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If K is a field and char K\n, then any binomial
xn—b 6 K[x] has the property that K(a) is its splitting field for
any root a iff a primitive nth root of unity ζn is an element
of K. Thus, if ζneK, any irreducible binomial xn — beK[x]
is automatically normal. Similar nice results about binomials
xn — b (Kummer theory comes to mind) can be obtained with
the assumption ζn e K.

In this paper, without assuming the appropriate roots of
unity are in K, one asks: what are the binomials xm — a e
K[x] having the property that K(a) is its splitting field for
some root al Such binomials are called partially normal.
General theorems are obtained in case K is a real field. A
complete list of partially normal binomials together with
their Galois groups is found in case K—Q, the rational
numbers.

This is a continuation of work begun in 1926 by Darbi [1] and
Bessel-Hagen (see [8], p. 302) who determined all normal binomials
over Q. Recently, Mann and Velez [5] considered binomials having
a weaker property than normal but stronger than partially normal,
namely, K{ά) is the splitting field for any root a. They obtained
a complete classification of such binomials together with their Galois
groups in case the ground field is Q. In a similar direction, but for
arbitrary ground field, Schinzel [7] has characterized two types of
binomials: (a) those with abelian Galois group and (b) those whose
polynomial degree is a power of a prime and which are products of
normal factors.

The central role played by partially normal binomials in the
general structure theory of pure extensions has been pointed out by
Norris and Velez in [6]. The results of Darbi and Bessel-Hagen,
Mann and Velez have been generalized for real fields by Gay [3].

In §2, we create a general setting by considering partially normal
binomials over a typical real algebraic number field. (We have chosen
this general setting to begin with in order to give more insight and
to sketch how the results of this paper might be generalized to real
fields.) In §3, we return to the rational numbers, apply the results
of §2, and state a classification theorem. Sections 4 and 5 are devoted
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to proving this theorem. Finally, in §6, we compute the Galois
groups of these binomials.

2Φ Generalities on partially normal binomial extensions of
real fields* In what follows we let R denote a fixed real algebraic
number field. This section will be devoted to consequences of the
following.

DEFINITION. The binomial xm — a e R[x] is partially normal over
R if there is a root a of xm — a such that R(a) is the splitting field
of xm — a over R. Such a root a is called a generating root.

Let ζn be a primitive nth. root of unity. Let φB{n) = [R(ζJ: R\.
Thus φR is an Euler's ^-function relative to the field R. In particular,
φQ(ri) = Φ(n).

PROPOSITION 2.1. The binomial xm — a e R[x] is partially normal
over R iff there exists a root Ί of xm — a such that R(ζm) £ iZ(7).
Furthermore, if xm — a is partially normal over R with generating
root a, then there is a positive integer s such that [R(a): R] = sφB(m),
Jt{as) = R(ζm) and xs — a8 is the minimal polynomial for a over

Proof. The first statement of the proposition follows from the
fact that if δ is a root of xm - a then all the roots are δ, ζj, ζ2j,

To prove the second statement, we note that from the first
statement J?(ζ J £ R{ά). Let s = [R(a): R(ζm)]. Then [R(a): R] =
sφB(m). Now let /(a?) be the minimal polynomial for α over R(ζm).
Then /(a?) is of degree s and

s

/(#) = Π (» — ζ«α)

The constant term of /(a?) = ±as Π5=i ζ2 and is in i2(ζm). Thus αs e
R(ζm). Since a?s — a* is a polynomial of degree s over i2(ζm) with a
as a root, /(a?) = x8 - as. This together with the fact R(as) £ R(ζm)
forces i2(αs) = R(ζJ.

In what follows, we choose a fixed binomial xm — a, partially
normal over R with generating root a and s = [R(a): R(ζm)\ as in
Proposition 2.1. Let β= ^RT, the real, positive mth root of \a\.
Let q be the smallest positive integer such that βq e R. The following
results will tell us something about the relationships among /S, s and
q and their limitations. First, two lemmas.
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LEMMA 2.2. Let 7 be algebraic over a field F with T e F and

χr __ Ίr ^reducible o v e r F. Then 7* e F (ί a positive integer) implies
r\t.

