INVARIANT SUBMODULES OF UNIMODULAR HERMITIAN FORMS

D. G. James

Abstract

Let M be a unimodular lattice on an indefinite hermitian space over an algebraic number field. The submodules of M invariant under the action of the special unitary group of M are classified. Generators for the local unitary groups of M are also determined.

1. Introduction. Let F be an algebraic number field of finite degree and K a quadratic extension of F. Let V be an indefinite hermitian space over K of finite dimension $n \geqq 3$ and $\Phi: V \times V \rightarrow K$ the associated nondegenerate hermitian form on V with respect to the nontrivial automorphism of K over F. Assume V supports a unimodular lattice M (in the sense of O'Meara [7; §82G] for quadratic spaces). Denote by $U(V)$ the unitary group of V and by $U(M)$ the subgroup of isometries in $U(V)$ that leave M invariant. We will classify the sublattices of M that are invariant under the action of the special unitary group $S U(M)$. The problem is first solved locally; the global result is then obtained by applying the approximation theorem of Shimura [8; 5.12].

We now consider localization (see also [2; §2] and [8]). Let \mathfrak{p} be a finite prime spot of F and $F_{\mathfrak{p}}$ the corresponding local field. Put $K_{\mathfrak{p}}=K \boldsymbol{\otimes}_{F} F_{\mathfrak{p}}$ and $V_{\mathfrak{p}}=V \boldsymbol{\otimes}_{F} \boldsymbol{F}_{\mathfrak{p}}$. Making the standard identifications, we have $K \subseteq K_{\mathfrak{p}}, F_{\mathfrak{p}} \subseteq K_{\mathfrak{p}}$ and $V \subseteq V_{\mathfrak{p}}$. The hermitian form Φ on V extends naturally to an hermitian form on V_{p}. Let \mathfrak{o} be the ring of integers in $F, \mathfrak{o}_{\mathfrak{p}}$ the (topological) closure of \mathfrak{o} in $F_{\mathfrak{p}}$ and $\mathcal{O}_{\mathfrak{p}}$ the integral closure of $\mathfrak{o}_{\mathfrak{p}}$ in $K_{\mathfrak{p}}$. Put $M_{\mathfrak{p}}=\mathfrak{O}_{\mathfrak{p}} M \subseteq V_{\mathfrak{p}}$. Locally, we must study the submodules of $M_{\mathfrak{p}}$ invariant under the action of $S U\left(M_{p}\right)$. Except when K_{p} is a ramified extension of a dyadic field F_{p}, the classification will be trivial. For ramified dyadic extensions, it is necessary to determine a set of generators of $U\left(M_{p}\right)$ before the classification can be determined.

We now state the main results.

Theorem A. Let M be a unimodular lattice on an indefinite hermitian space of dimension $n \geqq 3$ over an algebraic number field. Then a sublattice N of M is invariant under the action of the special unitary group $S U(M)$ if and only if for all finite prime spots \mathfrak{p} of F, the localization $N_{\mathfrak{p}}=\mathfrak{\Im}_{\mathfrak{p}} N$ is invariant under the ac-
tion of $S U\left(M_{\mathfrak{p}}\right)$.
For x in $V_{\mathfrak{p}}$, define $2 q(x)=\Phi(x, x)$, and let $M_{p^{*}}$ be the sublattice of $M_{\mathfrak{p}}$ generated by the x in $M_{\mathfrak{p}}$ with $q(x)$ in \mathfrak{o}_{p}. Let

$$
M_{p}^{*}=\left\{x \in V_{\mathfrak{p}} \mid \Phi\left(x, M_{p^{*}}\right) \subseteq \mathfrak{O}_{p}\right\}
$$

be the dual lattice of $M_{p^{*}}$. Then $M_{p^{*}} \subseteq M_{\mathfrak{p}} \subseteq M_{\mathfrak{p}}^{*}$ and, except when K_{p} is a ramified extension of a dyadic local field F_{p}, we will show later that $M_{p^{*}}=M_{\mathfrak{p}}^{*}$. A sublattice $N_{\mathfrak{p}}$ of $M_{\mathfrak{p}}^{*}$ is called primitive if N_{p} is not contained in πM_{p}^{*} for any prime element $\pi \in \mathfrak{S}_{p}$. Clearly, if $N_{\mathfrak{p}}$ is invariant under $S U\left(M_{p}\right)$, the lattice $\mathfrak{a}_{p} N_{\mathfrak{p}}$ is also invariant for any fractional ideal $\mathfrak{a}_{\mathfrak{p}}$ in $\mathfrak{O}_{\mathfrak{p}}$. It is therefore enough to classify locally the primitive invariant sublattices of M_{p}^{*}.

Theorem B. A primitive sublattice $N_{\mathfrak{p}}$ of $M_{\mathfrak{p}}^{*}$ is invariant under the action of $S U\left(M_{\mathfrak{p}}\right)$ if and only if $M_{\mathfrak{p}^{*}} \subseteq N_{\mathfrak{p}}$, except when the following three conditions all apply:
(i) $K_{\mathfrak{p}}$ is a totally ramified extension of the 2-adic field \boldsymbol{Q}_{2},
(ii) $K_{\mathfrak{p}}$ is a ramified prime extension of $F_{\mathfrak{p}}$,
(iii) $\operatorname{dim} V_{\downarrow}=3$ or 4.

In particular, except when $K_{\mathfrak{p}}$ is a ramified extension of a dyadic field $F_{\mathfrak{p}}$, the only primitive invariant lattice is $M_{\mathfrak{p}}$.

Theorem B will be proven for the various cases in $\S \S 2-4$ and the exceptional 3 and 4 dimensional cases studied in §5. Theorem A is established in the final section. The special case where F is the field of rational numbers is also studied in detail.

The approach here follows that given for quadratic spaces in [5] and [6].
2. Local isometries. In this and next three sections we are only concerned with local problems.

