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A NOTE ON EBERLEIN COMPACTS

E. MICHAEL AND M. E. RUDIN

A new proof is given of the theorem that every con-
tinuous image of an Eberlein compact is an Eberlein compact,
and a new characterization of Eberlein compacts is obtained.

1* Introduction. According to D. Amir and J. Lindenstrauss
[1], an Eberlein compact, or EC, is a spaceυ which is homeomor-
phic to a weakly compact (i.e., compact in the weak topology) subset
of a Banach space. The following theorem, which had been con-
jectured by Lindestrauss in [6, Problem 5], was proved in [2,
Theorem 2.1] by Y. Benyamini, M. E. Rudin and M. Wage.

THEOREM 1.1. [2]. Every continuous image of an EC is again
an EC.

The proof of Theorem 1.1 in [2] uses a Banach space characteri-
zation of EC's due to Amir and Lindestrauss [1, Theorem 1] (see
Theorem 1.4 (b) below), as well as a purely topological characteri-
zation—based on the former—which was obtained by H. P. Rosenthal
in [9, Theorem 3.1] (see Theorem 1.4 (d)). The main purpose of
this note is to give a somewhat more direct proof of Theorem 1.1
which depends only on RosenthaΓs characterization, and which
yields a new topological characterization of EC's—formally weaker
than RosenthaΓs—which is given in Theorem 1.4 (e).

Before stating Theorem 1.4, we need two definitions.

DEFINITION 1.2. A collection ^ of subsets of X is point-finite
if each xeX is in only finitely many Ue^; it is σ-point-finite if
^ = U^=i ̂ » with each ^rn point-finite.

DEFINITION 1.3. A collection ^ of subsets of X separates
(resp. Fseparates) X if, whenever x Φ xf are in X, then there is a
Ue^ such that xeU and xf £ U (resp. xeU and x1'& £7), or vice
versa.2)

In the following theorem, co(Γ) denotes the Banach space of
real-valued functions vanishing at infinity on the set Γ, and

1 All spaces in this paper are Hausdorff.
2 Many authors use the term " ^ separates X " to denote the preceding concept

without the phrase "or vice versa." In this paper, a collection ^ with this stronger
property is called strongly separating (see (1.6)). It should be remarked that, unlike
strongly separating collections, separating collections need not be coverings.
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(resp. ^ ^ ) the weak topology (resp. topology of pointwise conver-
gence) on co(Γ).

THEOREM 1.4. The following properties of a compact space X
are equivalent.

(a) X is an EC.
(b) X is homeomorphic to a subset of some (cQ(Γ), ^~w).
(c) X is homeomorphic to a subset of some (co(Γ), J^p).
(d) X has a o-point-finite, separating collection of open Fa-

subsets.
(e) X has a σ-point-finite, F-separating collection of open

subsets.

All of Theorem 1.4, except (d) •-» (e), is known. For details see
§ 2, where we also give a proof of the equivalence of (b) and (d)
(via (c)) which is somewhat more direct than RosenthaΓs in [9].

The following remarks explain the significance of the require-
ments in parts (d) and (e) of Theorem 1.4.

(1.5). The Fσ requirement cannot be omitted from 1.4 (d)
(equivalently: "jF-separating" cannot be weakened to "separating"
in 1.4 (e)). In fact, there exists a compact space with a countable,
separating open cover which is not an EG [10, Remark, p. 183]
[11, p. 20]. By contrast, every compact space with a point-finite,
separating collection of open subsets is an EC [10, Proposition 9],
and a compact space with a countable, F-separating collection of
open subsets must even be metrizable (by 1.6 below).

(1.6). Every compact space with a point-countable, strongly
separating (see footnote 2) open cover is metrizable [8].

(1.7). It is consistent with ZFC that "σ-point-finite" cannot be
weakened to "point-countable" in 1.4 (d) and (e) [2, Example 5.1].

We conclude this introduction with a question. A positive answer
would (in view of Theorem 1.4) provide a significant generalization
of Theorem 1.1.

