INVARIANT SUBMODULES OF UNIMODULAR HERMITIAN FORMS

D. G. JAMES

Let M be a unimodular lattice on an indefinite hermitian space over an algebraic number field. The submodules of M invariant under the action of the special unitary group of M are classified. Generators for the local unitary groups of M are also determined.

1. Introduction. Let F be an algebraic number field of finite degree and K a quadratic extension of F. Let V be an indefinite hermitian space over K of finite dimension $n \ge 3$ and $\Phi: V \times V \rightarrow K$ the associated nondegenerate hermitian form on V with respect to the nontrivial automorphism of K over F. Assume V supports a unimodular lattice M (in the sense of O'Meara [7; § 82G] for quadratic spaces). Denote by U(V) the unitary group of V and by U(M) the subgroup of isometries in U(V) that leave M invariant. We will classify the sublattices of M that are invariant under the action of the special unitary group SU(M). The problem is first solved locally; the global result is then obtained by applying the approximation theorem of Shimura [8; 5.12].

We now consider localization (see also [2; § 2] and [8]). Let \mathfrak{P} be a finite prime spot of F and $F_{\mathfrak{P}}$ the corresponding local field. Put $K_{\mathfrak{P}} = K \bigotimes_F F_{\mathfrak{P}}$ and $V_{\mathfrak{P}} = V \bigotimes_F F_{\mathfrak{P}}$. Making the standard identifications, we have $K \subseteq K_{\mathfrak{P}}$, $F_{\mathfrak{P}} \subseteq K_{\mathfrak{P}}$ and $V \subseteq V_{\mathfrak{P}}$. The hermitian form Φ on V extends naturally to an hermitian form on $V_{\mathfrak{P}}$. Let \mathfrak{o} be the ring of integers in F, $\mathfrak{o}_{\mathfrak{P}}$ the (topological) closure of \mathfrak{o} in $F_{\mathfrak{P}}$ and $\mathfrak{O}_{\mathfrak{P}}$ the integral closure of $\mathfrak{o}_{\mathfrak{P}}$ in $K_{\mathfrak{P}}$. Put $M_{\mathfrak{P}} = \mathfrak{O}_{\mathfrak{P}}M \subseteq V_{\mathfrak{P}}$. Locally, we must study the submodules of $M_{\mathfrak{P}}$ invariant under the action of $SU(M_{\mathfrak{P}})$. Except when $K_{\mathfrak{P}}$ is a ramified extension of a dyadic field $F_{\mathfrak{P}}$, the classification will be trivial. For ramified dyadic extensions, it is necessary to determine a set of generators of $U(M_{\mathfrak{P}})$ before the classification can be determined.

We now state the main results.

THEOREM A. Let M be a unimodular lattice on an indefinite hermitian space of dimension $n \ge 3$ over an algebraic number field. Then a sublattice N of M is invariant under the action of the special unitary group SU(M) if and only if for all finite prime spots \mathfrak{p} of F, the localization $N_{\mathfrak{p}} = \mathfrak{O}_{\mathfrak{p}}N$ is invariant under the action of $SU(M_{*})$.

For x in $V_{\mathfrak{p}}$, define $2q(x) = \Phi(x, x)$, and let $M_{\mathfrak{p}^*}$ be the sublattice of $M_{\mathfrak{p}}$ generated by the x in $M_{\mathfrak{p}}$ with q(x) in $\mathfrak{o}_{\mathfrak{p}^*}$. Let

$$M_{\mathfrak{p}}^{*} = \{x \in V_{\mathfrak{p}} | \varPhi(x, M_{\mathfrak{p}^{*}}) \subseteq \mathfrak{O}_{\mathfrak{p}}\}$$

be the dual lattice of M_{ν^*} . Then $M_{\nu^*} \subseteq M_{\nu} \subseteq M_{\nu}^*$ and, except when K_{ν} is a ramified extension of a dyadic local field F_{ν} , we will show later that $M_{\nu^*} = M_{\nu}^*$. A sublattice N_{ν} of M_{ν}^* is called primitive if N_{ν} is not contained in πM_{ν}^* for any prime element $\pi \in \mathfrak{O}_{\nu}$. Clearly, if N_{ν} is invariant under $SU(M_{\nu})$, the lattice $a_{\nu}N_{\nu}$ is also invariant for any fractional ideal a_{ν} in \mathfrak{O}_{ν} . It is therefore enough to classify locally the primitive invariant sublattices of M_{ν}^* .

THEOREM B. A primitive sublattice N_{ν} of M_{ν}^* is invariant under the action of $SU(M_{\nu})$ if and only if $M_{\nu^*} \subseteq N_{\nu}$, except when the following three conditions all apply:

- (i) K_* is a totally ramified extension of the 2-adic field Q_2 ,
- (ii) K_{μ} is a ramified prime extension of F_{μ} ,
- (iii) dim $V_{\nu} = 3$ or 4.

In particular, except when K_{ν} is a ramified extension of a dyadic field F_{ν} , the only primitive invariant lattice is M_{ν} .

Theorem B will be proven for the various cases in \S 2-4 and the exceptional 3 and 4 dimensional cases studied in § 5. Theorem A is established in the final section. The special case where F is the field of rational numbers is also studied in detail.

The approach here follows that given for quadratic spaces in [5] and [6].

2. Local isometries. In this and next three sections we are only concerned with local problems.

The structure of $\mathfrak{D}_{\mathfrak{p}}$ over $\mathfrak{o}_{\mathfrak{p}}$ depends on the prime \mathfrak{p} . If \mathfrak{p} splits in K, then $K_{\mathfrak{p}} = F_{\mathfrak{p}} \times F_{\mathfrak{p}}$ and $\mathfrak{D}_{\mathfrak{p}} = \mathfrak{o}_{\mathfrak{p}} \times \mathfrak{o}_{\mathfrak{p}}$. In this case the involution * on K becomes $(\alpha, \beta)^* = (\beta, \alpha)$ on $K_{\mathfrak{p}}$. If \mathfrak{p} does not split in K, we may take $K_{\mathfrak{p}} = F_{\mathfrak{p}}(\zeta)$ where $\zeta^2 \in F_{\mathfrak{p}}$ and $\zeta^* = -\zeta$. Fix a prime π in $K_{\mathfrak{p}}$ and p in $F_{\mathfrak{p}}$ and let $e = \operatorname{ord}_p 2$. If \mathfrak{p} is dyadic, there are now three possible types of extensions of $K_{\mathfrak{p}}$ over $F_{\mathfrak{p}}$; the details are an application of [7; 63.2, 63.3].