The structure of $\mathfrak{D}_{\mathfrak{p}}$ over $\mathfrak{o}_{\mathfrak{p}}$ depends on the prime \mathfrak{p}. If \mathfrak{p} splits in K, then $K_{\mathfrak{p}}=F_{\mathfrak{p}} \times F_{\mathfrak{p}}$ and $\mathfrak{O}_{\mathfrak{p}}=\mathfrak{o}_{\mathfrak{p}} \times \mathfrak{o}_{\mathfrak{p}}$. In this case the involution * on K becomes $(\alpha, \beta)^{*}=(\beta, \alpha)$ on $K_{\mathfrak{p}}$. If \mathfrak{p} does not split in K, we may take $K_{p}=F_{p}(\zeta)$ where $\zeta^{2} \in F_{p}$ and $\zeta^{*}=-\zeta$. Fix a prime π in $K_{\mathfrak{p}}$ and p in $F_{\mathfrak{p}}$ and let $e=\operatorname{ord}_{p} 2$. If \mathfrak{p} is dyadic, there are now three possible types of extensions of K_{p} over F_{q}; the details are an application of [7; 63.2, 63.3].
(i) K_{p} is an unramified extension of F_{p}. Then $\zeta^{2}=1+4 \delta$ with δ a unit in F_{p} and \mathfrak{D}_{p} consists of all the elements $(\alpha+\zeta \beta) / 2$ with $\alpha, \beta \in \mathcal{o}_{\mathrm{p}}$ and $\alpha \equiv \beta \bmod 2 \mathrm{o}_{\mathrm{p}}$.
(ii) $K_{\mathfrak{p}}$ is a ramified extension of F_{p} and ζ is a prime in K_{p} the ramified prime case. Now we may assume $\pi=\zeta, p=\pi \pi^{*}$ and $\mathfrak{D}_{\mathfrak{p}}$ is generated over $\mathfrak{o}_{\mathfrak{p}}$ by 1 and π.
(iii) $K_{\mathfrak{p}}$ is a ramified extension of $F_{\mathfrak{p}}$ and ζ is a unit in $K_{\mathfrak{p}}$-the ramified unit case. We now have $\zeta^{2}=1+p^{2 h+1} \delta$ for some unit δ in $F_{\mathfrak{p}}$ and some rational integer h with $0 \leqq h<e$. Put $\pi=(1+\zeta) p^{-h}$ so that $\pi \pi^{*}=-p \delta$. Here $\mathfrak{D}_{\mathfrak{p}}$ consists of the elements $(\alpha+\zeta \beta) p^{-h}$ with $\alpha, \beta \in \mathfrak{o}_{p}$ and $\alpha \equiv \beta \bmod p^{h_{\mathfrak{p}}}$.

In the nondyadic (nonsplit) case $\mathfrak{O}_{\mathfrak{p}}$ is generated over \mathfrak{o}_{p} by 1 and ζ provided we choose ζ to be a prime or a unit according as the extension is ramified or not.

Thus if $K_{\mathfrak{p}} / F_{\mathfrak{\eta}}$ is a quadratic extension of fields, $\mathfrak{O}_{\mathfrak{p}}$ consists of the elements $(\alpha+\zeta \beta) p^{-h}$ with $\alpha, \beta \in \mathfrak{D}_{\mathfrak{p}}$ and $\alpha \equiv \beta \bmod p^{h} \mathfrak{D}_{\mathfrak{p}}$, where we define $h=0$ in the nondyadic and ramified prime dyadic cases, and $h=e$ in the unramified dyadic case.

Since $M_{\mathfrak{p}}$ is a unimodular $\mathfrak{O}_{\mathfrak{p}}$-lattice with rank at least three, it is split by a hyperbolic plane (if \mathfrak{p} splits in K this can be easily verified, otherwise see [4; 7.1, 8.1a, 10.3]). Hence $M_{p}=H_{p} \perp L_{p}$ where $H_{p}=\mathfrak{D}_{p} u+\mathfrak{S}_{p} v$ is a hyperbolic plane with $q(u)=q(v)=0$ and $\Phi(u, v)=1$. This choice of u and v will be fixed throughout the local discussion.

We now describe the standard isometries in the unitary group $U\left(M_{\mathfrak{p}}\right)$ that are needed. The norm and trace mappings from $K_{\mathfrak{p}}$ to $F_{\mathfrak{p}}$ are denoted by \mathscr{N} and \mathscr{T}, respectively, and our convention for the hermitian form Φ on $V_{\mathfrak{p}}$ is $\Phi(\alpha x, \beta y)=\alpha^{*} \Phi(x, y) \beta$.

Let λ in $\mathfrak{O}_{\mathfrak{p}}$ have $\mathscr{T}(\lambda)=0$. The transvection $T_{\lambda}(u)$ is defined by

$$
T_{\lambda}(u)(z)=z+\lambda \Phi(u, z) u, \quad z \in M_{\mathfrak{p}}
$$

Then $\operatorname{det} T_{\lambda}(u)=1$ so that $T_{\lambda}(u)$ is in $S U\left(M_{p}\right)$. Similarly, $T_{\lambda}(v) \in$ $S U\left(M_{p}\right)$.

Let λ in K_{p} satisfy $\mathscr{T}(\lambda)=2 \mathscr{N}(\lambda)$. For x in $M_{\mathfrak{p}}$ with $\lambda q(x)^{-1}$ in $\mathfrak{S}_{\mathfrak{p}}$, define the symmetry $\Psi_{\lambda}(x)$ by

$$
\Psi_{\lambda}(x)(z)=z-\lambda \Phi(x, z) q(x)^{-1} x, \quad z \in M_{\mathfrak{p}}
$$

Then $\operatorname{det} \Psi_{\lambda}(x)=1-2 \lambda$ and $\Psi_{\lambda}(x) \in U\left(M_{p}\right)$.
Recall that $M_{p^{*}}$ is the sublattice of $M_{\mathfrak{p}}$ generated by those x in $M_{\mathfrak{p}}$ with $q(x) \in \mathrm{o}_{\mathfrak{p}}$. Since $2 q(x)=\Phi(x, x)$, in the nondyadic case $M_{p^{*}}=$ $M_{\mathfrak{p}}$. This is also true when \mathfrak{p} splits in K; for the involution on $K_{p}=F_{p} \times F_{p}$ is given by $(\alpha, \beta)^{*}=(\beta, \alpha)$, so that for x in M_{p},

$$
q((1,0) x)=\mathscr{N}(1,0) q(x)=0
$$

Thus $(1,0) x \in M_{p^{*}}$ and $x=(1,1) x$ is in $M_{p^{*}}$.

