -2,
with
Co: = ((AM)})m['—1)*((AM)(I>IZF—1) ’

where the operators I, are defined according to (2.1) with A=A,
Then we have for ce®, &0

lim Q@) = C, + ., + lim (& + 1) S”: +lar 000,
x| —oo 2] —co 0 —

=C,+ I'*I_, — r(x VA F,0N_, =0,
lim Q@)% &) = (G, &) + 2AIT-& [ + | Al FuIr 6,9 = o= .

The proof of the following theorem is similar to the proof of
Theorem 4.7, and we omit the details.

THEOREM 4.9. Let A be a nonnegative c.l.r. in O with finite
and equal defect numbers n (0 < n < ) and assume A = A, N A,.
Then the relation

(4.22) R, =(Ay — D)7 — I'(Q) + T ()T}

establishes a omne-to-ome correspondence between the set of all non-
negative generalized resolvents R, of A and the set of all functions
T € I®) with the following properties:

(1) 7 s holomorphic in Ext [0, o).

(2) @=01fx<O0.
The canonical monnegative resolvents of A correspond to 7~ € T(®)
with property (2), in particular the extension A, is given by 7 (z)=0.
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In the case of a linear monmnegative and densely defined operator A
with arbitrary defect number n(< ) a formula of type (4.22) was
given in [13].
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