DETERMINATION OF A UNIQUE SOLUTION OF THE QUADRATIC PARTITION FOR PRIMES
 $$
p \equiv 1(\text { MOD } 7)
$$

Budh Singh Nashier and A. R. Rajwade

Abstract

Let p be a rational prime $\equiv 1(\bmod 7)$. Williams shows that a certain triple of a Diophantine system of quadratic equations has exactly six nontrivial solutions. We obtain here a congruence condition which uniquely fixes one of these six solutions. Further if 2 is not a seventh power residue $(\bmod p)$ then we obtain a congruence $(\bmod p)$ for $2^{(p-1) / 7}$ in terms of the above uniquely fixed solution.

1. Introduction. Let e be an integer $\geqq 2$ and p a prime \equiv $1(\bmod e)$. Eulers criterion states that

$$
\begin{equation*}
D^{f} \equiv 1(\bmod p), \quad p=e f+1 \tag{1.1}
\end{equation*}
$$

if and only if D is an e th power residue $(\bmod p)$, so that if D is not an e th power residue $(\bmod p)$ then

$$
\begin{equation*}
D^{f} \equiv \alpha_{e}(\bmod p) \tag{1.2}
\end{equation*}
$$

for some e th root $\alpha_{e} \not \equiv 1(\bmod p)$ of unity.
Obviously $\alpha_{2}=-1$. For $D=2$ and $e=3,4,5,8$ Lehmer [2] gave an expression for α_{e} in terms of certain quadratic partition of p. For arbitrary e th power nonresidue D, Williams [6], [7] treated the cases $e=3,5$.

When $e=5$ Dickson [1] (Theorem 8, page 402) proved that for a prime $p \equiv 1(\bmod 5)$, the pair of Diophantine equations

$$
\left\{\begin{array}{l}
16 p=x^{2}+50 u^{2}+50 v^{2}+125 w^{2} \tag{1.3}\\
x w=v^{2}-4 u v-u^{2}(x \equiv 1(\bmod 5))
\end{array}\right.
$$

has exactly four solutions. If one of these is (x, u, v, w) the other three are given by $(x,-u,-v, w),(x, v,-u,-w),(x,-v, u,-w)$. Lehmer [2] (case $k=5$) gave a method of fixing a solution uniquely. She proves that if 2 is a quintic nonresidue $(\bmod p)$ then

$$
\begin{align*}
& 2^{(p-1) / 5} \\
& \quad \equiv \frac{w\left(125 w^{2}-x^{2}\right)+2(x w+5 u v)(25 w-x+20 u-10 v)}{w\left(125 w^{2}-x^{2}\right)+2(x w+5 u v)(25 w-x-20 u+10 v)} \quad(\bmod p) \tag{1.4}
\end{align*}
$$

for a unique solution (x, u, v, w) fixed by the condition

$$
\begin{equation*}
2 \mid u, v \equiv(-1)^{u / 2} x(\bmod 4) . \tag{1.4'}
\end{equation*}
$$

In this paper we treast the Case $p \equiv 1(\bmod 7)$. For such primes Williams [4] has shown that the triple of diophantine equations

$$
\left\{\begin{align*}
72 p & =2 x_{1}^{2}+42\left(x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)+343\left(x_{5}^{2}+3 x_{6}^{2}\right) \tag{1.5}\\
12 x_{2}^{2} & -12 x_{4}^{2}+147 x_{5}^{2}-441 x_{6}^{2}+56 x_{1} x_{6}+24 x_{2} x_{3}-24 x_{2} x_{4} \\
& +48 x_{3} x_{4}+98 x_{5} x_{6}=0 \\
12 x_{3}^{2} & -12 x_{4}^{2}+49 x_{5}^{2}-147 x_{6}^{2}+28 x_{1} x_{5}+28 x_{1} x_{6}+48 x_{2} x_{3} \\
& +24 x_{2} x_{4}+24 x_{3} x_{4}+490 x_{5} x_{6}=0,\left(x_{1} \equiv 1(\bmod 7)\right)
\end{align*}\right.
$$