(i) $K_{\mathfrak{p}}$ is an unramified extension of $F_{\mathfrak{p}}$. Then $\zeta^2 = 1 + 4\delta$ with δ a unit in $F_{\mathfrak{p}}$ and $\mathfrak{O}_{\mathfrak{p}}$ consists of all the elements $(\alpha + \zeta\beta)/2$ with $\alpha, \beta \in \mathfrak{o}_{\mathfrak{p}}$ and $\alpha \equiv \beta \mod 2\mathfrak{o}_{\mathfrak{p}}$.

472

(ii) $K_{\mathfrak{p}}$ is a ramified extension of $F_{\mathfrak{p}}$ and ζ is a prime in $K_{\mathfrak{p}}$ the ramified prime case. Now we may assume $\pi = \zeta$, $p = \pi \pi^*$ and $\mathfrak{O}_{\mathfrak{p}}$ is generated over $\mathfrak{o}_{\mathfrak{p}}$ by 1 and π .

(iii) $K_{\mathfrak{p}}$ is a ramified extension of $F_{\mathfrak{p}}$ and ζ is a unit in $K_{\mathfrak{p}}$ —the ramified unit case. We now have $\zeta^2 = 1 + p^{2h+1}\delta$ for some unit δ in $F_{\mathfrak{p}}$ and some rational integer h with $0 \leq h < e$. Put $\pi = (1 + \zeta)p^{-h}$ so that $\pi\pi^* = -p\delta$. Here $\mathfrak{O}_{\mathfrak{p}}$ consists of the elements $(\alpha + \zeta\beta)p^{-h}$ with $\alpha, \beta \in \mathfrak{o}_{\mathfrak{p}}$ and $\alpha \equiv \beta \mod p^h \mathfrak{o}_{\mathfrak{p}}$.

In the nondyadic (nonsplit) case $\mathfrak{D}_{\mathfrak{p}}$ is generated over $\mathfrak{o}_{\mathfrak{p}}$ by 1 and ζ provided we choose ζ to be a prime or a unit according as the extension is ramified or not.

Thus if $K_{\mathfrak{p}}/F_{\mathfrak{p}}$ is a quadratic extension of fields, $\mathfrak{D}_{\mathfrak{p}}$ consists of the elements $(\alpha + \zeta\beta)p^{-h}$ with $\alpha, \beta \in \mathfrak{o}_{\mathfrak{p}}$ and $\alpha \equiv \beta \mod p^{h}\mathfrak{o}_{\mathfrak{p}}$, where we define h = 0 in the nondyadic and ramified prime dyadic cases, and h = e in the unramified dyadic case.

Since $M_{\mathfrak{p}}$ is a unimodular $\mathfrak{D}_{\mathfrak{p}}$ -lattice with rank at least three, it is split by a hyperbolic plane (if \mathfrak{p} splits in K this can be easily verified, otherwise see [4; 7.1, 8.1a, 10.3]). Hence $M_{\mathfrak{p}} = H_{\mathfrak{p}} \perp L_{\mathfrak{p}}$ where $H_{\mathfrak{p}} = \mathfrak{D}_{\mathfrak{p}} u + \mathfrak{D}_{\mathfrak{p}} v$ is a hyperbolic plane with q(u) = q(v) = 0 and $\mathfrak{O}(u, v) = 1$. This choice of u and v will be fixed throughout the local discussion.

We now describe the standard isometries in the unitary group $U(M_*)$ that are needed. The norm and trace mappings from K_* to F_* are denoted by \mathscr{N} and \mathscr{T} , respectively, and our convention for the hermitian form Φ on V_* is $\Phi(\alpha x, \beta y) = \alpha^* \Phi(x, y)\beta$.

Let λ in $\mathfrak{O}_{\mathfrak{p}}$ have $\mathscr{T}(\lambda) = 0$. The transvection $T_{\lambda}(u)$ is defined by

$$T_{\lambda}(u)(z)=z+\lambda arPhi(u,\,z)u$$
 , $z\in M_{\mathfrak{p}}$.

Then det $T_{\lambda}(u) = 1$ so that $T_{\lambda}(u)$ is in $SU(M_{\nu})$. Similarly, $T_{\lambda}(v) \in SU(M_{\nu})$.

Let λ in $K_{\mathfrak{p}}$ satisfy $\mathscr{T}(\lambda) = 2\mathscr{N}(\lambda)$. For x in $M_{\mathfrak{p}}$ with $\lambda q(x)^{-1}$ in $\mathfrak{O}_{\mathfrak{p}}$, define the symmetry $\Psi_{\lambda}(x)$ by

$${ar \Psi}_{\lambda}(x)(z)=z-\lambda {ar P}(x,\,z)q(x)^{-{\scriptscriptstyle 1}}x$$
 , $z\in M_{\mathfrak p}$.

Then det $\Psi_{\lambda}(x) = 1 - 2\lambda$ and $\Psi_{\lambda}(x) \in U(M_{\mathfrak{p}})$.

Recall that $M_{\mathfrak{p}^*}$ is the sublattice of $M_{\mathfrak{p}}$ generated by those x in $M_{\mathfrak{p}}$ with $q(x) \in \mathfrak{o}_{\mathfrak{p}}$. Since $2q(x) = \Phi(x, x)$, in the nondyadic case $M_{\mathfrak{p}^*} = M_{\mathfrak{p}}$. This is also true when \mathfrak{p} splits in K; for the involution on $K_{\mathfrak{p}} = F_{\mathfrak{p}} \times F_{\mathfrak{p}}$ is given by $(\alpha, \beta)^* = (\beta, \alpha)$, so that for x in $M_{\mathfrak{p}}$,

$$q((1, 0)x) = \mathcal{N}(1, 0)q(x) = 0$$
.

Thus $(1, 0)x \in M_{\mu^*}$ and x = (1, 1)x is in M_{μ^*} .