Proposition 2.1. Let $F_{\mathfrak{p}}$ be a dyadic local field with \mathfrak{p} not split in K. Then

$$
M_{p^{*}}=\left\{x \in M_{p} \mid p^{h} q(x) \in \mathcal{O}_{p}\right\} .
$$

In particular, $M_{\mathfrak{p}^{*}}=M_{\mathfrak{p}}$ when $K_{\mathfrak{p}}$ is an unramified extension of $F_{\mathfrak{p}}$.
Proof. Let S be the set of all elements x in M_{p} with $p^{h} q(x)$ in $\mathfrak{o}_{\mathfrak{p}}$. Since $\mathscr{T}\left(\mathfrak{D}_{\mathfrak{p}}\right) \subseteq 2 p^{-h} \mathfrak{0}_{\mathfrak{p}}$ and

$$
q(x+y)=q(x)+q(y)+\mathscr{T}(\Phi(x, y)) / 2
$$

it follows that S is an $\mathfrak{D}_{\mathfrak{p}}$-module. Hence $M_{p^{*}} \subseteq S$. We now prove the converse inclusion. For x in S, let $x=y+z$ with $y \in H_{p}$ and $z \in L_{p}$. Clearly, u, v and consequently y are in S. Therefore, $z=$ $x-y$ is in S and $p^{h} q(z) \in \mathrm{o}_{p}$. Let $w=u-\alpha v+z$ where $\alpha=q(z)(1+\zeta)$ is in \mathscr{D}_{p}. Then $q(w)=0$ and $w \in M_{p^{*}}$. Hence $z \in M_{p^{*}}$ and $S \subseteq M_{p^{*}}$, proving the proposition.

Fix μ in $\mathcal{D}_{\mathfrak{p}}$ such that $\mathscr{T}(\mu)=2$. For x in $L_{\mathfrak{p}}$ with $\mu q(x)$ in $\mathfrak{O}_{\mathfrak{p}}$, define the Siegel transformation $E(u, x)$ by

$$
E(u, x)(z)=z-\Phi(u, z) x+\Phi(x, z) u-\mu q(x) \Phi(u, z) u
$$

Then $\operatorname{det} E(u, x)=1$ and $E(u, x)$ is in $S U\left(M_{\mathfrak{p}}\right)$. Similarly, define $E(v, x)$. Fix $\mu=1$ except when $F_{\mathfrak{p}}$ is dyadic and $K_{\mathfrak{p}}$ is either an unramified or a ramified unit extension of $F_{\mathfrak{p}}$. In these exceptional cases fix $\mu=1+\zeta \in p^{h} \mathfrak{D}_{p}$. Except for the split dyadic case, it is now sufficient to choose x in $L_{\mathrm{p}} \cap M_{p^{*}}$ for $E(u, x)$ to be an integral isometry. Let \mathscr{E} be the subgroup of $S U\left(M_{p}\right)$ generated by the Siegel transformations.

In the following three sections we classify locally the primitive sublattices of M_{p}^{*} invariant under the action of the special unitary group $S U\left(M_{\natural}\right)$. We conclude this section with three observations. Assume that \mathfrak{p} does not split in K.
2.2. Any lattice N_{\natural} satisfying $M_{p^{*}} \subseteq N_{\mathfrak{p}} \subseteq M_{\mathfrak{p}}^{*}$ is invariant under the action of \mathscr{E}.

Proof. Let $z \in N_{\mathfrak{p}}$ and $x \in L_{\mathfrak{p}} \cap M_{p^{*}}$. Then $\Phi(x, z) \in \mathfrak{D}_{\mathfrak{p}}$ and

$$
E(u, x)(z) \equiv z \bmod M_{\mathfrak{p}^{*}}
$$

Hence $E(u, x)(z)$ and, likewise, $E(v, x)(z)$ lies in N_{p}. The result follows.
2.3. If $N_{\mathfrak{p}}$ is invariant under $S U\left(M_{\mathfrak{p}}\right)$ and $u \in N_{\mathfrak{p}}$ or $v \in N_{\mathfrak{p}}$, then $M_{\mathfrak{p}^{*}} \cong N_{\mathfrak{p}}$.

Proof. For any x in L_{p} with $q(x)^{-1}$ in \mathfrak{O}_{p}, we have $\Psi_{1}(u-v) \Psi_{1}(x)$
is in $S U\left(M_{\mathfrak{p}}\right)$. This isometry interchanges u and v, so that $H_{\mathfrak{p}} \subseteq N_{p}$. Let $y \in L_{p} \cap M_{p^{*}}$. Then $E(u, y)(v)$ is in N_{p} and hence $y \in N_{p}$. Thus $M_{p^{+}} \cong N_{\mathfrak{p}}$.
2.4. Assume either $K_{\mathfrak{p}}$ is an unramified extension of $F_{\mathfrak{p}}$ or $F_{\mathfrak{p}}$ is a nondyadic field. Then $M_{\mathfrak{p}}$ is the unique primitive sublattice invariant under the action of $S U\left(M_{\mathfrak{p}}\right)$.

Proof. Let $N_{\mathfrak{p}}$ be a primitive invariant sublattice. It suffices by 2.3 to show that $u \in N_{p}$, since under our assumptions $M_{p^{*}}=M_{p}$. Since $N_{\mathfrak{p}} \nsubseteq \pi M_{\mathfrak{p}}$, there exists z in $N_{\mathfrak{p}}$ with $z \notin \pi M_{\mathfrak{p}}$. Let $z=\alpha u+$ $\beta v+t$ where $t \in L_{p}$. If α and β are nonunits, there exists r in L_{p} such that $\Phi(r, t)=1$ (since $z \notin \pi M_{\dot{p}}^{*}$). The coefficient of v in $E(v, r)(z) \in$ $N_{\mathfrak{p}}$ is now a unit. Assume, therefore, $\beta=1$ (or symmetrically, $\alpha=1$). If $K_{\mathfrak{p}}=F_{\sharp}(\zeta)$ is an unramified extension of F_{\natural}, ζ is a unit. Then $T_{\zeta}(u)(z)=z+\zeta u$ is in N_{p}. Hence $u \in N_{\mathfrak{p}}$ and the result follows. Now assume F_{p} is a nondyadic field. Then $E(u, t)(z)=\gamma u+v$ is in N_{p} for some γ in \mathfrak{N}_{p}. Let $w \in L_{p}$ have $q(w)$ a unit. Applying $E(u, \rho w)$ to $\gamma u+v \in N_{p}$ with $\rho=1,-1$ gives $\rho w+q(w) u$ is in N_{p}. Since 2 is now a unit, it follows that u is in $N_{\mathfrak{p}}$ and hence $N_{p}=M_{p}$.