has exactly 6 nontrivial solutions, the two trivial ones being ($-6 t$, $\pm 2 u, \pm 2 u, \mp 2 u, 0,0)$. Out of the nontrivial solutions if one is

$$
\left\{\begin{array}{l}
S_{1}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{5}\right) \text { the other five are } \tag{1.6}\\
S_{2}=\left(x_{1},-x_{2},-x_{3},-x_{4}, x_{5}, x_{6}\right) \\
S_{3}=\left(x_{1},-x_{4}, x_{2},-x_{3},-\frac{1}{2}\left(x_{5}-3 x_{6}\right),-\frac{1}{2}\left(x_{5}+x_{6}\right)\right) \\
S_{4}=\left(x_{1}, x_{2},-x_{2}, x_{3},-\frac{1}{2}\left(x_{5}-3 x_{6}\right),-\frac{1}{2}\left(x_{5}+x_{6}\right)\right) \\
S_{5}=\left(x_{1}, x_{3},-x_{4},-x_{2},-\frac{1}{2}\left(x_{5}+3 x_{6}\right), \frac{1}{2}\left(x_{5}-x_{6}\right)\right) \\
S_{6}=\left(x_{1},-x_{3}, x_{4}, x_{2},-\frac{1}{2}\left(x_{5}+3 x_{6}\right), \frac{1}{2}\left(x_{5}-x_{6}\right)\right) .
\end{array}\right.
$$

Here we obtain a congruence analogous to (1.4) together with a congruence condition fixing uniquely one out of these six solutions.
2. In the sequel p is a prime $\equiv 1(\bmod 7)$. For any $D \not \equiv 0(\bmod p)$ we define the Jacobsthal sum

$$
\begin{equation*}
\phi_{7}(D)=\sum_{x=1}^{p-1}\left(\frac{x\left(x^{7}+D\right)}{p}\right) \tag{2.1}
\end{equation*}
$$

where (\cdot / p) is the Legendre symbol. Using Euler's criterion we expand $\left(x^{8}+x D\right)^{(p-1) / 2}$ by the binomial theorem and interchange signs of summation, the result is

$$
\begin{aligned}
\dot{\phi}_{7}(D) & \equiv \sum_{j=0}^{(p-1) / 2} D^{j}\binom{\frac{p-1}{2}}{j} \sum_{x=1}^{p-1} x^{4(p-1)-7 j}
\end{aligned}(\bmod p) .
$$

But

$$
\sum_{x=1}^{p-1} x^{-7 j} \equiv\left\{\begin{array}{l}
-1(\bmod p) ; \text { if } 7 j \equiv 0(\bmod p-1) \\
0(\bmod p) ; \text { otherwise }
\end{array}\right.
$$

and $7 j \equiv 0(\bmod p-1)$ if and only if $f \mid j$, i.e., if and only if $j=m f$, $m=0,1,2,3$.
Hence we obtain

$$
\begin{align*}
& \phi_{7}(D) \equiv-\sum_{m=0}^{3} D^{m f}\binom{\frac{p-1}{2}}{m f} \quad(\bmod p) \\
& -[1+(D)] \tag{2.2}\\
& \equiv D^{f}\binom{\frac{p-1}{2}}{f}+D^{2 f}\binom{\frac{p-1}{2}}{2 f}+D^{s f}\binom{\frac{p-1}{2}}{3 f}(\bmod p) .
\end{align*}
$$

We write (2.2) for $D=4 d^{r}, r=0,1,2,3,4,5,6$ where d is any septic nonresidue $(\bmod p)$.

