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INVARIANT SUBMODULES OF UNIMODULAR
HERMITIAN FORMS

D. G. JAMES

Let M be a unimodular lattice on an indefinite hermitian
space over an algebraic number field. The submodules of
M invariant under the action of the special unitary group
of M are classified. Generators for the local unitary groups
of M are also determined.

1* Introduction* Let F be an algebraic number field of finite
degree and K a quadratic extension of F. Let V be an indefinite
hermitian space over K of finite dimension n ^ 3 and Φ: V x V—*K
the associated nondegenerate hermitian form on V with respect to
the nontrivial automorphism of K over F. Assume V supports a
unimodular lattice M (in the sense of O'Meara [7; § 82G] for quad-
ratic spaces). Denote by U(V) the unitary group of V and by
U(M) the subgroup of isometries in U(V) that leave M invariant.
We will classify the sublattices of M that are invariant under the
action of the special unitary group SU(M). The problem is first
solved locally; the global result is then obtained by applying the
approximation theorem of Shimura [8; 5.12].

We now consider localization (see also [2; § 2] and [8]). Let p
be a finite prime spot of F and Fp the corresponding local field.
Put Kp = K®FFP and Vp = V®FFP. Making the standard identi-
fications, we have K £ Kp, Fp £ Kp and V £ Vp. The hermitian
form Φ on V extends naturally to an hermitian form on Vp. Let
o be the ring of integers in F, op the (topological) closure of o in
Fp and Op the integral closure of op in Kp. Put Mp = OPM Q Vp.
Locally, we must study the submodules of Mp invariant under the
action of SU(MP). Except when Kp is a ramified extension of a
dyadic field Fp, the classification will be trivial. For ramified dyadic
extensions, it is necessary to determine a set of generators of U(MP)
before the classification can be determined.

We now state the main results.

THEOREM A. Let M be a unimodular lattice on an indefinite
hermitian space of dimension n^3 over an algebraic number field.
Then a sublattice N of M is invariant under the action of the
special unitary group SU(M) if and only if for all finite prime
spots p of F, the localization Np = £)PN is invariant under the ac-

471



472 D. G. JAMES

tion of SU(MP).

For x in VPf define 2q(x) = Φ(x, x), and let Mp* be the sublattice
of Mp generated by the x in Mp with q(x) in op. Let

be the dual lattice of Mp*. Then Mp* £ Λf„ S Λf* and, except when
ίΓp is a ramified extension of a dyadic local field Fp, we will show
later that Mp* — M*. A sublattice Np of M* is called primitive if
Np is not contained in πM* for any prime element πeθp. Clearly,
if ΛΓp is invariant under SU(MP), the lattice apNp is also invariant
for any fractional ideal <*„ in £)p. It is therefore enough to classify
locally the primitive invariant sublattices of M*.

THEOREM B. A primitive sublattice Np of M* is invariant
under the action of SU(MP) if and only if Mp* £ Npf except when
the following three conditions all apply:

( i ) Kp is a totally ramified extension of the 2-adic field Q2,
(ii) Kp is a ramified prime extension of Fp,
(iii) dim Vp = 3 or 4.

In particular , except when Kp is a ramified extension of a dyadic
field Fpy the only primitive invariant lattice is Mp.

Theorem B will be proven for the various cases in §§ 2-4 and
the exceptional 3 and 4 dimensional cases studied in § 5. Theorem
A is established in the final section. The special case where F is
the field of rational numbers is also studied in detail.

The approach here follows that given for quadratic spaces in
[5] and [6].

2* Local isometries. In this and next three sections we are
only concerned with local problems.

The structure of £)p over op depends on the prime p. If p splits
in K, then Kp = Fp x Fp and Op = op x op. In this case the involu-
tion * on K becomes (a, β)* — (β, a) on Kp. If p does not split in
K, we may take Kp = Fp(ζ) where ζ2 6 Fp and ζ* = - ζ. Fix a
prime π in Kp and p in Fp and let e = ordp 2. If p is dyadic, there
are now three possible types of extensions of Kp over Fp; the details
are an application of [7; 63.2, 63.3].