PROPOSITION 2.1. Let $F_{\mathfrak{p}}$ be a dyadic local field with \mathfrak{p} not split in K. Then

$$M_{\mathfrak{p}^*} = \{x \in M_\mathfrak{p} \,|\, p^h q(x) \in \mathfrak{o}_\mathfrak{p}\}$$
 .

In particular, $M_{\mu^*} = M_{\mu}$ when K_{μ} is an unramified extension of F_{μ} .

Proof. Let S be the set of all elements x in $M_{\mathfrak{p}}$ with $p^{h}q(x)$ in $\mathfrak{o}_{\mathfrak{p}}$. Since $\mathscr{T}(\mathfrak{O}_{\mathfrak{p}}) \subseteq 2p^{-h}\mathfrak{o}_{\mathfrak{p}}$ and

$$q(x+y)=q(x)+q(y)+\mathscr{T}(arPhi(x,y))/2$$
 ,

it follows that S is an \mathbb{O}_{p} -module. Hence $M_{p^*} \subseteq S$. We now prove the converse inclusion. For x in S, let x = y + z with $y \in H_{p}$ and $z \in L_{p}$. Clearly, u, v and consequently y are in S. Therefore, z = x - y is in S and $p^{h}q(z) \in \mathfrak{o}_{p}$. Let $w = u - \alpha v + z$ where $\alpha = q(z)(1 + \zeta)$ is in \mathbb{O}_{p} . Then q(w) = 0 and $w \in M_{p^*}$. Hence $z \in M_{p^*}$ and $S \subseteq M_{p^*}$, proving the proposition.

Fix μ in $\mathfrak{O}_{\mathfrak{p}}$ such that $\mathscr{T}(\mu) = 2$. For x in $L_{\mathfrak{p}}$ with $\mu q(x)$ in $\mathfrak{O}_{\mathfrak{p}}$, define the Siegel transformation E(u, x) by

$$E(u, x)(z) = z - \varPhi(u, z)x + \varPhi(x, z)u - \mu q(x)\varPhi(u, z)u$$
.

Then det E(u, x) = 1 and E(u, x) is in $SU(M_{\nu})$. Similarly, define E(v, x). Fix $\mu = 1$ except when F_{ν} is dyadic and K_{ν} is either an unramified or a ramified unit extension of F_{ν} . In these exceptional cases fix $\mu = 1 + \zeta \in p^{h} \mathfrak{D}_{\nu}$. Except for the split dyadic case, it is now sufficient to choose x in $L_{\nu} \cap M_{\nu^{*}}$ for E(u, x) to be an integral isometry. Let \mathscr{C} be the subgroup of $SU(M_{\nu})$ generated by the Siegel transformations.

In the following three sections we classify locally the primitive sublattices of M_{ν}^* invariant under the action of the special unitary group $SU(M_{\nu})$. We conclude this section with three observations. Assume that \mathfrak{p} does not split in K.

2.2. Any lattice N_{*} satisfying $M_{*} \subseteq N_{*} \subseteq M_{*}^{*}$ is invariant under the action of \mathcal{C} .

Proof. Let
$$z \in N_{\mathfrak{p}}$$
 and $x \in L_{\mathfrak{p}} \cap M_{\mathfrak{p}^*}$. Then $\varPhi(x, z) \in \mathfrak{O}_{\mathfrak{p}}$ and
 $E(u, x)(z) \equiv z \mod M_{\mathfrak{p}^*}$.

Hence E(u, x)(z) and, likewise, E(v, x)(z) lies in N_{μ} . The result follows.

2.3. If $N_{\mathfrak{p}}$ is invariant under $SU(M_{\mathfrak{p}})$ and $u \in N_{\mathfrak{p}}$ or $v \in N_{\mathfrak{p}}$, then $M_{\mathfrak{p}^*} \subseteq N_{\mathfrak{p}}$.

Proof. For any x in $L_{\mathfrak{p}}$ with $q(x)^{-1}$ in $\mathfrak{O}_{\mathfrak{p}}$, we have $\Psi_{\mathfrak{l}}(u-v)\Psi_{\mathfrak{l}}(x)$

is in $SU(M_{\nu})$. This isometry interchanges u and v, so that $H_{\nu} \subseteq N_{\nu}$. Let $y \in L_{\nu} \cap M_{\nu^*}$. Then E(u, y)(v) is in N_{ν} and hence $y \in N_{\nu}$. Thus $M_{\nu^*} \subseteq N_{\nu}$.

2.4. Assume either K_{*} is an unramified extension of F_{*} or F_{*} is a nondyadic field. Then M_{*} is the unique primitive sublattice invariant under the action of $SU(M_{*})$.

Proof. Let $N_{\mathfrak{p}}$ be a primitive invariant sublattice. It suffices by 2.3 to show that $u \in N_{\mathfrak{p}}$, since under our assumptions $M_{\mathfrak{p}^*} = M_{\mathfrak{p}}$. Since $N_{\mathfrak{p}} \not\subseteq \pi M_{\mathfrak{p}}$, there exists z in $N_{\mathfrak{p}}$ with $z \notin \pi M_{\mathfrak{p}}$. Let $z = \alpha u + \beta v + t$ where $t \in L_{\mathfrak{p}}$. If α and β are nonunits, there exists r in $L_{\mathfrak{p}}$ such that $\Phi(r, t) = 1$ (since $z \notin \pi M_{\mathfrak{p}}^*$). The coefficient of v in $E(v, r)(z) \in N_{\mathfrak{p}}$ is now a unit. Assume, therefore, $\beta = 1$ (or symmetrically, $\alpha = 1$). If $K_{\mathfrak{p}} = F_{\mathfrak{p}}(\zeta)$ is an unramified extension of $F_{\mathfrak{p}}$, ζ is a unit. Then $T_{\zeta}(u)(z) = z + \zeta u$ is in $N_{\mathfrak{p}}$. Hence $u \in N_{\mathfrak{p}}$ and the result follows. Now assume $F_{\mathfrak{p}}$ is a nondyadic field. Then $E(u, t)(z) = \gamma u + v$ is in $N_{\mathfrak{p}}$ for some γ in $\mathfrak{O}_{\mathfrak{p}}$. Let $w \in L_{\mathfrak{p}}$ have q(w) a unit. Applying $E(u, \rho w)$ to $\gamma u + v \in N_{\mathfrak{p}}$ with $\rho = 1, -1$ gives $\rho w + q(w)u$ is in $N_{\mathfrak{p}}$. Since 2 is now a unit, it follows that u is in $N_{\mathfrak{p}}$ and hence $N_{\mathfrak{p}} = M_{\mathfrak{p}}$.