Let

Then (2.2) gives us the following 7 congruences

$$
\begin{align*}
& C_{0} \equiv \gamma_{1}+\gamma_{2}+\gamma_{3} \\
& C_{1} \equiv \gamma_{1} d^{f}+\gamma_{2} d^{2 f}+\gamma_{3} d^{3 f} \\
& C_{2} \equiv \gamma_{1} d^{2 f}+\gamma_{2} d^{4 f}+\gamma_{3} d^{6 f} \\
& C_{3} \equiv \gamma_{1} d^{3 f}+\gamma_{2} d^{6 f}+\gamma_{3} d^{2 f} \tag{2.4}\\
& C_{4} \equiv \gamma_{1} d^{4 f}+\gamma_{2} d^{f}+\gamma_{3} d^{5 f} \\
& C_{5} \equiv \gamma_{1} d_{f}^{5}+\gamma_{2} d^{3 f}+\gamma_{3} d^{f} \\
& C_{6} \equiv \gamma_{1} d^{d^{f}}+\gamma_{2} d^{5 f}+\gamma_{3} d^{4 f} .
\end{align*}
$$

We first get $\gamma_{1}, \gamma_{2}, \gamma_{3}(\bmod p)$ in terms of $C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}$. Let $\alpha=d^{f}+d^{2 f}+d^{4 f} \quad$ [Note that $1,2,4$ are quadratic residuces and $\beta=d^{3 f}+d^{8 f}+d^{8 f} \quad 3,5,6$ are quadratic non residues $(\bmod 7)$.]

Then $\alpha+\beta \equiv-1(\bmod p)$ and $\alpha \beta \equiv 2(\bmod p)$.

$$
\begin{equation*}
\alpha-\beta \equiv \sum_{x=0}^{6}\left(d^{f}\right)^{x^{2}}(\bmod p) \tag{2.5}
\end{equation*}
$$

is a Gaussian sum and $(\alpha-\beta)^{2} \equiv-7(\bmod p)$, since $(\alpha-\beta)^{2}=(\alpha+\beta)^{2}-$ $4 \alpha \beta \equiv 1-8 \equiv-7(\bmod p)$.

We take suitable combinations of the latter six congruences in (2.4). These combinations are motivated by noting that the quadratic residues $(\bmod 7)$ are $1,2,4$ and the nonresidues are $3,5,6$; while since 3 is a primitive root $(\bmod 7)$ the nonzero residues are $3,3^{2}, 3^{3}, 3^{4}, 3^{5}, 3^{6}$. These form three classes

$$
\begin{aligned}
& A_{0}=\left\{3^{3}, 3^{6}\right\}=\{6,1\} \\
& A_{1}=\left\{3,3^{4}\right\}=\{3,4\} \\
& A_{2}=\left\{3^{2}, 3^{5}\right\}=\{2,5\}
\end{aligned}
$$

where $3^{j} \in A_{i}$ if and only if $j \equiv i(\bmod 3)$.
All congruences below are taken $(\bmod p)$.

$$
\begin{gather*}
C_{1} C_{2}+C_{1} C_{4}+C_{2} C_{4}+C_{3} C_{5}+C_{3} C_{6}+C_{5} C_{6} \tag{2.6}\\
\equiv-\left(\gamma_{1}^{2}+\gamma_{2}^{2}+\gamma_{3}^{2}\right)-2 \gamma_{1} \gamma_{2}+5 \gamma_{2} \gamma_{3}+5 \gamma_{3} \gamma_{1} \\
C_{1} C_{6}+C_{2} C_{5}+C_{3} C_{4} \equiv\left(\gamma_{1}^{2}+\gamma_{2}^{2}+\gamma_{3}^{2}\right)-\left(\gamma_{1} \gamma_{2}+\gamma_{2} \gamma_{3}+\gamma_{3} \gamma_{1}\right) \tag{2.7}\\
C_{1}+C_{2}+C_{4}-C_{3}-C_{5}-C_{6} \equiv\left(\gamma_{1}+\gamma_{2}-\gamma_{3}\right)(\alpha-\beta) \tag{2.8}\\
C_{1} C_{2}+C_{1} C_{4}+C_{2} C_{4}-C_{3} C_{5}-C_{3} C_{6}-C_{5} C_{6} \\
\\
\equiv\left(\gamma_{1}^{2}+\gamma_{2}^{2}-\gamma_{3}^{2}+\gamma_{1} \gamma_{3}-\gamma_{2} \gamma_{3}\right)(\beta-\alpha)
\end{gather*}
$$

$$
\begin{equation*}
C_{1} C_{2} C_{4}+C_{3} C_{5} C_{6} \equiv 2\left(\gamma_{1}^{3}+\gamma_{2}^{3}+\gamma_{3}^{3}\right)+\gamma_{1} \gamma_{2} \gamma_{3}+C_{0}\left(\gamma_{1} \gamma_{2}+\gamma_{2} \gamma_{3}+\gamma_{3} \gamma_{1}\right) \tag{2.10}
\end{equation*}
$$