Proof. If T eF and xr - 7 r irreducible over F, then [F(Ύ): F] ==
r. Thus, if 7* e F, t ^ r. If r | £, then write t = ar + b with 0 <
6 < r. Hence 7* = (7r)α7δ or f e F , a contradiction. Thus r 11.

LEMMA 2.3. Le£ K be an abelian extension of the real field R.
Suppose aeR with a> 0 and ^a eK ( Λ/a is a real mth root). Then
(yiCf e R.

Proof. This is a standard result in Galois theory. See [5],
Lemma 1.

PROPOSITION 2.4. We have (a) s\m and q\m; (b) β2seR; (c) if
βseR, then q\s and if βs£R, then q\2s.

Proof, (a) From Proposition 2.1 xs — as is irreducible over i?(ζm).
But also am — aeR. Thus from Lemma 2.2, s\m. By an argument
similar to the proof of Lemma 2.2, q divides any positive integer t
such that β*eR. Thus q\m.

(b) Now a = ζίζε

2mβ where e = 0 if a > 0 and ε = 1 if a < 0.
Thus of = ζsJΆβs e R(ζm) by Proposition 2.1. Hence £ ejβ(ζ l m). By
Lemma 2.3, β8 is either an element of R or is the square root of
an element of R. In either case, β2s 6 R.

(c) By (b) and the proof of part (a), q\2s. If, in addition,
βs 6 R, then q \ s.

The following result delineates q and s more precisely:

PROPOSITION 2.5. (a) If a > 0 or a < 0 αm£ # evew, £Aew /5s e JS

(b) If a < 0 and q odd, then βs e R iff q = s or s = 2q.
(c) βs$R iff q = 2s.

Proof, (a) Suppose βs eR and a > 0 or α < 0 and # even. Then
aq = ζ^ζlq

mβqeR(Zm). Hence, by Proposition 2.1 and Lemma 2.2, s\q.
By Proposition 2.4 (c), q\s. Thus g = s. The converse is obvious.

(b) If βs e R, a < 0 and g odd, then a2q = ζ^'ζlβ2' e R(ζJ. Thus
by Proposition 2.1 and Lemma 2.2, s\2q. But by Proposition 2.4 (c),
q\s. Thus s = q oτ s = 2q. Again the converse is obvious.

(c) Suppose β8 £ R. Thus by Proposition 2.4 (c), q\2s. Further-
more, q must be even. Thus aqeR(ζm). Again by Lemma 2.2, s\q.
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Thus s = q or 2s = q. The former cannot happen since βs <$. R. Thus
2s = q. The converse is easy.

The following result will enable us to narrow the possibilities
for s considerably.

PROPOSITION 2.6. In all cases ψR{m) ̂  2φR(m/s). In particular,
if a > 0 and βs e R, then φR{m) = φR(m/s); if a < 0, and βs e R, then
φR(m) = φR(2m/s).

Proof. We have a = ζlζ\mβ. Thus α2 s = ζ2jlsζ
ε

m/sβ
2s eR(ζm/s).

Consequently, sφR{m) = [R(a): R] = [R(a): R(ζm/s)][R(ζm/s): R] ̂  2s<*Λ(m/s)
or ^(m) <: 2φR(m/s).

If α > 0 and /9s eJ?, then α s = ζ°mlsβ
s eR(ζm/s). Thus 0Λ(m) =

^a(m/β). If s = 2g, then by 2.5 £ e Λ and as = ζLlsζm/qβ
s e R{ζm/q).

Thus φR(m( = φR(m/q) = φR(2m/s). Finally, if α < 0, βs e R and q = s,
then α s = ζi/ sζ2 m / s/9 s 6 5(ζ 2 m / s) £ S ( ζ J . Thus ^ ( m ) = φB(2m/s).

3* Partially normal pure extensions of the rationals* In this
section we will apply the results of §2 to the field R = Q. Without
loss of generality, we consider (as in [4]) only those binomials xn — a
with a an integer. The following lemma will enable us to use Pro-
position 2.6 directly. We use the notation pa\\m, for prime p, to
mean pa\m but pa+1)fm.