Theorem B has now been established except when either \mathfrak{p} splits in K, or K_{p} is a ramified extension of a dyadic field F_{p}.
3. Split extensions. Assume \mathfrak{p} splits in K so that $K_{\mathfrak{p}}=F_{\mathfrak{p}} \times F_{\mathfrak{p}}$ and $\mathfrak{D}_{\mathfrak{p}}=\mathfrak{o}_{\mathfrak{p}} \times \mathfrak{o}_{\mathfrak{p}}$. Let $N_{\mathfrak{p}}$ be a primitive invariant sublattice of $M_{p}^{*}=M_{p}=H_{p} \perp L_{p}$. We wish to prove $N_{p}=M_{p}$. Since $N_{p} \nsubseteq \pi M_{p}$ for any prime element π in $\mathcal{D}_{\mathfrak{p}}$, there exists $x \in N_{p}$ with $x \notin \pi M_{p}$. Let $x=\alpha u+\beta v+t$ with $t \in L_{p}$. If β (or α) is a unit in \mathcal{D}_{p}, we may assume $\beta=1$. Then, since $\mathscr{T}(1,-1)=0$, it follows that

$$
T_{(1,-1)}(u)(x)=x+(1,-1) u
$$

is in $N_{\mathfrak{p}}$. Thus $(1,-1) u$ and u are in $N_{\mathfrak{p}}$. As in 2.3, we now have $H_{\mathfrak{p}} \subseteq N_{\mathrm{p}}$. Let $y \in L_{p}$. Then $E(u,(1,0) y)(v)$ is in N_{p}. Hence $(1,0) y$, and likewise $(0,1) y$, are in N_{\downarrow}. Consequently, $y \in N_{\downarrow}$ and $N_{p}=M_{p}$.

Now assume that neither $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$ nor $\beta=\left(\beta_{1}, \beta_{2}\right)$ is a unit. If α_{1} is a unit in o_{p}, replacing x by $T_{(1,-1)}(v)(x)$ if necessary, we may assume β_{1} is also a unit. Hence, unless both α_{1} and β_{1} are nonunits, or both α_{2} and β_{2} are nonunits, we arrange that β becomes a unit in $\bigcirc_{\mathfrak{p}}$ and we are finished. Assume, therefore, $\alpha_{1}, \beta_{1} \in p 0_{p}$. Since $x \notin \pi M_{\mathfrak{p}}$, there exists y in $M_{\mathfrak{p}}$ such that $\Phi(x, y)=(1,1)$. Hence, there exists $r \in L_{p}$ such that $\Phi(t, r)=(?, 1)$. In $E(u,(0,1) r)(x)$ the new coefficient of u has first component a unit. The second component is unchanged. We can thus arrange that β becomes a unit in \mathfrak{N}_{p}, and consequently $N_{\mathfrak{p}}=M_{p}$.
4. Ramified dyadic extensions. Now let $K_{\mathfrak{p}}$ be a ramified extension of the dyadic field $F_{\mathfrak{p}}$. Before classifying the primitive invariant sublattices in this case it is necessary to determine a set of generators for $U\left(M_{\mathfrak{p}}\right)$. Special cases have already appeared in the work of Baeza [1] and Hayakawa [3], but it appears better to modify the approach in [5].

By [4; 10.3], we can split hyperbolic planes and write

$$
M_{\mathfrak{p}}=H_{\mathfrak{p}} \perp J_{\mathfrak{p}} \perp B_{\mathfrak{p}}
$$

where $J_{\mathfrak{p}}$ is an orthogonal sum of hyperbolic planes and rank $B_{p} \leqq 2$. Then $J_{\mathfrak{p}}$ has dual bases w_{1}, \cdots, w_{m} and z_{1}, \cdots, z_{m} such that $\Phi\left(w_{i}, z_{j}\right)=$ $\delta_{i j}, 1 \leqq i, j \leqq m$. Recall that \mathscr{E} is the subgroup of $S U\left(M_{\mathfrak{p}}\right)$ generated by the Siegel transformations defined in $\S 2$.

Proposition 4.1. $U\left(M_{\mathfrak{p}}\right)$ is generated by \mathscr{E} and $U\left(H_{\mathfrak{p}} \perp B_{\mathfrak{p}}\right)$.
Proof. Let $\varphi \in U\left(M_{p}\right)$. We reduce φ to the identity using the given isometries. Let w_{1}, \cdots, w_{m} and z_{1}, \cdots, z_{m} be dual bases of $J_{\mathfrak{p}}$, as above, and assume for some $k \leqq m$ that $\varphi\left(w_{j}\right)=w_{j}, 1 \leqq j \leqq$ $k-1$ (at worst, $k=1$). Let

$$
\varphi\left(u+w_{k}\right)=\varepsilon u+\beta v+t
$$

where $t \in J_{\mathfrak{p}} \perp B_{\mathfrak{p}}$. We want ε to be a unit. Assume ε is not a unit. If β is a unit, use the isometry in $U\left(H_{\mathfrak{p}}\right)$ which interchanges u and v. If β is not a unit, let $\varphi\left(z_{k}\right)$ have component r in $J_{p} \perp B_{p}$. Then $\Phi(t, r)$ is a unit. Since $z_{k} \in M_{p^{*}}$, it follows that $r \in M_{p^{*}}$ Also, $\Phi\left(r, w_{j}\right)=\Phi\left(\varphi\left(z_{k}\right), \varphi\left(w_{j}\right)\right)=0$ for $1 \leqq j \leqq k-1$. Now replace φ by $E(u, r) \varphi$ and the new coefficient of u is a unit.