Squaring the first congruence in (2.4) and using (2.7) we obtain

$$
\begin{gather*}
\gamma_{1}^{2}+\gamma_{2}^{2}+\gamma_{3}^{2} \equiv \frac{1}{7}\left(C_{0}^{2}+2\left(C_{1} C_{6}+C_{2} C_{5}+C_{3} C_{4}\right)\right) \tag{2.11}\\
\gamma_{1} \gamma_{2}+\gamma_{2} \gamma_{3}+\gamma_{3} \gamma_{1} \equiv \frac{1}{7}\left(3 C_{0}^{2}-\left(C_{1} C_{6}+C_{2} C_{5}+C_{3} C_{4}\right)\right) \tag{2.12}
\end{gather*}
$$

Now (2.11), (2.12) and (2.6) give us

$$
\begin{aligned}
7 \gamma_{1} \gamma_{2} \equiv & 2 C_{0}^{2} \\
& -\left(C_{1} C_{6}+C_{2} C_{5}+C_{3} C_{4}+C_{1} C_{2}+C_{1} C_{4}+C_{2} C_{4}+C_{3} C_{5}+C_{3} C_{6}+C_{5} C_{6}\right)
\end{aligned}
$$

and from (2.10) we get

$$
7 \gamma_{1} \gamma_{2} \gamma_{3} \equiv C_{1} C_{2} C_{4}+C_{3} C_{5} C_{6}+C_{0}\left(C_{0}^{2}-C_{1} C_{6}-C_{2} C_{5}-C_{3} C_{4}\right)
$$

(using the identity $a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-\right.$ $b c-c a)$) so that

$$
\left(\begin{array}{c}
\gamma_{3} \equiv \frac{C_{1} C_{2} C_{4}+C_{3} C_{5} C_{6}}{2 C_{0}^{2}-\left(C_{1} C_{6}+C_{2} C_{5}+C_{3} C_{4}+C_{1} C_{2}\right.} \tag{2.13}\\
\\
\times \frac{+C_{0}\left(C_{0}^{2}-C_{1} C_{6}-C_{2} C_{5}-C_{3} C_{4}\right)}{\left.+C_{1} C_{4}+C_{2} C_{4}+C_{3} C_{5}+C_{3} C_{6}+C_{5} C_{6}\right)}
\end{array}\right)
$$

Also (2.8) yields

$$
(\alpha-\beta)\left(C_{0}-2 \gamma_{3}\right) \equiv C_{1}+C_{2}+C_{4}-C_{3}-C_{5}-C_{6}
$$

or

$$
\begin{equation*}
\alpha-\beta \equiv \frac{C_{1}+C_{2}+C_{4}-C_{3}-C_{5}-C_{6}}{C_{0}-2 \gamma_{3}} . \tag{2.14}
\end{equation*}
$$

(2.9) together with (2.11) leads to

$$
\left(\begin{array}{rl}
\gamma_{1}-\gamma_{2} \equiv & \frac{\left(C_{1} C_{2}+C_{1} C_{4}+C_{2} C_{4}-C_{3} C_{5}-C_{3} C_{6}-C_{5} C_{6}\right)(\beta-\alpha)^{-1}}{\gamma_{3}} \\
& \times+2 \gamma_{3}^{2}-\frac{1}{7}\left(C_{0}^{2}+2\left(C_{1} C_{6}+C_{2} C_{5}+C_{3} C_{4}\right)\right)
\end{array}\right)
$$

whereas

$$
\gamma_{1}+\gamma_{2} \equiv C_{0}-\gamma_{3} .
$$

Thus we obtain

$$
\left.\begin{array}{l}
\text { (2.15) }\left(\begin{array}{c}
\gamma_{1} \equiv \frac{\left(C_{1} C_{2}+C_{1} C_{4}+C_{2} C_{4}-C_{3} C_{5}-C_{3} C_{6}-C_{5} C_{6}\right)(\beta-\alpha)^{-1}}{2 \gamma_{3}} \\
\times-\gamma_{3}^{2}+C_{0} \gamma_{3}-\frac{1}{7}\left(C_{0}^{2}+2\left(C_{1} C_{6}+C_{2} C_{5}+C_{3} C_{4}\right)\right)
\end{array}\right. \tag{2.15}
\end{array}\right) .
$$