Theorem B has now been established except when either \mathfrak{p} splits in K, or $K_{\mathfrak{p}}$ is a ramified extension of a dyadic field $F_{\mathfrak{p}}$.

3. Split extensions. Assume \mathfrak{p} splits in K so that $K_{\mathfrak{p}} = F_{\mathfrak{p}} \times F_{\mathfrak{p}}$ and $\mathfrak{O}_{\mathfrak{p}} = \mathfrak{o}_{\mathfrak{p}} \times \mathfrak{o}_{\mathfrak{p}}$. Let $N_{\mathfrak{p}}$ be a primitive invariant sublattice of $M_{\mathfrak{p}}^* = M_{\mathfrak{p}} = H_{\mathfrak{p}} \perp L_{\mathfrak{p}}$. We wish to prove $N_{\mathfrak{p}} = M_{\mathfrak{p}}$. Since $N_{\mathfrak{p}} \not\subseteq \pi M_{\mathfrak{p}}$ for any prime element π in $\mathfrak{O}_{\mathfrak{p}}$, there exists $x \in N_{\mathfrak{p}}$ with $x \notin \pi M_{\mathfrak{p}}$. Let $x = \alpha u + \beta v + t$ with $t \in L_{\mathfrak{p}}$. If β (or α) is a unit in $\mathfrak{O}_{\mathfrak{p}}$, we may assume $\beta = 1$. Then, since $\mathscr{T}(1, -1) = 0$, it follows that

$$T_{(1,-1)}(u)(x) = x + (1, -1)u$$

is in $N_{\mathfrak{p}}$. Thus (1, -1)u and u are in $N_{\mathfrak{p}}$. As in 2.3, we now have $H_{\mathfrak{p}} \subseteq N_{\mathfrak{p}}$. Let $y \in L_{\mathfrak{p}}$. Then E(u, (1, 0)y)(v) is in $N_{\mathfrak{p}}$. Hence (1, 0)y, and likewise (0, 1)y, are in $N_{\mathfrak{p}}$. Consequently, $y \in N_{\mathfrak{p}}$ and $N_{\mathfrak{p}} = M_{\mathfrak{p}}$.

Now assume that neither $\alpha = (\alpha_1, \alpha_2)$ nor $\beta = (\beta_1, \beta_2)$ is a unit. If α_1 is a unit in $\mathfrak{o}_{\mathfrak{p}}$, replacing x by $T_{(1,-1)}(v)(x)$ if necessary, we may assume β_1 is also a unit. Hence, unless both α_1 and β_1 are nonunits, or both α_2 and β_2 are nonunits, we arrange that β becomes a unit in $\mathfrak{O}_{\mathfrak{p}}$ and we are finished. Assume, therefore, $\alpha_1, \beta_1 \in \mathfrak{po}_{\mathfrak{p}}$. Since $x \notin \pi M_{\mathfrak{p}}$, there exists y in $M_{\mathfrak{p}}$ such that $\Phi(x, y) = (1, 1)$. Hence, there exists $r \in L_{\mathfrak{p}}$ such that $\Phi(t, r) = (?, 1)$. In E(u, (0, 1)r)(x) the new coefficient of u has first component a unit. The second component is unchanged. We can thus arrange that β becomes a unit in $\mathfrak{O}_{\mathfrak{p}}$, and consequently $N_{\mathfrak{p}} = M_{\mathfrak{p}}$. 4. Ramified dyadic extensions. Now let K_{ν} be a ramified extension of the dyadic field F_{ν} . Before classifying the primitive invariant sublattices in this case it is necessary to determine a set of generators for $U(M_{\nu})$. Special cases have already appeared in the work of Baeza [1] and Hayakawa [3], but it appears better to modify the approach in [5].

By [4; 10.3], we can split hyperbolic planes and write

$$M_{\mathfrak{p}} = H_{\mathfrak{p}} ot J_{\mathfrak{p}} ot B_{\mathfrak{p}}$$

where $J_{\mathfrak{p}}$ is an orthogonal sum of hyperbolic planes and rank $B_{\mathfrak{p}} \leq 2$. Then $J_{\mathfrak{p}}$ has dual bases w_1, \dots, w_m and z_1, \dots, z_m such that $\Phi(w_i, z_j) = \delta_{ij}$, $1 \leq i, j \leq m$. Recall that \mathscr{C} is the subgroup of $SU(M_{\mathfrak{p}})$ generated by the Siegel transformations defined in § 2.

PROPOSITION 4.1. $U(M_{*})$ is generated by \mathcal{C} and $U(H_{*} \perp B_{*})$.

Proof. Let $\varphi \in U(M_{\nu})$. We reduce φ to the identity using the given isometries. Let w_1, \dots, w_m and z_1, \dots, z_m be dual bases of J_{ν} , as above, and assume for some $k \leq m$ that $\varphi(w_j) = w_j$, $1 \leq j \leq k-1$ (at worst, k = 1). Let

$$\varphi(u+w_k)=\varepsilon u+\beta v+t$$

where $t \in J_{\mathfrak{p}} \perp B_{\mathfrak{p}}$. We want ε to be a unit. Assume ε is not a unit. If β is a unit, use the isometry in $U(H_{\mathfrak{p}})$ which interchanges u and v. If β is not a unit, let $\varphi(z_k)$ have component r in $J_{\mathfrak{p}} \perp B_{\mathfrak{p}}$. Then $\Phi(t, r)$ is a unit. Since $z_k \in M_{\mathfrak{p}^*}$, it follows that $r \in M_{\mathfrak{p}^*}$. Also, $\Phi(r, w_j) = \Phi(\varphi(z_k), \varphi(w_j)) = 0$ for $1 \leq j \leq k - 1$. Now replace φ by $E(u, r)\varphi$ and the new coefficient of u is a unit.