( i ) ϊ , is an unramified extension of Fp. Then ζ2 = 1 + 4<5
with δ a unit in Fp and £)„ consists of all the elements (a + ζ/3)/2
with a, β 6 op and a = β mod 2op.
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(ii) Kp is a ramified extension of Fp and ζ is a prime in Kp—
the ramified prime case. Now we may assume π = ζ, p = ππ* and
Dp is generated over op by 1 and π.

(iii) if,, is a ramified extension of I*7,, and ζ is a unit in Kp—the
ramified unit case. We now have ζ2 = 1 + p2h+1δ for some unit δ in
Fp and some rational integer h with 0 ^ h < β. Put π == (1 + ζ)p~h

so that 7Γ7Γ* = — pδ. Here Dp consists of the elements (a 4- ζβ)p~h

with α, /3 6 Op and a>= β mod p*op.
In the nondyadic (nonsplit) case Dp is generated over op by 1

and ζ provided we choose ζ to be a prime or a unit according as
the extension is ramified or not.

Thus if KJFP is a quadratic extension of fields, Όp consists of
the elements (a + ζβ)p~h with a, β e op and a = β mod phop, where
we define h = 0 in the nondyadic and ramified prime dyadic cases,
and h — e in the unramified dyadic case.

Since Mp is a unimodular Dp-lattice with rank at least three, it
is split by a hyperbolic plane (if p splits in K this can be easily
verified, otherwise see [4; 7.1, 8.1a, 10.3]). Hence Mp = HP±LP where
Hp = DpW + Dpi; is a hyperbolic plane with #(%) = q(v) = 0 and
φ(^, v) = l . This choice of u and v will be fixed throughout the
local discussion.

We now describe the standard isometries in the unitary group
U(Mp) that are needed. The norm and trace mappings from Kp to
Fp are denoted by ^V and ^ respectively, and our convention for
the hermitian form Φ on Vp is Φ(ax, βy) = a*Φ(x, y)β.

Let λ in Op have ^ " ( λ ) = 0. The transvection Γ ;(u) is defined

by

Tχ(u)(z) ~ z + XΦ(u, z)u , zeMp .

Then d e t Γ ^ ) = l so that Tλ(u) is in SU(MP). Similarly, Tλ(v)e
SU(Mp).

Let λ in Kp satisfy ^ " ( λ ) = 2^K"(λ). For x in ikfp with Xq(x)~ι

in Dp, define the symmetry Ψλ{x) by

Ψχ(x)(z) = z - XΦ(x, z)q{x)~1x , « 6 Mp .

Then det yλ(a?) = 1 - 2λ and Ψλ(x) e U(MP).
Recall that Mp* is the sublattice of Mp generated by those x in

Mp with g(#)eθp. Since 2q(x) = Φ{x, x), in the nondyadic case Mp* =
Mp. This is also true when p splits in K; for the involution on
Kp = Fp x Fp is given by (α, β)* = (/9, α), so that for a? in Mp,

1, 0)a?) - ^ T ( l , 0)β(a?) - 0 .

Thus (1, 0)x 6 Mp* and a? = (1, l)x is in Mp*.
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PROPOSITION 2.1. Let Fp be a dyadic local field with p not split
in K. Then

Mp* = {x e Mp I phq(x) 6 o j .

In particular, Mp* = Mp when Kp is an unramified extension of Fp.

Proof. Let S be the set of all elements x in Mp with phq(x) in
o,. Since ^(Op) £ 2p-*o, and

it follows that S is an D^-module. Hence Mp* £ S. We now prove
the converse inclusion. For x in S, let x — y + z with y e Hp and
z 6 Lp. Clearly, w, v and consequently ?/ are in S. Therefore, z —
x — y is in S and phq(z) e JÔ . Let w = u — av + z where a = ί(«)(l + ζ)
is in £>p. Then g(te ) = 0 and w e Mp*. Hence z e ikfp* and S £ M**,
proving the proposition.