Since γ_{3} is a function of the C 's therefore so is $\alpha-\beta$ and hence $\gamma_{1}, \gamma_{2}, \gamma_{3}$ all are functions of the C 's.

If ($x_{1}, x_{2}, \cdots, x_{6}$) is a solutions of (1.5), then in [4] the C 's have been evaluated interms of the x 's viz.

$$
\left\{\begin{array}{l}
C_{0}=-x_{1} \tag{2.17}\\
12 C_{1}=2 x_{1}-42 x_{2}-49 x_{5}-147 x_{6} \\
12 C_{2}=2 x_{1}-42 x_{3}-49 x_{5}+147 x_{6} \\
12 C_{3}=2 x_{1}-42 x_{4}+98 x_{5} \\
12 C_{4}=2 x_{1}+42 x_{4}+98 x_{5} \\
12 C_{5}=2 x_{1}+42 x_{3}-49 x_{5}+147 x_{6} \\
12 C_{6}=2 x_{1}+42 x_{2}-49 x_{5}-147 x_{6}
\end{array}\right.
$$

Thus $\gamma_{1}, \gamma_{2}, \gamma_{3}$ are functions of the x 's say:

$$
\begin{equation*}
\gamma_{i} \equiv g_{i}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \quad i=1,2,3 . \tag{2.18}
\end{equation*}
$$

Also (2.14) gives the Gaussian sum $\alpha-\beta$ as a function of the x 's say

$$
\begin{equation*}
\alpha-\beta \equiv \psi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \tag{2.19}
\end{equation*}
$$

3. In this section we show that g_{1}, g_{2}, g_{3} in (2.18) are independent of the choice of solutions of (1.5).

Let $S_{1}=\left(x_{1}, x_{2}, \cdots, x_{6}\right)$ be a solution of (1.5) and the C 's be given as in (2.17). For a change of solution $S_{1} \rightarrow S_{j}, j=2,3,4,5,6$ we want to see how the C 's change.

We see that:

$$
\left\{\begin{array}{l}
\text { If } S_{1} \longrightarrow S_{2} \text { then } \tag{3.1}\\
C_{1} \longrightarrow C_{6}, C_{2} \longrightarrow C_{5}, C_{3} \longrightarrow C_{4}, C_{4} \longrightarrow C_{3}, C_{5} \longrightarrow C_{2}, C_{6} \longrightarrow C_{1} ; \\
\quad: S_{1} \longrightarrow S_{3} \text { then } \\
C_{1} \longrightarrow C_{4}, C_{2} \longrightarrow C_{1}, C_{3} \longrightarrow C_{5}, C_{4} \longrightarrow C_{2}, C_{5} \longrightarrow C_{6}, C_{6} \longrightarrow C_{3} ; \\
\quad: S_{1} \longrightarrow S_{4} \text { then } \\
C_{1} \longrightarrow C_{3}, C_{2} \longrightarrow C_{6}, C_{3} \longrightarrow C_{2}, C_{4} \longrightarrow C_{5}, C_{5} \longrightarrow C_{1}, C_{6} \longrightarrow C_{4} ; \\
\quad: S_{1} \longrightarrow S_{5} \text { then } \\
C_{1} \longrightarrow C_{2}, C_{2} \longrightarrow C_{4}, C_{3} \longrightarrow C_{6}, C_{4} \longrightarrow C_{1}, C_{5} \longrightarrow C_{3}, C_{6} \longrightarrow C_{5} ; \\
\quad: S_{1} \longrightarrow S_{6} \text { then } \\
C_{1} \longrightarrow C_{5}, C_{2} \longrightarrow C_{3}, C_{3} \longrightarrow C_{1}, C_{4} \longrightarrow C_{6}, C_{5} \longrightarrow C_{4}, C_{6} \longrightarrow C_{2},
\end{array}\right.
$$