We may now assume ε is a unit. Let $s=t-w_{k}$. Then

$$
\Phi\left(s, w_{j}\right)=\Phi\left(\varphi\left(u+w_{k}\right)-w_{k}, w_{j}\right)=0
$$

for $1 \leqq j \leqq k-1$. Also, since $q(t) \equiv q\left(w_{k}\right) \bmod p^{-h} \mathfrak{D}_{p}$, we have $s \in M_{p^{*}}$. Put

$$
\dot{\psi}=E\left(u,-\varepsilon^{*} z_{k}\right) T_{k}(v) E\left(v, \varepsilon^{-1} s\right) \varphi E\left(u, z_{k}\right)
$$

where $\lambda \in \mathscr{O}_{\mathfrak{p}}$ is to be chosen subject to the restraint $\mathscr{T}(\lambda)=0$. Then $\psi\left(w_{j}\right)=w_{j}$ for $1 \leqq j \leqq k-1$. Choose λ such that

$$
E\left(v, \varepsilon^{-1} s\right) \varphi E\left(u, z_{k}\right)\left(w_{k}\right)=\varepsilon(u-\lambda v)+w_{k} .
$$

Then $\mathscr{T}(\lambda)=0$ and $\psi\left(w_{k}\right)=w_{k}$. If ψ is generated by the given isometries, so is φ. The result now follows by induction on k.

This proposition reduces the question of generators for $U\left(M_{\mathfrak{p}}\right)$ to
the cases rank $M_{\mathfrak{p}}=3,4$. It can be easily verified that $U\left(H_{\mathfrak{p}}\right)$ is generated by symmetries and transvections. Also, if rank $B_{\mathfrak{p}}=2$ the basis w, z of $B_{\mathfrak{p}}$ can be chosen such that $\Phi(w, z)=1$ and $z \in M_{p^{*}}$ (see [4; 9.2]).

Theorem 4.2. $U\left(M_{\mathfrak{p}}\right)$ is generated by $\mathscr{E}, U\left(H_{\mathfrak{p}}\right)$ and symmetries on B_{p}.

Proof. We need only consider rank $M_{\mathfrak{p}}=3,4$.
(i) Let rank $M_{\mathfrak{p}}=4$ and $M_{\mathfrak{p}}=H_{\mathfrak{p}} \perp B_{\mathfrak{p}}$ with $B_{\mathfrak{p}}$ having a basis as above. We reduce φ in $U\left(M_{\mathfrak{p}}\right)$ to the identity using the given isometries. From the proof of Proposition 4.1, we may assume $\phi(w)=w$. In fact, if $w \in M_{p^{*}}$, the proposition proves the theorem. Now assume $w \notin M_{p^{*}}$. Put $r=w-2 q(w) z$ so that $\Phi(r, w)=0$. Then

$$
\varphi(z)=\alpha u+\beta v+z+\gamma r
$$

for some α, β in $\mathfrak{D}_{\mathfrak{p}}$ and γ in $\pi \mathfrak{S}_{\mathfrak{p}}\left(\gamma r \in M_{\mathfrak{p}^{*}}\right)$. Let

$$
\mathscr{M}_{z}=\{x \in M \mid \Phi(x, z)=1\}=w+H_{\mathfrak{p}} \perp \mathfrak{S}_{\mathfrak{p}}(z-2 q(z) w)
$$

be the characteristic set of z (cf. [5; p. 429]). Then

$$
q\left(\mathscr{L}_{\varphi(z)}\right)=q\left(\mathscr{M}_{z}\right) \equiv q(w) \bmod p^{-h \mathbf{o}_{p}} .
$$

Since $\left(1-\alpha^{*}\right) w+v$ is in $\mathscr{C}_{\varphi(z)}$, it follows that $q(\alpha w) \in p^{-h} \mathfrak{D}_{p}$ and hence $\alpha w \in M_{p^{*}}$. Similarly, $\beta w \in M_{p^{*}}$. Interchanging u and v if necessary, we have $\beta=\alpha \lambda$ with $\lambda=\left(\lambda_{1}+\lambda_{2} \zeta\right) p^{-h}$ in $\mathfrak{D}_{\mathfrak{p}}$ and $\lambda_{1} \equiv \lambda_{2} \bmod p^{h}$. Using a transvection, we can then arrange that $\lambda \in \mathcal{D}_{p}$ in the ramified prime case and $\lambda \in \pi 0_{p}$ in the ramified unit case. In the ramified prime case the proof can be completed by modifying the argument in [5; 2.4]; the symmetry on $B_{\mathfrak{p}}$ needed is $\Psi_{i}(r)$ with $\delta \in \mathcal{O}_{\mathfrak{p}}$. In the ramified unit case we proceed as follows. The coefficient of v in $E(v, \xi r) \varphi(z)$ is zero if

$$
\alpha \lambda+\xi^{*} \Phi(r, z+\gamma r)=\mu q(\xi r) \alpha
$$

Here $\mu=1+\zeta=\pi p^{h}$ and $\varepsilon=\Phi(r, z+\gamma r)$ is a unit. By Hensel's lemma there exists a root ξ of the form $\xi=\varepsilon \pi^{*} \alpha^{*} \rho$ with ρ in o_{p}. Similarly, the coefficient of u can be made zero and we may assume $\varphi(z)=z+\gamma r$. Put $\delta=\gamma q(w)=-\gamma q(r) \Phi(z, r)^{-1}$. Then $\mathscr{T}(\delta)=2 \mathscr{N}(\delta)$ and $\Psi_{\delta}(r)^{-1} \varphi$ acts as the identity on both w and z. This completes the proof in this case.
(ii) Let rank $M_{\mathfrak{p}}=3$ and $M_{\mathfrak{p}}=H_{\mathfrak{p}} \perp \mathfrak{O}_{\mathfrak{p}} w$ where $2 q(w)$ is a unit. Again, we can reduce φ in $U\left(M_{p}\right)$ to the identity by the isometries. Let

$$
\varphi(w)=\alpha(u+\lambda v)+\eta w
$$

where η is a unit. Moreover, as in the previous case, we may assume λ is in $\pi \mathrm{o}_{\mathfrak{p}}$ (resp. $\mathrm{o}_{\mathfrak{p}}$) in the ramified unit (resp. prime) case. Since

$$
q\left(\mathfrak{N}_{\mathfrak{p}} \varphi(w)^{\perp}\right)=q\left(\mathfrak{N}_{\mathfrak{p}} w^{\perp}\right)=q\left(H_{\mathfrak{p}}\right) \cong p^{-h_{\mathfrak{D}_{p}}},
$$

it follows that $\alpha w \in M_{p^{*}}$. Using Siegel transformations we can reduce to the case $\varphi(w)=\varepsilon w$, although in the ramified prime case it is necessary to use the fact that $\mathscr{N}(\eta) \equiv 1 \bmod 4$ and hence $\mathscr{N}(\eta)$ is a square. Finally, since $\mathscr{N}(\varepsilon)=1$, putting $\delta=(1-\varepsilon) / 2$ gives $\mathscr{T}(\delta)=2 \mathscr{N}(\delta)$ and $\Psi_{\delta}(w)^{-1} \varphi$ fixes w. This completes the proof.