Fix μ in D^ such that ^7~(μ) = 2. For a? in L> with jteg(a?) in
£)„, define the Siegel transformation E(u, x) by

^ ( ^ , x)(z) = z — Φ(u, z)x + Φ(x, z)u — μq(x)Φ(u, z)u .

Then άetEiu, x) = 1 and E(u, x) is in SU(MP). Similarly, define
J57(v, a?). Fix μ = 1 except when i^, is dyadic and iξ, is either an
unramified or a ramified unit extension of Fp. In these exceptional
cases fix μ = 1 + ζ 6 Ϊ>ΛDP. Except for the split dyadic case, it is
now sufficient to choose x in Lp Π Mp* for 2£(w, a?) to be an integral
isometry. Let g7 be the subgroup of SU(MP) generated by the
Siegel transformations.

In the following three sections we classify locally the primitive
sublattices of M* invariant under the action of the special unitary
group SU(MP). We conclude this section with three observations.
Assume that p does not split in K.

2.2. Any lattice Np satisfying Mp* Q Np £ M* is invariant
under the action of g7.

Proof. Let z e Np and x e Lp Π Mp*. Then Φ(x, z) e Op and

E(u, x){z) = z mod Mp* .

Hence E(u, x)(z) and, likewise, E(v, x)(z) lies in Np. The result follows.

2.3. If Np is invariant under SU(MP) and ueNpor ve Np, then
Mp* Q Np.

Proof. For any x in Lp with q(x)~γ in O9, we have Ψx{u — v)Ψ1(x)



UNIMODULAR HERMITIAN FORMS 475

is in SU(MP). This isometry interchanges u and v, so that HPQNP.
Let yeLpf] Mp*. Then E(u, y)(v) is in Np and hence y e Np. Thus
Mp. Q Np.

2.4. Assume either Kp is an unramified extension of Fp or Fp

is a nondyadic field. Then Mp is the unique primitive sublattiee
invariant under the action of SU(MP).

Proof. Let Np be a primitive invariant sublattiee. It suffices
by 2.3 to show that u e Np, since under our assumptions Mp* = Mp.
Since Np §£ πMp, there exists z in Np with z & πMp. Let z = au +
βv + t where t e Lp. If a and /3 are nonunits, there exists r in Lp

such that Φ(r, ί) = l (since z £ πMp). The coefficient of v in J E ^ , r)(z) e
Np is now a unit. Assume, therefore, /3 = 1 (or symmetrically,
a = 1). If ίΓp = Fp(ζ) is an unramified extension of Fp, ζ is a unit.
Then Tζ{u)(z) = z + ζu is in Np. Hence ueNp and the result fol-
lows. Now assume Fp is a nondyadic field. Then E(u, t){z) = Ύu + v
is in Np for some 7 in Op. Let weLp have q(w) a unit. Applying
E(u, pw) to J7w + veNp with /o = 1, —1 gives pw + 9(21;)̂  is in Np.
Since 2 is now a unit, it follows that u is in iV̂  and hence Np = Mp.

Theorem B has now been established except when either p splits
in K, or Kp is a ramified extension of a dyadic field Fp.

3. Split extensions. Assume p splits in if so that Kp = Fp x Fp

and £)p = op x op. Let iV̂  be a primitive invariant sublattiee of
M* = Mp = HplLp. We wish to prove JV, = Λfv. Since .N, <g πΛfp

for any prime element TΓ in D,,, there exists xeNp with x & πMp.
Let x — au + βv Λ- t with ί e Z/̂ . If β (or α) is a unit in O,, we
may assume β — 1. Then, since ^ " ( 1 , — 1) = 0, it follows that

= a? + (1,

is in Np. Thus (1, — l)w and u are in JVj,. As in 2.3, we now have
Hp C iV,. Let 1/ e L,. Then JS(W, (1, 0)y)(v) is in ΛΓ,. Hence (1, 0)y,
and likewise (0, l)y, are in JV̂ . Consequently, y eNp and i^p = Mp.