PROBLEM 1.8. Suppose X is a normal space which is homeo-
morphic to a subset of some (co(Γ), ̂ Q . Must every image of X
under a perfect map be homeomorphic to a subset of some (co(Γ),

The paper is arranged as follows. Section 2 proves parts of
Theorem 1.4. Section 3 contains some lemmas which are needed in
the proof Theorem 1.1, §4 proves Theorem 1.1, and §5 considers
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additional consequences of this proof. Section 6 deals with a modi-
fication of EC's.

2. Proof of Theorem 1*4* As observed in the introduction,
the only part of this theorem which is new is the equivalence (d)<-*
(e). The simple and straightforward proofs for (c) —* (b) and (c) <->
(d) given below are known (although the one for (c) *-> (d) does not
seem to have appeared in print), and we include them here for the
sake of completeness.

(a)—*(b). This is a deep result of Amir and Lindenstrauss
[1, Theorem 1].

(b)~>(a). Clear.
(b) —• (c). Clear, since ^"w is finer than J7~v.
(c) —»(b). Suppose Xc(cQ(Γ), ^~p) is compact. Then X is homeo-

morphic (via the map /—>(arctan)o/) to a bounded compact 7 c
(cQ(Γ), .5Q, and on such a Y the topologies ^l and ^~w must
agree by a theorem of A. Grothendieck [5, Theorem 5] (applied
to the one-point compactification of the discrete space Γ).

(c) —> (d). It will suffice to show that co(Γ) has a σ-point-finite,
separating collection ^ of open i^-subsets. For r Φ 0 and 7 e Γ,
let Ur,r = {/ e co(Γ): f(Ύ) > r) if r > 0 and let Ur,r = {/ e co(Γ): /(7) < r)
if r < 0. Let ^ r = {Ur>r: 7 e Γ}, and let ^/ = \J{^r: rφO, r rational}.
This ^ has the required properties.

(d) —> (c). Let ^f = (J«=i ̂  be a separating collection of open
jFVsubsets of X, with each <%fn point-finite and with ^ n Π ̂ m = 0
if n Φ m. For each Ue^nf choose a continuous fπ:X—>[0, 1/̂ ]
such that f-^O) = X — U. Let Γ = ^ . For each α eX, define
^6co(.Γ) by £(Ϊ7) = fu(®) Then a ^ ϊ is a homeomorphism from X
into co(Γ).

(d)~>(e). Clear.
(e)->(f). This will be established by our proof of Theorem 1.1.

3* Four lemmas*

LEMMA 3.1 (D. Burke [3, Lemma 4.1]). Let & be a point-
finite collection of subsets of X, let EaX and let neN. Then
there are at most finitely many minimal covers J^ of E such that

and \^\ = n.

Proof. (Included for completeness.) Suppose there were an in-
finite family Φ of such _^r. Pick a maximal & c & such that
^ c j ^ " * for infinitely many ^ e Φ , and let Φf = { ^ e Φ: ^ Z ) ^ } .
Clearly 0 ^ | & \ < n, so & does not cover E and hence there is
some yeE — U ^ Since ^ is point-finite and Φr is infinite, there
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is some Po e & such that y eP0 and Po e ̂  for infinitely many
jF'eΦ'. Since yeP0, we have Po£&. Let S* = &Ό{P0}. Then
&£S^ and S^czJ^ for infinitely many ^ e Φ , contradicting the
maximality of ^ .

LEMMA 3.2. Let Y be completely regular, let λ = | Y\, and let
V a Y be open. Then there is an open cover {Va: a < λ} of V, and
a closed (in Y) cover {Sa>m: a <X, meN} of V, such that:

(a) Sa,m c Va c V for all a, m.
(b) If a > β, then Sa>m ΓiVβ= 0 for all m.

Proof. Let {Va:cc < λ} be a cover of V by open i^-subsets of
Y, so Va = Uϊ=i Ta,m with each Ta>m closed in Y. For each a, m,
let

Sa,m - Ta>m - U ^
β<oc

It is easy to check that this works.

LEMMA 3.3. Let ^ be an F-separating open cover of a space
X, and A, B disjoint compact subsets of X. Then there is a finite
if c ^ which F-separates any xeA from any xf e B (in the obvi-
ous sense).