Corollary 4.3. Except in the ramified unit case with the rank of $M_{\mathfrak{p}}$ even, all lattices $N_{\mathfrak{p}}$ satisfying

$$
M_{\mathfrak{p}^{*}} \subseteq N_{\mathfrak{p}} \subseteq M_{\mathfrak{p}}^{*}
$$

are invariant under the action of $U\left(M_{\mathfrak{p}}\right)$.
Proof. This follows from 2.2 and the easily verified fact that $U\left(H_{\mathfrak{p}}\right)$ and the symmetries used in the proof of the theorem preserve such N_{p}.

Corollary 4.4. In the ramified unit case with rank $M_{\mathfrak{p}}$ even, all lattices between $M_{p^{*}}$ and M_{p}^{*} are $S U\left(M_{\mathfrak{p}}\right)$-invariant.

Proof. Symmetries Ψ_{δ} in $U\left(H_{\mathfrak{p}}\right)$ have $p^{h} \delta \in \mathfrak{D}_{\mathfrak{p}}$ and $\operatorname{det} \Psi_{\delta} \equiv$ $1 \bmod 2 p^{-h}$. Hence, for φ in $S U\left(M_{\mathfrak{p}}\right)$ in the proof of Theorem 2.2, the only symmetries $\Psi_{\dot{\delta}}(r)$ on $B_{\mathfrak{p}}$ needed will also have $p^{h} \delta \in \mathfrak{D}_{p}$. These symmetries leave invariant lattices between $M_{p^{*}}$ and M_{p}^{*}.

We now investigate the converse. Let N_{p} be a primitive $S U\left(M_{p}\right)$-invariant sublattice of M_{p}^{*}. As in 2.4, there exists $x=\alpha u+$ $v+t$ in N_{p} with $t \in L_{p}^{*}$ (letting $M_{p}^{*}=H_{p} \perp L_{p}^{*}$). In the ramified unit case ζ is a unit and $\mathscr{T}(\zeta)=0$. Since $T_{\zeta}(u)(x) \in N_{p}$, it follows that $\zeta u \in N_{\mathfrak{p}}$. By 2.3, $M_{p^{*}} \subseteq N_{\mathfrak{p}}$, completing the proof of Theorem B in this case. Finally, the ramified prime case. If $\operatorname{dim} V_{p} \geqq 5$, then L_{p} is split by a hyperbolic plane $H_{p}^{\prime}=\mathfrak{D}_{p} u^{\prime}+\mathfrak{D}_{p} v^{\prime}$. Applying $E\left(u, u^{\prime}\right)$ to x, we obtain $u^{\prime}-\Phi\left(u^{\prime}, t\right) u$ is in N_{p}. Applying $E\left(u, v^{\prime}\right)$ now gives $u \in N_{\mathfrak{p}}$ and hence $M_{p^{*}} \subseteq N_{\mathfrak{p}}$. Assume, therefore, the rank of M_{p} is 3 or 4 and that the residue class field of $F_{\mathfrak{p}}$ has at least four elements. Let ε be a unit in $F_{\mathfrak{p}}$ with $\varepsilon^{2} \not \equiv 1 \bmod p$. The proof of Theorem B is now easily completed by using the isometry $u \mapsto \varepsilon u, v \mapsto \varepsilon^{-1} v$ on x to obtain $v \in N_{p}$. The exceptional case is studied in the next section.
5. Exceptional invariant lattices. In this section F_{p} is a totally ramified extension of the 2 -adic field \boldsymbol{Q}_{2} and $K_{\mathfrak{p}}$ is a ramified prime
extension of F_{p}. Thus the residue class fields of both $F_{\mathfrak{p}}$ and K_{p} have only two elements.

We consider first the case with $\operatorname{dim} V_{\mathfrak{p}}=3$ so that $M_{\mathfrak{p}}=H_{\mathfrak{p}} \perp \mathfrak{O}_{\mathfrak{p}} w$. Then $M_{p^{*}}=H_{\mathfrak{p}} \perp \mathfrak{D}_{p} \pi^{e} w$ and $M_{p}^{*}=H_{\mathfrak{p}} \perp \mathfrak{D}_{p} \pi^{-e} w \quad$ where $\quad e=\operatorname{ord}_{p} 2$. There are now two new invariant lattices

$$
E_{\mathfrak{p}}=\pi M_{\mathfrak{p}}^{*}+\mathfrak{S}_{\mathfrak{p}}\left(u+v+\pi^{-e} w\right)
$$

and its dual E_{p}^{\sharp}. It can be easily verified using the generators in Theorem 4.2 that E_{p} is a $S U\left(M_{\mathfrak{p}}\right)$-invariant lattice; it follows that the dual $E_{p}^{\#}$ is also invariant.

Let N_{\downarrow} be a primitive invariant sublattice of M_{p}^{*}. As in the proof of 2.4, there exists an element $x=\alpha u+v+\beta w$ in $N_{\mathfrak{p}}$ with α and $\pi^{e} \beta$ in \mathfrak{D}_{p}. Since $\pi=\zeta, T_{\pi}(u)(x)$ is in N_{p}. Hence $\pi M_{p^{*}} \subseteq N_{p}$. Assume first that $\pi^{e} \beta$ is a unit. Then $\pi x \in N_{p}$ forces $\pi^{1-\epsilon} w \in N_{\mathfrak{p}}$ and $\pi M_{p}^{*} \subseteq N_{\mathfrak{p}}$. If α is not a unit, then the image of $v+\pi^{-e} w$ under $E\left(v, \pi^{e} w\right)$ is in $N_{\mathfrak{p}}$. Hence $v \in N_{\mathfrak{p}}$ and $M_{p^{*}} \subseteq N_{\mathfrak{p}}$. Assume, therefore, $\alpha \equiv 1 \bmod \pi$. We have now shown, when $\pi^{e} \beta$ is a unit, $E_{\mathfrak{p}} \subseteq N_{\mathfrak{p}}$. Moreover, $E_{\mathfrak{p}} \neq N_{\mathfrak{p}}$ forces $M_{p^{*}} \subseteq N_{p}$. Now assume $\pi^{e} \beta$ is not a unit and apply $E\left(u, \pi^{e} w\right)$ to x. This gives $u+\pi^{e} w$ is in N_{p}. The isometry $u \mapsto v, v \mapsto u, w \mapsto-w$ is in $S U\left(M_{p}\right)$. Hence both $v-\pi^{e} w$ and $u+v$ are in N_{p}. Define

$$
G_{\mathfrak{p}}=\pi M_{p^{*}}+\Im_{p}(u+v)+\Im_{p}\left(v+\pi^{e} w\right)
$$