Now assume that neither a = (ax, α2) nor yβ = (/Ŝ  /S2) is a unit.
If ΛL is a unit in o?, replacing x by jΓ(1,_1)('y)(a;) if necessary, we may
assume βι is also a unit. Hence, unless both ax and A are nonunits,
or both a2 and β2 are nonunits, we arrange that β becomes a unit
in £)p and we are finished. Assume, therefore, a19 βt 6 pop. Since
a? ί πMp, there exists 7/ in Mp such that Φ(ί», 1/) = (1,1). Hence, there
exists reLp such that Φ(t, r) = (?, 1). In E(u, (0, l)r)(α?) the new
coefficient of u has first component a unit. The second component
is unchanged. We can thus arrange that β becomes a unit in Op,
and consequently Np = Mp.
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4* Ramified dyadic extensions* Now let Kp be a ramified
extension of the dyadic field Fp. Before classifying the primitive
invariant sublattices in this case it is necessary to determine a set
of generators for U(MP). Special cases have already appeared in
the work of Baeza [1] and Hayakawa [3], but it appears better to
modify the approach in [5].

By [4; 10.3], we can split hyperbolic planes and write

Mp = Hp 1 Jp 1 B

where Jp is an orthogonal sum of hyperbolic planes and rank Bp <£ 2.
Then Jp has dual bases wlf , wm and zlf , zm such that Φ(wif z/) —
8ih 1 ^ i, j ^ m. Recall that g7 is the subgroup of SU(MP) gener-
ated by the Siegel transformations defined in § 2.

PROPOSITION 4.1. U(MP) is generated by g7 and U{HP 1 Bp).

Proof. Let φ e U(MP). We reduce φ to the identity using the
given isometries. Let wlf -- ,wm and zlf — -,zm be dual bases of
Jp, as above, and assume for some k ^ m that φ(Wβ) = wj9 1 ^ j ^
k — 1 (at worst, k = 1). Let

φ(u + wk) = εu + βv + t

where teJp± Bp. We want ε to be a unit. Assume ε is not a unit.
If β is a unit, use the isometry in U{HP) which interchanges u and
v. If β is not a unit, let <p(2fc) have component r in /„ l Bp. Then
Φ(ί, r) is a unit. Since zk e Mp*, it follows that r e Mp*. Also,
Φ(r, wy) = Φ(φ(zk), φ(Wj)) = 0 for 1 ^ j ^ /b — 1. Now replace φ by

, r)φ and the new coefficient of u is a unit.
We may now assume ε is a unit. Let s = t — wk. Then

Φ(S, Wy) = Φ(φ(u + Wfc) - Wk, Wj) = 0

for 1 ^ i ^ & — 1. Also, since q(t) Ξ g(wfc) mod 2>"fcop, we have s e Mp*.
Put

ψ = JS7(%, -ε*zk)Tλ(v)E(v, ε'^φEiu, zk)

where λ 6 Dp is to be chosen subject to the restraint ^~(λ) = 0. Then
j) = Wj for 1 ^ j ^ fc — 1. Choose λ such that

i£O, ε~ιs)φE(u, zk)(wk) = ε(u — Xv) + ^ f c .

Then ^~(λ) = 0 and ^(wΛ) = wk. If ψ̂  is generated by the given
isometries, so is φ. The result now follows by induction on k.

This proposition reduces the question of generators for U(MP) to
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the cases rank Mp — 3, 4. It can be easily verified that U(HP) is
generated by symmetries and transvections. Also, if rank Bp = 2
the basis w, z of Bp can be chosen such that Φ(w, z) = 1 and z e Mp*
(see [4; 9.2]).

THEOREM 4.2. U(M9) is generated by if, U{HP) and symmetries
on Bp.

Proof. We need only consider rank Mp = 3, 4.
(i) Let rank M9 = 4 and Mp = Hp 1 Bp with i?p having a basis

as above. We reduce <p in U(MP) to the identity using the given
isometries. From the proof of Proposition 4.1, we may assume
φ(w) = w. In fact, if w e AT,*, the proposition proves the theorem.
Now assume w 0 Mp*. Put r ~ w — 2q(w)z so that Φ(r, w) = 0. Then

φ{z) = au + βv + z + Ύr

for some α, β in Dp and 7 in π£)p (ΎreMp*). Let

^ C - {£ e AT I Φ(x, z) = l} = w + Hp± £)p(z - 2q(z)w)

be the characteristic set of z (cf. [5; p. 429]). Then

q(w) mod p~hop .