We may now assume ε is a unit. Let $s = t - w_k$. Then

 $\Phi(s, w_j) = \Phi(\varphi(u + w_k) - w_k, w_j) = 0$

for $1 \leq j \leq k-1$. Also, since $q(t) \equiv q(w_k) \mod p^{-k} \mathfrak{o}_p$, we have $s \in M_p$. Put

$$\psi = E(u, -\varepsilon^* z_k) T_{\lambda}(v) E(v, \varepsilon^{-1} s) \varphi E(u, z_k)$$

where $\lambda \in \mathfrak{O}_{\mathfrak{p}}$ is to be chosen subject to the restraint $\mathscr{T}(\lambda) = 0$. Then $\psi(w_j) = w_j$ for $1 \leq j \leq k-1$. Choose λ such that

$$E(v, \varepsilon^{-1}s) \varphi E(u, z_k)(w_k) = \varepsilon(u - \lambda v) + w_k$$
.

Then $\mathscr{T}(\lambda) = 0$ and $\psi(w_k) = w_k$. If ψ is generated by the given isometries, so is φ . The result now follows by induction on k.

This proposition reduces the question of generators for $U(M_*)$ to

the cases rank $M_{\nu} = 3, 4$. It can be easily verified that $U(H_{\nu})$ is generated by symmetries and transvections. Also, if rank $B_{\nu} = 2$ the basis w, z of B_{ν} can be chosen such that $\Phi(w, z) = 1$ and $z \in M_{\nu}$. (see [4; 9.2]).

THEOREM 4.2. $U(M_{\nu})$ is generated by \mathcal{C} , $U(H_{\nu})$ and symmetries on B_{ν} .

Proof. We need only consider rank $M_{\mu} = 3, 4$.

(i) Let rank $M_{\mathfrak{p}} = 4$ and $M_{\mathfrak{p}} = H_{\mathfrak{p}} \perp B_{\mathfrak{p}}$ with $B_{\mathfrak{p}}$ having a basis as above. We reduce φ in $U(M_{\mathfrak{p}})$ to the identity using the given isometries. From the proof of Proposition 4.1, we may assume $\varphi(w) = w$. In fact, if $w \in M_{\mathfrak{p}^*}$, the proposition proves the theorem. Now assume $w \notin M_{\mathfrak{p}^*}$. Put r = w - 2q(w)z so that $\varphi(r, w) = 0$. Then

 $\varphi(z) = \alpha u + \beta v + z + \gamma r$

for some α , β in $\mathfrak{O}_{\mathfrak{p}}$ and γ in $\pi\mathfrak{O}_{\mathfrak{p}}$ ($\gamma r \in M_{\mathfrak{p}*}$). Let

$$\mathscr{M}_{z}=\{x\in M\,|\, arPhi(x,\,z)=1\}=w\,+\,H_{\mathfrak{p}}\perp\mathfrak{O}_{\mathfrak{p}}(z\,-\,2q(z)w)$$

be the characteristic set of z (cf. [5; p. 429]). Then

$$q(\mathscr{M}_{arphi(z)})=q(\mathscr{M}_z)\equiv q(w) ext{ mod } p^{-h}\mathfrak{o}_\mathfrak{p}$$
 .

Since $(1 - \alpha^*)w + v$ is in $\mathscr{M}_{\varphi(z)}$, it follows that $q(\alpha w) \in p^{-h}o_p$ and hence $\alpha w \in M_{\mathfrak{p}^*}$. Similarly, $\beta w \in M_{\mathfrak{p}^*}$. Interchanging u and v if necessary, we have $\beta = \alpha \lambda$ with $\lambda = (\lambda_1 + \lambda_2 \zeta) p^{-h}$ in \mathfrak{O}_p and $\lambda_1 \equiv \lambda_2 \mod p^h$. Using a transvection, we can then arrange that $\lambda \in o_p$ in the ramified prime case and $\lambda \in \pi o_p$ in the ramified unit case. In the ramified prime case the proof can be completed by modifying the argument in [5; 2.4]; the symmetry on B_p needed is $\Psi_{\delta}(r)$ with $\delta \in \mathscr{O}_p$. In the ramified unit case we proceed as follows. The coefficient of v in $E(v, \xi r)\varphi(z)$ is zero if

$$lpha\lambda+\xi^*\varPhi(r,z+\gamma r)=\mu q(\xi r)lpha$$
 .

Here $\mu = 1 + \zeta = \pi p^h$ and $\varepsilon = \Phi(r, z + \gamma r)$ is a unit. By Hensel's lemma there exists a root ξ of the form $\xi = \varepsilon \pi^* \alpha^* \rho$ with ρ in $\mathfrak{o}_{\mathfrak{p}}$. Similarly, the coefficient of u can be made zero and we may assume $\varphi(z) = z + \gamma r$. Put $\delta = \gamma q(w) = -\gamma q(r) \Phi(z, r)^{-1}$. Then $\mathscr{T}(\delta) = 2\mathscr{N}(\delta)$ and $\Psi_{\delta}(r)^{-1}\varphi$ acts as the identity on both w and z. This completes the proof in this case.

(ii) Let rank $M_{\mathfrak{p}} = 3$ and $M_{\mathfrak{p}} = H_{\mathfrak{p}} \perp \mathfrak{O}_{\mathfrak{p}} w$ where 2q(w) is a unit. Again, we can reduce φ in $U(M_{\mathfrak{p}})$ to the identity by the isometries. Let

$$\varphi(w) = \alpha(u + \lambda v) + \eta w$$

where η is a unit. Moreover, as in the previous case, we may assume λ is in πo_{*} (resp. o_{*}) in the ramified unit (resp. prime) case. Since

$$q(\mathfrak{O}_{\mathfrak{p}}arphi(w)^{\scriptscriptstyle ot}) = q(\mathfrak{O}_{\mathfrak{p}}w^{\scriptscriptstyle ot}) = q(H_{\mathfrak{p}}) \subseteq p^{-h}\mathfrak{o}_{\mathfrak{p}}$$
 ,

it follows that $\alpha w \in M_{\mathfrak{p}}$. Using Siegel transformations we can reduce to the case $\varphi(w) = \varepsilon w$, although in the ramified prime case it is necessary to use the fact that $\mathscr{N}(\eta) \equiv 1 \mod 4$ and hence $\mathscr{N}(\eta)$ is a square. Finally, since $\mathscr{N}(\varepsilon) = 1$, putting $\delta = (1 - \varepsilon)/2$ gives $\mathscr{T}(\delta) = 2\mathscr{N}(\delta)$ and $\Psi_{\delta}(w)^{-1}\varphi$ fixes w. This completes the proof.