Then $\pi^{-1} G_{p}=E_{p}^{\sharp}$, the dual lattice of E_{p}. Now, if $\pi^{e} \beta$ is not a unit, $G_{p} \subseteq N_{\mathfrak{p}}$ and if $G_{\mathfrak{p}} \neq N_{p}$, necessarily $M_{p^{*}} \subseteq N_{p}$. In summary,
5.1. The only exceptional three dimensional invariant lattices are of the form $\mathfrak{a}_{\mathfrak{p}} E_{\mathfrak{p}}$ and $\mathfrak{a}_{\mathfrak{p}} E_{p}^{*}$, with $\mathfrak{a}_{\mathfrak{p}}$ a fractional ideal in $K_{\mathfrak{p}}$.

Now consider the more complicated situation when $\operatorname{dim} V=4$ and $M_{\mathfrak{p}}=H_{\mathfrak{p}} \perp B_{\mathfrak{p}}$ with w, z a basis of $B_{\mathfrak{p}}$ having $\Phi(w, z)=1$ and $z \in M_{p^{*}}$ Let f be the minimal integer such that $\pi^{f} w$ is in $M_{p^{*}}$. Then

$$
M_{\mathfrak{p}^{*}}=H_{\mathfrak{p}} \perp\left(\mathfrak{N}_{\mathfrak{p}} \pi^{f} w+\mathfrak{N}_{\mathfrak{p}} z\right)
$$

If $f=0$, then $M_{p^{*}}=M_{\mathfrak{p}}$ and it is easily verified that M_{p} is the only primitive invariant lattice. Assume, therefore, $1 \leqq f \leqq e$. Now z can be chosen with $q(z)$ in $p \mathrm{o}_{p}$. For $1 \leqq g \leqq f$, define
and

$$
G(g)_{\mathfrak{p}}=\pi M_{p^{*}}+\mathfrak{O}_{p}(u+v)+\mathfrak{D}_{p} \pi^{1-g} z+\mathfrak{V}_{p}\left(u+\pi^{f} w\right)
$$

Then $G(g)_{\mathfrak{p}}=\pi^{-1} E(g)_{\mathfrak{p}}^{*}$ and using Theorem 4.2 we can check that these
lattices are all $S U\left(M_{\mathfrak{p}}\right)$-invariant. However, except when $f=1$, these are not the only new invariant lattices that arise. We shall only consider $f=1$ in detail; this includes the case where 2 is prime in F_{p}.

Let N_{p} be a primitive $S U\left(M_{p}\right)$-invariant sublattice of M_{p}^{*}. Again N_{p} contains an element $x=\alpha u+v+\beta w+\gamma z$ with α, β and $\pi^{f \gamma}$ in $\mathfrak{\Omega}_{p}$. Applying $T_{\pi}(u)$ to x gives $\pi u \in N_{p}$ and hence $\pi M_{p^{*}} \subseteq N_{p}$. Since $E(u, z)(x)$ is in $N_{\mathfrak{p}}$, we can conclude that β is in $\pi \mathfrak{N}_{\mathfrak{p}}$ and z is in N_{p}, for otherwise $M_{p^{*}} \subseteq N_{p}$. Assume first that γ is in $\pi^{1-f} \mathfrak{\Omega}_{p}$. Then $E\left(u, \pi^{f} w\right)(x) \in N_{\mathfrak{p}}$ gives $u+\pi^{f} w$ and $u+v$ are both in N_{p}. Hence $G(1)_{\mathfrak{p}} \subseteq N_{\mathfrak{p}}$. If $f=1$ and $G(1)_{\mathfrak{p}} \neq N_{\mathfrak{p}}$, necessarily $M_{\mathfrak{p}^{*}} \subseteq N_{\mathfrak{p}}$. Now assume $\pi^{f} \gamma$ is a unit. Then $E\left(u, \pi^{f} w\right)(x) \in N_{\mathfrak{p}}$ gives $\pi^{f} w \in N_{p}$. If α is a nonunit, applying $E\left(v, \pi^{f} w\right)$ to x leads to $M_{p^{*}} \subseteq N_{\natural^{\prime}}$. Hence $\alpha \equiv$ $1 \bmod \pi$ and now $u+v+\beta w+\pi^{-f} z$ is in N_{p} with $\beta \in \pi \mathfrak{S}_{\mathrm{p}}$. Again, if $f=1$, this gives $E(1)_{\mathfrak{p}} \subseteq N_{\mathfrak{p}}$ and, if $E(1)_{\mathfrak{p}} \neq N_{p}$, necessarily $M_{p^{*}} \subseteq$ N_{\downarrow}. Hence,
5.2. For $f=1$ the only exceptional four dimensional invariant lattices are of the form $\mathfrak{a}_{p} E(1)_{\mathfrak{p}}$ and $\mathfrak{a}_{p} E(1)_{\mathfrak{p}}^{\#}$, with $\mathfrak{a}_{\mathfrak{p}}$ a fractional ideal in K_{p}.

For $f \geqq 2$, the analysis of the exceptional lattices is more complicated, but could be carried out in the above manner.
6. Global results. We start by proving Theorem A; in fact, this result remains valid even if M is not unimodular.

First let N be a $S U(M)$-invariant sublattice of M. We must prove $N_{\mathfrak{p}}=\mathfrak{O}_{\mathfrak{p}} N$ is $S U\left(M_{\mathfrak{p}}\right)$-invariant at all finite prime spots \mathfrak{p} of F. Fix a finite prime spot q and an isometry ψ_{q} in $S U\left(M_{q}\right)$. By the approximation theorem of Shimura [8; 5.12], there exists a φ in $S U(V)$ with local extension φ_{q} close to ψ_{q} at the spot \mathfrak{q} and $\varphi_{p}\left(M_{p}\right)=$ $M_{\mathfrak{p}}$ elsewhere. Since $\psi_{q}\left(M_{q}\right)=M_{q}$, we have $\varphi_{q}\left(M_{q}\right)=M_{q}$ if φ_{q} is sufficiently close to ψ_{a} and hence $\varphi(M)=M$. Thus φ is in $S U(M)$ and hence $\varphi(N)=N$. Therefore, $\varphi_{q}\left(N_{q}\right)=N_{q}$ and if φ_{q} is sufficiently close to ψ_{q}, necessarily N_{q} is invariant under ψ_{q}.