Since (1 — a*)w + v is in ^fφ{Z)9 it follows that q(aw)ep~hop and
hence α ^ e M9*. Similarly, βw e M9*. Interchanging u and i; if neces-
sary, we have β = aX with λ = (λx + X2ζ)p~h in £), and λL Ξ λ2modί9Λ.
Using a transvection, we can then arrange that λ e op in the ramified
prime case and Xeπo9 in the ramified unit case. In the ramified
prime case the proof can be completed by modifying the argument
in [5; 2.4]; the symmetry on Bp needed is Ψδ(r) with δe^p. In
the ramified unit case we proceed as follows. The coefficient of v in
E(v, ξr)φ(z) is zero if

aX + ξ*Φ(r, z + 7r) = μq(ξr)a .

Here μ = 1 + ζ = πph and ε = Φ(r, z + 7r) is a unit. By HensePs
lemma there exists a root ξ of the form £ = sπ*a*p with p in o9.
Similarly, the coefficient of u can be made zero and we may assume
φ{z) = z + 7r. Put δ = Ίq{w) - -Ύq(r)Φ(z, r)~\ Then J?~(δ) = 2^T(δ)
and Ψδ(r)~ιφ acts as the identity on both w and z. This completes
the proof in this case.

(ii) Let rank M9 — 3 and Mp = Hp ± £)pw where 2q(w) is a unit.
Again, we can reduce φ in U(MP) to the identity by the isometries.
Let

φ(w) = a(u + Xv) + 3?w
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where rj is a unit. Moreover, as in the previous case, we may assume
λ is in πop (resp. op) in the ramified unit (resp. prime) case. Since

±) = q(Hp) £ p~hop ,

it follows that aw e Mp*. Using Siegel transformations we can reduce
to the case φ(w) = ew, although in the ramified prime case it is
necessary to use the fact that *sK(τj) = 1 mod 4 and hence Λ^iJl) is
a square. Finally, since ^V(ε) = 1, putting δ = (1 - e)/2 gives

and Ψ^wY^φ fixes w. This completes the proof.

COROLLARY 4.3. Except in the ramified unit case with the rank
of Mp even, all lattices Np satisfying

Mp. QNP^ M?

are invariant under the action of U(MP) .

Proof. This follows from 2.2 and the easily verified fact that
U(HP) and the symmetries used in the proof of the theorem preserve
such Np.

COROLLARY 4.4. In the ramified unit case with rank Mp even,
all lattices between Mp* and Mp are SU(Mp)-ίnvariant.

Proof. Symmetries Ψδ in U(HP) have phδ e £)p and det Ψδ =
Imoά2p~h. Hence, for φ in SU(MP) in the proof of Theorem 2.2,
the only symmetries Ψδ{r) on Bp needed will also have phδe£)p.
These symmetries leave invariant lattices between Mp* and M*.

We now investigate the converse. Let Np be a primitive
iSi7(MίJ)-invariant sublattice of M*. As in 2.4, there exists x = au +
v + t in Np with t e Lp* (letting M* = Hp l L*). In the ramified unit
case ζ is a unit and ^"(ζ) = 0. Since Tζ(u)(x) e Np, it follows that
ζu 6 Np. By 2.3, Mp* Q Np, completing the proof of Theorem B in
this case. Finally, the ramified prime case. If dim Vp ̂  5, then Lp

is split by a hyperbolic plane Hp = Opu' + Dpv'. Applying E(u, u')
to x, we obtain u' — Φ(u'f t)u is in Np. Applying E(uf v

r) now gives
ueNp and hence Mp* £ Np. Assume, therefore, the rank of Mp is 3
or 4 and that the residue class field of Fp has at least four elements.
Let e be a unit in Fp with s 2 ί 1 mod p. The proof of Theorem B
is now easily completed by using the isometry u \—> eu, v t-» e~ιv on
x to obtain v e Np. The exceptional case is studied in the next
section.