Proof. Since ^/ is ^-separating and Af)B= 0 ,

{Ux (X- U): Ue^}Ό{(X- U) x U:

covers A x B. Since A x B is compact, there is a finite
such that

{Ux (X- U): Ueξ?}Ό{X- Ό) x U:

covers A x B. This g7 has the required property.3)

Henceforth, whenever ^ is a collection of subsets of X and
xeX, we will write ^(x) to denote {Ue^:xe U).

LEMMA 3.4. Let A, B be disjoint subsets of a set X, and &
a finite collection of subsets of X separating any xeA from any
xr e B. Then some subcollection ^ of g7 covers A but not B, or
vice versa.

Proof. S u p p o s e n o t . T h e n f o r e a c h xeA t h e r e is a n xf e B

8 We are grateful to Roy Olson for pointing out an error in an earlier version of
this proof.
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such that i?(α?') c g 7^), and vice versa. Hence there is a sequence
xneX, with xn alternately in A and in B, such that gp(x%+1)cg7(a;J
for all n. Since g7 is finite, 87(a?n+1) = i?OJ for some w, and that
contradicts the separation property of g7.

4* Proof of Theorem 1*1* Let f:X—*Y be continuous and
onto, with X an Eϋ, and let us show that Y must be an EC. By
Theorem 1.4 (all of which except (e) —> (d) has been proved in § 2),
we may assume that X satisfies 1.4(e), and we shall conclude that
Y satisfies 1.4(d). That will also establish the implication 1.4(e) —*

Let ^ = U»=i ̂ n be an .F-separating collection of open subsets
of X, with each ^ n point-finite; we may suppose that ^fn c ^ + 1

and that ^ covers X for all n. Let Φ = {J^" c ^ : ^ finite}. For
each ^ " e Φ , let

covers f~ι{y)} ,

= {y e Y: &~ covers f~\y) minimally} .

Observe that V(^~) = Y- f(X - \J J?"), so V(^) is open in Γ,
and M{JT) = 7 ( ^ ) - U t H ^ ' ) : ^ ' 5 ^ 1 so AΓ(^1 is relatively
closed in F ( ^ ) .

For each Jf e Φ, choose open Va{^) c F(^^) and closed
c Va(^~) (α < λ = I Γ|, meN) as in Lemma 3.2. Let

,(n ,( n
Then

(4.1) MCJO - U {Ma,m(^): a < λ, m e

and each Ma,m(^~) is closed in y.
For ^ e Φ , α < λ, meN, we shall define a positive integer

with the following property:

(4.2) If x, x'eX, if ^k(x) - ^(a/) , and if

then /(a') e

To define k, let A = /~1(Mα,m( t^)), B = / " ι ( Γ - YJ^Π). By Lemma
3.3, there is a finite g7 c ^ which separates any a e i from any
α/el?. Pick ft so that g* c ^ 4 ; this ft satisfies (4.2).

Let J^eΦ, α < λ, meN, and let ft be as above. Define

= UίΠ
= r -

Now H^J^) is an open set in X containing f~\Ma^{^)), so
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,m( is an open set in Y containing Ma>m(^). Choose an open
Fσ-set Wa,m{^) in Y such that

Finally, define

a<x, meN} .

We will show that Ύ/^ is a tf-point-finite, separating collection of
subsets of Y, thereby completing our proof.

(A) "W is separating on Y: Let y Φ y' be in Y. By Lemmas
3.3 and 3.4, there is a finite J^ c ^ which covers /"'Q/) but not
f~Kv')> o r y i c e versa (we won't repeat this phrase). We may
assume that ^ is a minimal cover of f~\y). Hence
and y'$ V(^~). By (4.1), there are a < λ and meN so that

Hence y e FΓβ f W(^) and 7/' g TF.

(B) > "̂ is σ-point-finite: For m, n, ke N, let

= fc, α < λ}.

Then ^" = Uϊ,»,*=i ̂ m.n.k, so we need only show that each
is point-finite.

Suppose some ^"m>Λ, fc were not point-finite. Then there are
distinct Waj,m(^j) (j eN) in Ύ/^m,n,h, all containing the same y* e F.
Fix some a?* e/"1^/*). Then x^ eHaj,m(^j)f so there are %6
f-\Maj,m(^i)) such that ϊ * e f | ^ ) for all i . Hence ^ ( ^ ) c
&k(x*) for all i; since ^(α?*) is finite, we may assume, by passing
to a subsequence, that ^k(xt) = %fk(%j) for all i, i . By (4.2), it
follows that /(^) 6 Va^i) for all i, j. Let ^ = /(^) . Then

(4.3) Vi e Mai,m(^) Π VΛ^i) (i, i e ΛΓ) .