COROLLARY 4.3. Except in the ramified unit case with the rank of M_{*} even, all lattices N_{*} satisfying

$$M_{\mathfrak{p}^*} \subseteq N_{\mathfrak{p}} \subseteq M^*_{\mathfrak{p}}$$

are invariant under the action of $U(M_*)$.

Proof. This follows from 2.2 and the easily verified fact that $U(H_{\nu})$ and the symmetries used in the proof of the theorem preserve such N_{ν} .

COROLLARY 4.4. In the ramified unit case with rank M_* even, all lattices between M_{*} and M_{*}^* are $SU(M_*)$ -invariant.

Proof. Symmetries Ψ_{δ} in $U(H_{\mathfrak{p}})$ have $p^{\hbar}\delta \in \mathfrak{O}_{\mathfrak{p}}$ and $\det \Psi_{\delta} \equiv 1 \mod 2p^{-\hbar}$. Hence, for φ in $SU(M_{\mathfrak{p}})$ in the proof of Theorem 2.2, the only symmetries $\Psi_{\delta}(r)$ on $B_{\mathfrak{p}}$ needed will also have $p^{\hbar}\delta \in \mathfrak{O}_{\mathfrak{p}}$. These symmetries leave invariant lattices between $M_{\mathfrak{p}^*}$ and $M_{\mathfrak{p}^*}^*$.

We now investigate the converse. Let $N_{\mathfrak{p}}$ be a primitive $SU(M_{\mathfrak{p}})$ -invariant sublattice of $M_{\mathfrak{p}}^*$. As in 2.4, there exists $x = \alpha u + v + t$ in $N_{\mathfrak{p}}$ with $t \in L_{\mathfrak{p}}^*$ (letting $M_{\mathfrak{p}}^* = H_{\mathfrak{p}} \perp L_{\mathfrak{p}}^*$). In the ramified unit case ζ is a unit and $\mathscr{T}(\zeta) = 0$. Since $T_{\zeta}(u)(x) \in N_{\mathfrak{p}}$, it follows that $\zeta u \in N_{\mathfrak{p}}$. By 2.3, $M_{\mathfrak{p}^*} \subseteq N_{\mathfrak{p}}$, completing the proof of Theorem B in this case. Finally, the ramified prime case. If dim $V_{\mathfrak{p}} \geq 5$, then $L_{\mathfrak{p}}$ is split by a hyperbolic plane $H'_{\mathfrak{p}} = \mathfrak{D}_{\mathfrak{p}}u' + \mathfrak{D}_{\mathfrak{p}}v'$. Applying E(u, u') to x, we obtain $u' - \Phi(u', t)u$ is in $N_{\mathfrak{p}}$. Applying E(u, v') now gives $u \in N_{\mathfrak{p}}$ and hence $M_{\mathfrak{p}^*} \subseteq N_{\mathfrak{p}}$. Assume, therefore, the rank of $M_{\mathfrak{p}}$ is 3 or 4 and that the residue class field of $F_{\mathfrak{p}}$ has at least four elements. Let ε be a unit in $F_{\mathfrak{p}}$ with $\varepsilon^2 \not\equiv 1 \mod p$. The proof of Theorem B is now easily completed by using the isometry $u \mapsto \varepsilon u$, $v \mapsto \varepsilon^{-1}v$ on x to obtain $v \in N_{\mathfrak{p}}$. The exceptional case is studied in the next section.

5. Exceptional invariant lattices. In this section F_{*} is a totally ramified extension of the 2-adic field Q_{2} and K_{*} is a ramified prime

extension of F_{ν} . Thus the residue class fields of both F_{ν} and K_{ν} have only two elements.

We consider first the case with dim $V_{\mathfrak{p}} = 3$ so that $M_{\mathfrak{p}} = H_{\mathfrak{p}} \perp \mathfrak{O}_{\mathfrak{p}} w$. Then $M_{\mathfrak{p}^*} = H_{\mathfrak{p}} \perp \mathfrak{O}_{\mathfrak{p}} \pi^e w$ and $M_{\mathfrak{p}}^* = H_{\mathfrak{p}} \perp \mathfrak{O}_{\mathfrak{p}} \pi^{-e} w$ where $e = \operatorname{ord}_p 2$. There are now two new invariant lattices

$$E_{\mathfrak{p}}=\pi M_{\mathfrak{p}}^{st}+\mathfrak{O}_{\mathfrak{p}}(u+v+\pi^{-e}w)$$

and its dual $E_{\mathfrak{p}}^{\sharp}$. It can be easily verified using the generators in Theorem 4.2 that $E_{\mathfrak{p}}$ is a $SU(M_{\mathfrak{p}})$ -invariant lattice; it follows that the dual $E_{\mathfrak{p}}^{\sharp}$ is also invariant.

Let $N_{\mathfrak{p}}$ be a primitive invariant sublattice of $M_{\mathfrak{p}}^*$. As in the proof of 2.4, there exists an element $x = \alpha u + v + \beta w$ in $N_{\mathfrak{p}}$ with α and $\pi^{e}\beta$ in $\mathfrak{O}_{\mathfrak{p}}$. Since $\pi = \zeta$, $T_{\pi}(u)(x)$ is in $N_{\mathfrak{p}}$. Hence $\pi M_{\mathfrak{p}^*} \subseteq N_{\mathfrak{p}}$. Assume first that $\pi^{e}\beta$ is a unit. Then $\pi x \in N_{\mathfrak{p}}$ forces $\pi^{1-e}w \in N_{\mathfrak{p}}$ and $\pi M_{\mathfrak{p}}^* \subseteq N_{\mathfrak{p}}$. If α is not a unit, then the image of $v + \pi^{-e}w$ under $E(v, \pi^{e}w)$ is in $N_{\mathfrak{p}}$. Hence $v \in N_{\mathfrak{p}}$ and $M_{\mathfrak{p}^*} \subseteq N_{\mathfrak{p}}$. Assume, therefore, $\alpha \equiv 1 \mod \pi$. We have now shown, when $\pi^{e}\beta$ is a unit, $E_{\mathfrak{p}} \subseteq N_{\mathfrak{p}}$. Moreover, $E_{\mathfrak{p}} \neq N_{\mathfrak{p}}$ forces $M_{\mathfrak{p}^*} \subseteq N_{\mathfrak{p}}$. Now assume $\pi^{e}\beta$ is not a unit and apply $E(u, \pi^{e}w)$ to x. This gives $u + \pi^{e}w$ is in $N_{\mathfrak{p}}$. The isometry $u \mapsto v, v \mapsto u, w \mapsto - w$ is in $SU(M_{\mathfrak{p}})$. Hence both $v - \pi^{e}w$ and u + vare in $N_{\mathfrak{p}}$. Define

$$G_{\mathfrak{p}}=\pi M_{\mathfrak{p}^*}+\mathfrak{O}_{\mathfrak{p}}(u+v)+\mathfrak{O}_{\mathfrak{p}}(v+\pi^e w)$$
 .