5* Exceptional invariant lattices* In this section Fp is a totally
ramified extension of the 2-adic field Q2 and Kp is a ramified prime
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extension of Fp. Thus the residue class fields of both Fp and Kp

have only two elements.
We consider first the case with dim Vp = 3 so that Mp — Hp±£)pw.

Then Mp* = Hp 1 Opπ
ew and M* = Hp _l_ Dpπ~ew where β = ordp 2.

There are now two new invariant lattices

Ep = πΛf* + £)„(% + tf + τrβw)

and its dual E\. It can be easily verified using the generators in
Theorem 4.2 that Ep is a Sϊ7(Λf,)-invariant lattice; it follows that
the dual E\ is also invariant.

Let Np be a primitive invariant sublattice of M*. As in the
proof of 2.4, there exists an element x — au -\- v Λ- βw in Np with
α and πeβ in £)„. Since π = ζ, Tί

Jr(̂ )(a;) is in Λ .̂ Hence TΓM *̂ £ Np.
Assume first that πeβ is a unit. Then πα; e JV, forces π 1 " ^ 6 Np and
7rΛf* £ JV, If cc is not a unit, then the image of v + π~ew under
JS?(t;, πew) is in iV̂ . Hence veNp and Λfv £ iVp. Assume, therefore,
a = 1 mod π. We have now shown, when πeβ is a unit, Ep £ iV̂ .
Moreover, Ep Φ Np forces Mp* £ Np. Now assume πe/3 is not a unit
and apply E(u, πew) to α;. This gives u + TΓ'-M; is in Np. The isometry
u\-*v, v\-*u, w\-> — w is in SU(M9). Hence both v — πew and u + v
are in Np. Define

Gp = 7rM"p* + £)„(> + v) + Dv(t; + πew) .

Then π '̂G,, = El, the dual lattice of Ep. Now, if πe/S is not a unit,
(?> £ Np and if (?p ^ Np, necessarily Mp* £ JVj,. In summary,

5.1. The only exceptional three dimensional invariant lattices
are of the form CLPEP and &PE\, with ap a fractional ideal in Kp.

Now consider the more complicated situation when dim V = 4
and Mp = Hp l Bp with w, z a basis of Bp having Φ(w, z) = 1 and
z e Mp*. Let / be the minimal integer such that πfw is in Mp*. Then

Mp, = Hp± (&9π
fw + ΣXpz) .

If / = 0, then Λf,* = Jlί̂  and it is easily verified that Mp is the only
primitive invariant lattice. Assume, therefore, 1 ^ / ^ e. Now z
can be chosen with q(z) in ^op. For 1 ^ g ^f, define

+ Dpπ
gw + &p(u + v + π~fz)

and

G(g\ = TΓM,* + O/tt + v) + OpTΓ1"̂  + £)p(u +

Then G(g)p = π~ιE(g)\ and using Theorem 4.2 we can check that these
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lattices are all SU(Mp)-invariant. However, except w h e n / = l , these
are not the only new invariant lattices that arise. We shall only
consider / = 1 in detail; this includes the case where 2 is prime in Fp.

Let Np be a primitive S U(M,)-invariant sublattice of M*. Again
Np contains an element x = au 4- v + βw + Ίz with a9 β and πfΊ in
Q,. Applying Tπ(u) to x gives πu e Np and hence πMp* £ Np. Since
E(u, z){x) is in Np, we can conclude that β is in πθp and z is in NP9

for otherwise Mp* £ Np. Assume first that 7 is in π1""/Ωϊ). Then
E(u, πfw)(x) e Np gives u + πfw and w + v are both in Np. Hence
G(l), QNP. If / = 1 and G(l), ̂  iVp, necessarily Mp. £ Np. Now
assume πfrί is a unit. Then E{u, πfw)(x) 6 iV̂ , gives πfw e Np. If α
is a nonunit, applying 2£(t;, πfw) to α? leads to Mp* £ iSΓ̂ . Hence α =
ί mod π and now u + v + /3w + TΓ"^ is in Np with /3 e πθ p . Again,
if / = 1, this gives E(l)p £ JV, and, if E(l\ Φ Np, necessarily Mp. £
Np. Hence,

5.2. For / = 1 έfee ô ί̂ / exceptional four dimensional invariant
lattices are of the form apE(l)p and αp£?(l)J, with ap a fractional
ideal in Kp.