We now distinguish two cases to obtain our contradiction.

Case 1. There are i Φ j with ^ = ^1- Then atΦas\ suppose
cti > α/. Hence (4.3) implies that (writing J?* for

contradicting condition (b) of Lemma 3.2.

Case 2. The ^ 7 a r e aU distinct: Let
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Since ^ e F ^ J c F ^ ) for all i, j, each ^ convers E. Since
y3 eMaj(^}) cMiJ^o) for all j , each ^~ά if a minimal cover of f~\yό)
and thus also of £7. Hence J? has infinitely many minimal covers
^ with ^ c ^ and | ^ y | ^ w, contradicting Lemma 3.1.

That completes the proof.

5* Consequences of the proof of Theorem 1.1. The first
consequence, which has already been observed in § 4, is that
1.4(e)—»Ί.4 (d). This implication follows from the proof of Theorem
1.1 in the special case where X = Y and / = idx, and, not surpris-
ingly, the proof becomes somewhat simpler in this case: The only

which now concern us are singletons, and if &~ ={U} then
MCiO = U. That W is separating is now trivial, as is

Case 2 of the proof that W" is cr-point-finite; hence Lemmas 3.4
and 3.1 are not needed here. The general structure of the proof is
retained, however, and Lemmas 3.2 and 3.3 are apparently still
required.

Our proof that 1.4(e)—>1.4(d) reveals that this implication can
be split into two stages, thereby obtaining yet another necessary
and sufficient condition for a compact space X to be an EC, as
follows:

(5.1) X has a σ-point-ftnite collection ^ of open subsets such
that, if A, B are disjoint, closed subsets of X, then some finite
W c ^ separates any x e A from any xf e B.

In fact, 1.4(e) —> (5.1) by Lemma 3.3, and our proof of Theorem 1.1
shows that (5.1) —1.4(d).

We conclude this section by recording one more consequence of
our proof of Theorem 1.1: Every open subset of an EC is the
union of a σ-point-finite collection of open Fσ'&.

6. A modification of Eberlein compacts* Let Σ(Γ) denote the
space of real-valued functions on the set Γ which vanish at all but
countably many ΎeΓ, and let ^~p be the topology of pointwise
convergence on this space. Observe that Σ(Γ)z)co(Γ), and that
(Σ(Γ), J Q is just the J-product (in the sense of H.H. Corson [4])
of |Γ|-many real lines.

The proof of the following result is essentially the same as the
proof of the equivalence of (c), (d) and (e) in Theorem 1.4, with
the reference to Theorem 1.1 replaced by an analogous reference to
Theorem 6.2 below.

THEOREM 6.1. The following properties of a compact space X
are equivalent.



494 E. MICHAEL AND M. E. RUDIN

(a) X is homeomorphic to a subset of some (Σ(Γ), J7p).
(b) X has a point-countable, separating collection of open Fa-

subsets.
(c) X has a point-countable, F-separating collection of open

subsets.

Let us call a compact space satisfying the equivalent conditions
of Theorem 6.1 a Cor son compact (a term suggested by their rela-
tion to Corson's Jf-products). Observe that every Eberlein compact
is a Corson compact and that, by Remark 1.7, it is consistent with
ZFC that the two concepts are distinct.

Analogously to Theorem 1.1, we now have:

THEOREM 6.2. Every continuous image of a Corson compact is
again a Corson compact.

The proof of Theorem 6.2 is virtually the same as that of
Theorem 1.1, except that Lemma 3.1 must be replaced by the
following result.

LEMMA 6.3 (A. S. Miscenko [7]). Let & be a point-countable
collection of subsets of X, and let E c X. Then there are at most
countably many minimal finite covers J^ of E with ^ c ^ .

Added in Proof. The second author has shown that the answer
to Problem 1.8 is "yes" if X is a closed subset of (co(Γ), ^ ) .
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