We observe that C 's get permuted in such a way that the set $\left\{C_{1}\right.$, $\left.C_{2}, C_{4}\right\}$ with suffixes quadratic residues $(\bmod 7)$ either remains unaltered or interchanges with the set $\left\{C_{3}, C_{5}, C_{6}\right\}$ with sufixes quadratic nonresidues $(\bmod 7)$.

This implies that the combinations of the C 's taken in (2.6), (2.7) and (2.10) do not change with the change of solutions while (2.8) and (2.9) either both remain the same or change signs simultaneously. Thus $\left(C_{1} C_{2}+C_{1} C_{4}+C_{2} C_{4}-C_{3} C_{5}-C_{3} C_{6}-C_{5} C_{6}\right)(\beta-\alpha)$ is also unchanged under the change of solutions.

This shows in view of (2.13), (2.15), (2.16) that g_{i} 's are independent of choice of solutions of (1.5).
4. In the last section we fix a solution of (1.5) uniquely. For any $\lambda \not \equiv 0(\bmod 7) \lambda, 2 \lambda, 3 \lambda, 4 \lambda, 5 \lambda, 6 \lambda$ is a reduced residue system $(\bmod 7)$ therefore we write λr for r in the latter six congruences in (2.4) to get

We solve the above system for $d^{\lambda f}$ as follows. Take suitable combinations of four of the above congruences and get

$$
\begin{aligned}
& C_{42}-d^{2 f f} C_{3 \lambda} \equiv \gamma_{2}\left(d^{2 f}-1\right)+\gamma_{3}\left(d^{32 f}-d^{32 f}\right) \\
& C_{52}-d^{2 \lambda} C_{22} \equiv \gamma_{1}\left(d^{2 \lambda f}-d^{3 \lambda f}\right)+\gamma_{2}\left(d^{32 f}-d^{5 \lambda f}\right)+\gamma_{3}\left(d^{2 f}-1\right) \\
& d^{3 \lambda f} C_{42}-d^{3 \lambda f} C_{32} \equiv \gamma_{1}\left(1-d^{2 f}\right)+\gamma_{3}\left(d^{2 f}-1\right)
\end{aligned}
$$

or

$$
\begin{aligned}
& d^{\lambda f}\left(\gamma_{2}+C_{3 \lambda}\right)+d^{3 \lambda f}\left(-\gamma_{3}\right)+d^{5 \lambda f}\left(\gamma_{3}\right) \equiv \gamma_{2}+C_{4 \lambda} \\
& d^{\lambda f}\left(\gamma_{3}+C_{2 \lambda}\right)+d^{3 \lambda f}\left(\gamma_{2}-\gamma_{1}\right)+d^{5 f f}\left(\gamma_{1}-\gamma_{2}\right) \equiv \gamma_{3}+C_{5 \lambda} \\
& d^{\lambda f}\left(\gamma_{3}-\gamma_{1}\right)+d^{3 \lambda f}\left(-C_{4 \lambda}\right)+d^{5 \lambda f}\left(C_{3 \lambda}\right) \equiv \gamma_{3}-\gamma_{1}
\end{aligned}
$$

Solving this system by Cramer's rule we obtain

$$
\begin{equation*}
d^{2 f} \equiv \frac{C_{42}\left(\gamma_{2}-\gamma_{1}\right)+C_{5 \lambda}\left(\gamma_{3}\right)+\gamma_{2}^{2}+\gamma_{3}^{2}-\gamma_{1} \gamma_{2}}{C_{32}\left(\gamma_{2}-\gamma_{1}\right)+C_{22}\left(\gamma_{3}\right)+\gamma_{2}^{2}+\gamma_{3}^{2}-\gamma_{1} \gamma_{2}} \quad(\bmod p) \tag{4.2}
\end{equation*}
$$

so that by putting $\lambda=1$ we find

$$
d^{f} \equiv \frac{C_{4}\left(\gamma_{2}-\gamma_{1}\right)+C_{6}\left(\gamma_{3}\right)+\gamma_{2}^{2}+\gamma_{3}^{2}-\gamma_{1} \gamma_{2}}{C_{3}\left(\gamma_{2}-\gamma_{1}\right)+C_{2}\left(\gamma_{3}\right)+\gamma_{2}^{2}+\gamma_{3}^{2}-\gamma_{1} \gamma_{2}} \quad(\bmod p) .
$$