Then $\pi^{-1}G_{\mathfrak{p}} = E_{\mathfrak{p}}^{\sharp}$, the dual lattice of $E_{\mathfrak{p}}$. Now, if $\pi^{e}\beta$ is not a unit, $G_{\mathfrak{p}} \subseteq N_{\mathfrak{p}}$ and if $G_{\mathfrak{p}} \neq N_{\mathfrak{p}}$, necessarily $M_{\mathfrak{p}^{*}} \subseteq N_{\mathfrak{p}}$. In summary,

5.1. The only exceptional three dimensional invariant lattices are of the form $a_{\mu}E_{\nu}$ and $a_{\mu}E_{\nu}^{*}$, with a_{ν} a fractional ideal in K_{ν} .

Now consider the more complicated situation when dim V = 4and $M_{\mathfrak{p}} = H_{\mathfrak{p}} \perp B_{\mathfrak{p}}$ with w, z a basis of $B_{\mathfrak{p}}$ having $\Phi(w, z) = 1$ and $z \in M_{\mathfrak{p}^*}$. Let f be the minimal integer such that $\pi^f w$ is in $M_{\mathfrak{p}^*}$. Then

$$M_{\mathfrak{p}^*} = H_\mathfrak{p} \perp (\mathfrak{O}_\mathfrak{p} \pi^f w + \mathfrak{O}_\mathfrak{p} z)$$
 .

If f = 0, then $M_{\mathfrak{p}^*} = M_{\mathfrak{p}}$ and it is easily verified that $M_{\mathfrak{p}}$ is the only primitive invariant lattice. Assume, therefore, $1 \leq f \leq e$. Now z can be chosen with q(z) in $po_{\mathfrak{p}}$. For $1 \leq g \leq f$, define

$$E(g)_{\mathfrak{p}}=\pi M_{\mathfrak{p}^*}+\mathfrak{O}_{\mathfrak{p}}\pi^gw+\mathfrak{O}_{\mathfrak{p}}(u+v+\pi^{-f}z)$$

and

$$G(g)_{\mathfrak{p}}=\pi M_{\mathfrak{p}^*}+\mathfrak{O}_{\mathfrak{p}}(u+v)+\mathfrak{O}_{\mathfrak{p}}\pi^{\scriptscriptstyle 1-g}z+\mathfrak{O}_{\mathfrak{p}}(u+\pi^f w)$$
 .

Then $G(g)_{\mathfrak{p}} = \pi^{-1} E(g)_{\mathfrak{p}}^{\sharp}$ and using Theorem 4.2 we can check that these

lattices are all $SU(M_{\nu})$ -invariant. However, except when f=1, these are not the only new invariant lattices that arise. We shall only consider f=1 in detail; this includes the case where 2 is prime in F_{ν} .

Let $N_{\mathfrak{p}}$ be a primitive $SU(M_{\mathfrak{p}})$ -invariant sublattice of $M_{\mathfrak{p}}^*$. Again N_{μ} contains an element $x = \alpha u + v + \beta w + \gamma z$ with α, β and $\pi^{f} \gamma$ in $\mathfrak{Q}_{\mathfrak{p}}$. Applying $T_{\pi}(u)$ to x gives $\pi u \in N_{\mathfrak{p}}$ and hence $\pi M_{\mathfrak{p}^*} \subseteq N_{\mathfrak{p}}$. Since E(u, z)(x) is in N_{ν} , we can conclude that β is in $\pi \mathfrak{O}_{\nu}$ and z is in N_{ν} , for otherwise $M_{\mathfrak{p}^*} \subseteq N_{\mathfrak{p}}$. Assume first that γ is in $\pi^{1-f}\mathfrak{O}_{\mathfrak{p}}$. Then $E(u, \pi^{f}w)(x) \in N_{\mathfrak{p}}$ gives $u + \pi^{f}w$ and u + v are both in $N_{\mathfrak{p}}$. Hence $G(1)_{\mathfrak{p}}\subseteq N_{\mathfrak{p}}.$ If f=1 and $G(1)_{\mathfrak{p}}\neq N_{\mathfrak{p}}$, necessarily $M_{\mathfrak{p}*}\subseteq N_{\mathfrak{p}}.$ Now assume $\pi^{f}\gamma$ is a unit. Then $E(u, \pi^{f}w)(x) \in N_{*}$ gives $\pi^{f}w \in N_{*}$. If α is a nonunit, applying $E(v, \pi^{f}w)$ to x leads to $M_{\nu^{*}} \subseteq N_{\nu}$. Hence $\alpha \equiv$ $1 \mod \pi$ and now $u + v + \beta w + \pi^{-f} z$ is in N_{ν} with $\beta \in \pi \mathfrak{O}_{\nu}$. Again, $\text{if } f = 1, \text{ this gives } E(1)_{\mathfrak{p}} \subseteq N_{\mathfrak{p}} \text{ and, if } E(1)_{\mathfrak{p}} \neq N_{\mathfrak{p}}, \text{ necessarily } M_{\mathfrak{p}^*} \subseteq \\$ N_{μ} . Hence,

5.2. For f = 1 the only exceptional four dimensional invariant lattices are of the form $a_{\nu}E(1)_{\nu}$ and $a_{\nu}E(1)_{\nu}^{*}$, with a_{ν} a fractional ideal in K_{ν} .