Conversely, let N be a lattice in M with $N_{p}=\mathfrak{\supseteq}_{\mathfrak{p}} N$ a $S U\left(M_{p}\right)$ invariant lattice at all finite prime spots \mathfrak{p}. We must prove $\varphi(N)=N$ for all φ in $S U(M)$. Clearly, however, $\varphi_{p} \in S U\left(M_{\mathfrak{p}}\right)$ so that $\varphi(N)_{\mathfrak{p}}=$ $\varphi_{\mathfrak{p}}\left(N_{\mathfrak{p}}\right)=N_{\mathfrak{p}}$. The result now follows as in O'Meara [7; §81E]. Notice that this half of the proof does not require that Φ be indefinite. This completes the proof of Theorem A.

We can also construct global invariant lattices from local ones as follows.

Proposition 6.1. At each finite spot \mathfrak{p} of F assume given a
$S U\left(M_{\mathfrak{p}}\right)$-invariant sublattice $J_{\mathfrak{p}}$ of $M_{\mathfrak{p}}$ with $J_{\mathfrak{p}}=M_{\mathfrak{p}}$ almost always. Then there exists a sublattice N of M such that for each spot \mathfrak{p}

$$
N_{\mathfrak{p}}=\mathfrak{V}_{p} N=J_{p}
$$

Proof. This is an immediate consequence of [2; 2.4].
We conclude this paper by giving more explicitly the invariant lattices when F is the rational field \boldsymbol{Q}. Now $K=\boldsymbol{Q}(\sqrt{m})$ with m a square free integer. Let p be a rational prime. Then p splits in K if either $p=2$ and $m \equiv 1 \bmod 8$, or p is odd and $(m / p)=1$. Otherwise, for $p=2$, we have an unramified extension if $m \equiv$ $5 \bmod 8$, a ramified unit extension with $h=0$ if $m \equiv 3 \bmod 4$, and a ramified prime extension if m is even.

Let M be a unimodular lattice on an indefinite hermitian space V over $\boldsymbol{Q}(\sqrt{m})$. Except when $\boldsymbol{Q}_{2}(\sqrt{m})$ is a ramified extension of \boldsymbol{Q}_{2}, the only primitive invariant sublattice is $M_{\mathfrak{p}}$. Hence, when $m \equiv 1 \bmod 4$, the $S U(M)$-invariant lattices are the $a M$ with \mathfrak{a} a fractional ideal in $\boldsymbol{Q}(\sqrt{m})$.

When $m \equiv 3 \bmod 4$ or m is even, $\boldsymbol{Q}_{2}(\sqrt{m})$ is a ramified extension of \boldsymbol{Q}_{2} and M_{2} can support other local invariant lattices. If the rank of M is odd, the invariant lattices are the $a N$ with a a fractional ideal and N_{2} one of the lattices $M_{2^{*}}, M_{2}$ or M_{2}^{*}, together with E_{2} and $E_{2}^{\#}$ when m is even and $\operatorname{dim} V=3$.

Finally, when the rank of M is even there are a number of possibilities. If Φ is an even form, namely if $M_{2^{*}}=M_{2}$, the only invariant sublattices are the $a M$ with \mathfrak{a} a fractional ideal. If Φ is an odd form and $m \equiv 3 \bmod 4$ or m is even, there are five lattices N_{2} lying between $M_{2^{*}}$ and M_{2}^{*}. If $M_{2}=H_{2} \perp J_{2} \perp\left(\mathfrak{N}_{2} w+\Re_{2} z\right)$ with $\Phi(w, z)=1,2 q(w)$ a unit and $q(z) \in \mathfrak{o}_{p}$, these five lattices are M_{2}, $M_{2^{*}}, M_{2}^{*}$,

$$
H_{2} \perp J_{2} \perp\left(\mathfrak{N}_{2} \pi w+\mathfrak{S}_{2} \pi^{-1} z\right)
$$

and

$$
H_{2} \perp J_{2} \perp\left(\mathfrak{N}_{2} \pi w+\mathfrak{N}_{2}\left(w+\pi^{-1} z\right)\right)
$$

For $\operatorname{dim} V \geqq 6$ and for $\operatorname{dim} V=4$ when $m \equiv 3 \bmod 4$, the invariant lattices are the $\mathfrak{a} N$ with \mathfrak{a} a fractional ideal, N_{2} one of these five lattices and $N_{p}=M_{p}$ for p odd. When $\operatorname{dim} V=4$ and m is even, N_{2} can also be one of the dual pair of exceptional lattices $E(1)_{2}$ and $E(1)_{2}^{*}$ obtained in the previous section.

References

1. R. Baeza, Eine Zerlegung der unitären Gruppe über lokalen Ringen, Arch. Math. (Basel), 24 (1973), 144-157.
2. L. J. Gerstein, Integral decomposition of hermitian forms, Amer. J. Math., 92 (1970), 398-418.
3. K. Hayakawa, Generation of local integral unitary groups over an unramified dyadic local field, J. Fac. Sci., Univ. Tokyo, Sect. I, 15 (1968), 1-11.
4. R. Jacobowitz, Hermitian forms over local fields, Amer. J. Math., 84 (1962), 441-465.
5. D. G. James, Orthogonal groups of dyadic unimodular quadratic forms II, Pacific J. Math., 52 (1974), 425-441.
6. -, On the normal subgroups of integral orthogonal groups, Pacific J. Math., 52 (1974), 107-114.
7. O. T. O’Meara, Introduction to Quadratic Forms, Springer-Verlag, Berlin, 1963.
8. G. Shimura, Arithmetic of unitary groups, Ann. of Math., 79 (1964), 369-409.

Received December 21, 1976 and in revised form April 29, 1977. This research was partially supported by the National Science Foundation.

The Pennsylvania State University
University Park, PA 16802