For / ^ 2, the analysis of the exceptional lattices is more com-
plicated, but could be carried out in the above manner.

6. Global results. We start by proving Theorem A; in fact,
this result remains valid even if M is not unimodular.

First let N be a Sί7(M)-invariant sublattice of M. We must
prove Np = DPN is S i7(ikfp)-invariant at all finite prime spots p of F.
Fix a finite prime spot q and an isometry ψq in SU(Mq). By the
approximation theorem of Shimura [8; 5.12], there exists a φ in
SU(V) with local extension <pq close to ψq at the spot q and <pp(Mp) =
Mp elsewhere. Since ψq(Mq) = Λfq, we have 9>q(Λf,) = Λf, if φq is
sufficiently close to ψq and hence φ(M) = M. Thus φ is in SU(M)
and hence φ(i\Γ) = N. Therefore, φq(Nq) — iVq and if φq is sufficiently
close to ψq, necessarily Nq is invariant under ψq.

Conversely, let JV be a lattice in M with Np = O,PN a SU(MP)-
invariant lattice at all finite prime spots p. We must prove φ(N) — N
for all φ in SU(M). Clearly, however, φpeSU(Mp) so that φ(N\~
φp(Np) = Np. The result now follows as in O'Meara [7; §81E].
Notice that this half of the proof does not require that Φ be inde-
finite. This completes the proof of Theorem A.

We can also construct global invariant lattices from local ones
as follows.

PROPOSITION 6.1. At each finite spot p of F assume given a
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SU(Mp)-ίnvariant sublattίce Jp of Mp with Jp = Mp almost always.
Then there exists a sublattice N of M such that for each spot p

Np = OPN = Jp .

Proof. This is an immediate consequence of [2; 2.4].

We conclude this paper by giving more explicitly the invariant
lattices when F is the rational field Q. Now K — Q{Vm) with m a
square free integer. Let p be a rational prime. Then p splits in
K if either p = 2 and m = 1 mod 8, or p is odd and (m/p) ~ 1.
Otherwise, for p = 2, we have an unramified extension if m =
5 mod 8, a ramified unit extension with h = 0 if m = 3 mod 4, and a
ramified prime extension if m is even.

Let M be a unimodular lattice on an indefinite hermitian space
V over Q{V~m). Except when Q2(τ/m) is a ramified extension of
Q2, the only primitive invariant sublattice is Mp. Hence, when
m = 1 mod 4, the S£7(M)-invariant lattices are the aM with α a frac-
tional ideal in Q(l/m).

When m = 3 mod 4 or m is even, Q£\/~m) is a ramified extension
of Q2 and Λf2 can support other local invariant lattices. If the rank
of M is odd, the invariant lattices are the aN with α a fractional
ideal and N2 one of the lattices M#, M2 or M?, together with E2

and E\ when m is even and dim V = 3.
Finally, when the rank of M is even there are a number of

possibilities. If Φ is an even form, namely if M2* — M29 the only
invariant sublattices are the aM with α a fractional ideal. If Φ is
an odd form and m = 3 mod 4 or m is even, there are five lattices
N2 lying between ikf2* and M2. If M2 = ΐZ"2 j_ / 2 1 (D2w + D2z) with
Φ(w, 2) = 1, 2q(w) a unit and q(z) 6 op, these five lattices are M2,
M2*, Mt,

H2±J2± (Ozπw + O2π~ιz)

and

H2A_J21_ (Ό2πw + D2(w + π~ιz)) .

For dim F ̂  6 and for dim V = 4 when m = 3 mod 4, the invariant
lattices are the aN with α a fractional ideal, iV2 one of these five
lattices and NP = Afp for p odd. When dim V — 4 and m is even,
N2 can also be one of the dual pair of exceptional lattices E(l)2 and
E(l)l obtained in the previous section.
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