For $f \ge 2$, the analysis of the exceptional lattices is more complicated, but could be carried out in the above manner.

6. Global results. We start by proving Theorem A; in fact, this result remains valid even if M is not unimodular.

First let N be a SU(M)-invariant sublattice of M. We must prove $N_{\mathfrak{p}} = \mathfrak{O}_{\mathfrak{p}}N$ is $SU(M_{\mathfrak{p}})$ -invariant at all finite prime spots \mathfrak{p} of F. Fix a finite prime spot q and an isometry ψ_q in $SU(M_q)$. By the approximation theorem of Shimura [8; 5.12], there exists a φ in SU(V) with local extension φ_q close to ψ_q at the spot q and $\varphi_{\mathfrak{p}}(M_{\mathfrak{p}}) =$ $M_{\mathfrak{p}}$ elsewhere. Since $\psi_q(M_q) = M_q$, we have $\varphi_q(M_q) = M_q$ if φ_q is sufficiently close to ψ_q and hence $\varphi(M) = M$. Thus φ is in SU(M)and hence $\varphi(N) = N$. Therefore, $\varphi_q(N_q) = N_q$ and if φ_q is sufficiently close to ψ_q , necessarily N_q is invariant under ψ_q .

Conversely, let N be a lattice in M with $N_{\mathfrak{p}} = \mathfrak{Q}_{\mathfrak{p}}N$ a $SU(M_{\mathfrak{p}})$ invariant lattice at all finite prime spots \mathfrak{p} . We must prove $\varphi(N) = N$ for all φ in SU(M). Clearly, however, $\varphi_{\mathfrak{p}} \in SU(M_{\mathfrak{p}})$ so that $\varphi(N)_{\mathfrak{p}} = \varphi_{\mathfrak{p}}(N_{\mathfrak{p}}) = N_{\mathfrak{p}}$. The result now follows as in O'Meara [7; § 81E]. Notice that this half of the proof does not require that φ be indefinite. This completes the proof of Theorem A.

We can also construct global invariant lattices from local ones as follows.

PROPOSITION 6.1. At each finite spot \mathfrak{p} of F assume given a

 $SU(M_{\nu})$ -invariant sublattice J_{ν} of M_{ν} with $J_{\nu} = M_{\nu}$ almost always. Then there exists a sublattice N of M such that for each spot ν

$$N_{\mathfrak{p}} = \mathfrak{O}_{\mathfrak{p}}N = J_{\mathfrak{p}}$$
 .

Proof. This is an immediate consequence of [2; 2.4].

We conclude this paper by giving more explicitly the invariant lattices when F is the rational field Q. Now $K = Q(\sqrt{m})$ with m a square free integer. Let p be a rational prime. Then p splits in K if either p = 2 and $m \equiv 1 \mod 8$, or p is odd and (m/p) = 1. Otherwise, for p = 2, we have an unramified extension if $m \equiv$ $5 \mod 8$, a ramified unit extension with h = 0 if $m \equiv 3 \mod 4$, and a ramified prime extension if m is even.

Let M be a unimodular lattice on an indefinite hermitian space V over $Q(\sqrt{m})$. Except when $Q_2(\sqrt{m})$ is a ramified extension of Q_2 , the only primitive invariant sublattice is M_p . Hence, when $m \equiv 1 \mod 4$, the SU(M)-invariant lattices are the aM with a a fractional ideal in $Q(\sqrt{m})$.

When $m \equiv 3 \mod 4$ or m is even, $Q_2(\sqrt{m})$ is a ramified extension of Q_2 and M_2 can support other local invariant lattices. If the rank of M is odd, the invariant lattices are the αN with α a fractional ideal and N_2 one of the lattices M_{2*} , M_2 or M_2^* , together with E_2 and E_2^* when m is even and dim V = 3.

Finally, when the rank of M is even there are a number of possibilities. If Φ is an even form, namely if $M_{2^*} = M_2$, the only invariant sublattices are the αM with α a fractional ideal. If Φ is an odd form and $m \equiv 3 \mod 4$ or m is even, there are five lattices N_2 lying between M_{2^*} and M_2^* . If $M_2 = H_2 \perp J_2 \perp (\mathfrak{O}_2 w + \mathfrak{O}_2 z)$ with $\Phi(w, z) = 1, 2q(w)$ a unit and $q(z) \in \mathfrak{o}_p$, these five lattices are M_2 , M_{2^*} , M_2^* ,

 $H_2 \perp J_2 \perp (\mathfrak{O}_2 \pi w + \mathfrak{O}_2 \pi^{-1} z)$

and

$$H_2 \perp J_2 \perp (\mathfrak{O}_2 \pi w + \mathfrak{O}_2 (w + \pi^{-1} z))$$
.

For dim $V \ge 6$ and for dim V = 4 when $m \equiv 3 \mod 4$, the invariant lattices are the aN with a a fractional ideal, N_2 one of these five lattices and $N_p = M_p$ for p odd. When dim V = 4 and m is even, N_2 can also be one of the dual pair of exceptional lattices $E(1)_2$ and $E(1)_2^*$ obtained in the previous section.

References

1. R. Baeza, Eine Zerlegung der unitären Gruppe über lokalen Ringen, Arch. Math. (Basel), 24 (1973), 144-157.

D. G. JAMES

2. L. J. Gerstein, Integral decomposition of hermitian forms, Amer. J. Math., 92 (1970), 398-418.

3. K. Hayakawa, Generation of local integral unitary groups over an unramified dyadic local field, J. Fac. Sci., Univ. Tokyo, Sect. I, **15** (1968), 1-11.

4. R. Jacobowitz, Hermitian forms over local fields, Amer. J. Math., 84 (1962), 441-465.

5. D. G. James, Orthogonal groups of dyadic unimodular quadratic forms II, Pacific J. Math., **52** (1974), 425-441.

6. ____, On the normal subgroups of integral orthogonal groups, Pacific J. Math., **52** (1974), 107-114.

7. O. T. O'Meara, Introduction to Quadratic Forms, Springer-Verlag, Berlin, 1963.

8. G. Shimura, Arithmetic of unitary groups, Ann. of Math., 79 (1964), 369-409.

Received December 21, 1976 and in revised form April 29, 1977. This research was partially supported by the National Science Foundation.

THE PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PA 16802