This last expression depends on the choice of the solution S_{i} since the C 's depend on the choice of the solution of (1.5). Indeed the R.H.S. of $\left(4.2^{\prime}\right)$ takes different values $(\bmod p)$ for different solutions. This is seen as follows:

It is easy to see that $\phi_{7}(n)=\phi_{7}\left(n^{\prime}\right)$ if $\operatorname{ind}_{p}(n) \equiv \operatorname{ind}_{p}\left(n^{\prime}\right)(\bmod 7)$ (see [3]) hence $C_{l}=C_{m}$ if $l \equiv m(\bmod 7)$.

In view of (3.1) and (4.2) we see that if $S_{1} \rightarrow S_{j}, j=2,3,4,5,6$;
the R.H.S. of (4.2') takes value

$$
\equiv d^{6 f}, d^{4 f}, d^{3 f}, d^{2 f}, d^{5 f}
$$

respectively which are distinct $(\bmod p)$.
Thus precisely one (out of the 6) solution satisfies (4.2'). When 2 is not a seventh power residue, $(\bmod p)$ then for $d=2$ we can identify which solution shall satisfy (4.2^{\prime}). This is done as follows: We have

$$
\left\{\begin{array}{l}
C_{1}=-\left[1+\phi_{7}\left(2^{3}\right)\right], C_{2}=-\left[1+\phi_{7}\left(2^{4}\right)\right], C_{3}=-\left[1+\dot{\phi}_{7}\left(2^{5}\right)\right] \tag{4.3}\\
C_{4}=-\left[1+\phi_{7}\left(2^{6}\right)\right], C_{5}=-\left[1+\phi_{7}(1)\right], C_{6}=-\left[1+\dot{\phi}_{7}(2)\right] .
\end{array}\right.
$$

Since $X^{7}+1 \equiv 0(\bmod p)$ has exactly 7 solutions, $\phi_{7}(1)$ is composed exclusively of $p-8$ plus and minus ones and hence must be odd.

Moreover $\left(2^{j}\right)^{f}=\left(2^{f}\right)^{j} \equiv 1(\bmod p), j=1,2,3,4,5,6$ so that by Euler's criterion $X^{7}+2^{j} \equiv 0(\bmod p)$ is not solvable. Therefore $\phi_{7}\left(2^{j}\right)(j=1,2,3,4,5,6)$ is even. Thus we conclude that C_{5} is even and the other C 's are odd.

In (3.1) we notice that the corresponding C_{5} of a solution is replaced by some other C_{i} under a change of solution, therefore for one and only one solution ($x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$) we have

$$
C_{5} \equiv 0(\bmod 2)
$$

or what is the same thing

$$
\begin{align*}
& 2 x_{1}+42 x_{3}-49 x_{5}+147 x_{6}=12 C_{5} \equiv 0 \quad(\bmod 8), \text { i.e., } \\
& 2 x_{1}+2 x_{3}-x_{5}+3 x_{8} \equiv 0 \quad(\bmod 8) . \tag{4.4}
\end{align*}
$$

This determines a unique solution of (1.5). Our results can be stated as the following:

Theorem. Let $p \equiv 1(\bmod 7)$ be a prime. If 2 is a septic nonresidue $(\bmod p)$, then of the six nontrivial solutions of the quadratic partition (1.5) one and only one satisfies the two congruences
(i) $\quad 2^{(p-1) / 7} \equiv \frac{C_{4}\left(\gamma_{2}-\gamma_{1}\right)+C_{5}\left(\gamma_{3}\right)+\gamma_{2}^{2}+\gamma_{3}^{2}-\gamma_{1} \gamma_{2}}{C_{3}\left(\gamma_{2}-\gamma_{1}\right)+C_{2}\left(\gamma_{3}\right)+\gamma_{2}^{2}+\gamma_{3}^{2}-\gamma_{1} \gamma_{2}} \quad(\bmod p)$
(ii)

$$
2 x_{1}+2 x_{3}-x_{5}+3 x_{6} \equiv 0 \quad(\bmod 8)
$$

with $C_{2}, C_{3}, C_{4}, C_{5}, \gamma_{1}, \gamma_{2}, \gamma_{3}$ given as functions of the x_{i} 's by (2.17) and (2.18).

This fixes a unique solution for us.
Example. $p=29=7.4+1$.
Here the six nontrivial solutions of (1.5) are

$$
\begin{array}{ll}
S_{1}=(1,-2,-3,-2,-1,1) ; & S_{2}=(1,2,3,2,-1,1), \\
S_{3}=(1,2,-2,3,2,0) ; & S_{4}=(1,-2,2,-3,2,0) . \\
S_{5}=(1,-3,2,2,-1,-1) ; & S_{6}=(1,3,-2,-2,-1,-1) .
\end{array}
$$

Precisely one satisfies the two congruences of the theorem viz. $S_{1}: \gamma_{1} \equiv 12, \gamma_{2} \equiv-6, \gamma_{3} \equiv-7(\bmod 29)$ and we have

$$
\begin{aligned}
2^{p-1 / 7}=2^{4} & \equiv \frac{(-15)(-18)+6(-7)+36+49+72}{(-1)(-18)+27(-7)+36+49+72} \equiv \frac{9+16+12}{18+14+12} \\
& \equiv \frac{8}{15} \equiv 16 \quad(\bmod 29) .
\end{aligned}
$$

For the remaining five solutions the R.H.S. of (i) of the theorem takes value: $9,25,7,24,23$ respectively ($\bmod 29$). We see that none satisfies (i) and of course none satisfies (ii).

By taking $\lambda=3$ in (4.2) we have a similar expression

$$
\begin{equation*}
8^{(p-1) / 7} \equiv \frac{C_{5}\left(\gamma_{2}-\gamma_{1}\right)+C_{1}\left(\gamma_{3}\right)+\gamma_{2}^{2}+\gamma_{3}^{2}-\gamma_{1} \gamma_{2}}{C_{2}\left(\gamma_{2}-\gamma_{1}\right)+C_{6}\left(\gamma_{3}\right)+\gamma_{2}^{2}+\gamma_{3}^{2}-\gamma_{1} \gamma_{2}} \quad(\bmod p) \tag{4.5}
\end{equation*}
$$

with the condition

$$
2 x_{1}+2 x_{3}-x_{5}+3 x_{6} \equiv 0 \quad(\bmod 8) .
$$

By taking reciprocal of (i) of the theorem and (4.5) we can get expressions for $\left(2^{6}\right)^{f}$ and (16) $)^{f}$ too.

We should like to thank Dr. Kenneth S. Williams for suggesting this problem.

References

1. L. E. Dickson, Cyclotomy, higher congruences and Waring's problem, Amer. J. Math., 57 (1935), 391-424.
2. Emma Lehmer, On Euler's Criterion, J. Austral. Math. Soc., 1 (1959), 64-70.
3. A. L. Whiteman, Cyclotomy and Jacobsthal sums, Amer. J. Math., 74 (1952), 89-99.
4. K. S. Williams, Elementary treatment of quadraticp artition of primes $=1(\bmod 7)$, Illinois J. Math., 18, (1974), 608-621.
5. - A quadratic partition of primes $=1(\bmod 7)$, Math. Comp., 28, (1974), 1133-1136.
6. On Euler's criterion for Cubic nonresidues, Proc. Amer. Math. Soc., 49 (1975), 277-283.
7. -, On Euler's criterion of quintic nonresidues, Pacific J. Math.. 51, (1975), 543-550.

Recevied April 4, 1977.
Panjab University
Chandigarh-160014
India