LEMMA 3.1. Let d and m be positive integers with d\m.
(a) If φ{m) ^ 2φ(m/d), then d = 1, 2, 3, 4 or 6. In case d = 6,

ίΛen 2| |m; i / 3|d, έftew 3| |m; if d — 4, έfcew 4 | |m.
(b) // ^(m) = φ(m/d), then d = 1 or 2. Iw case d = 2, £fcew 2 | |m.

Proof. Part (b) is obvious. To prove part (a), we first make
an observation. Suppose one of the following occurs:

either
or

or

or

or

p d
9|m

8 d ,

4||<Z

β\d

with
and

and

and

p a prime > 3 ,
3 d ,

8 |m ,

4 |m .

Then φ{m) ^ 3φ(m/d). Thus, in order that φ(m) ^ 2φ(m/d) be true
we must have

( i ) d = 1, 2, 3, 4, 6 or 12; (ii) if 3\d then 3| |m; (iii) if d = 4,
then 4| |m; and (iv) if d = 6, then 2 | |m. The case d = 12 is impossible,
as is easily checked.
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COROLLARY 3.2. // xm — a is partially normal over Q, then
s = 1, 2, 3, 4, or 6.

The following result limits s even more and relates its value to
the rationality of βs.

PROPOSITION 3.3. (a) βs e Q and a > 0 implies s = 1, 2 (s = g).
(b) βs 6 Q αm£ α < 0 implies s = 1, 2 (s = g) or s = 2, g = 1.
(c) /3s g Q implies s — 1, 2 or 3 (g = 2s).

[We shall see later that all these possibilities can actually be
realized.]

Proof, (a) By Proposition 2.6 and Lemma 3.1, s = 1 or 2. By
2.5, g = s.

(b) If α < 0 and βs e R, then by 2.6 #(m) = φ(2m/s). If g is
even, then q = s = 2sx, by 2.5. Thus by 3.1 (b) sx = 1 or 2. If ^ =
2, then 2||m. But s = 4 implies 4|m (2.4). This is a contradiction.
Thus g = s = 2. If g is odd, then by 2.5 (b) q = s or 2g = s. If
9 = «, then Q(ζJ - Q(α«) - Q(ζί/qζ2m/q) £ Q(ζ2m/J. This can happen
for g odd only when g = 1. On the other hand, if s = 2g, then 0(m) =
0(m/g) so that, by 3.1 (b), g = 1 (s = 2) or g = 2 (s = 4). If g = 2,
then 2||m. But again s = 4 implies 4|m, a contradiction. Thus
q = i9 s = 2. This completes the proof of (b).

(c) If /3s ί Q, then we know #(m) <; 2φ(m/s) (2.6) and g = 2s (2.5
(c)). From the first statement we know s = 1, 2, 3, 4 or 6 (3.1). But
if s = 4, then g — 8. Since g|m, this contradicts 3.1. Similarly, if
s = 6, then g = 12 and 12 |m contradicting 3.1. Thus s = 4 and s = 6
are impossible. We conclude that s = 1, 2, 3 with q = 2s.

COROLLARY 3.4. 1/ #m — <z is partially normal over Q, then
there is a positive integer b such that either a — ±bm, a = ±δ m / 2 ,
a = ±6m / 4, or α = ±6 m / 6 .

Corollary 3.4 marks out the possibilities for partially normal
binomials over Q quite clearly. The following theorem (our main
result) gives necessary and sufficient conditions for when one of these
admissible binomials is actually partially normal.

THEOREM 3.5. Let m and b be positive integers. Then
(1) xm — bm is partially normal with s = q = 1; xm + bm is

partially normal with s = 2, q = 1 (m even) or s = q = 1 (m odd).
( 2 ) α?m — δm / 2 is partially normal with s = g = 2<=*2||m and
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( 3 ) xm — bm/2 is partially normal with s = 1, q = 2 <=> either
l/TeQ(ζm / 2) and Vb~$Q or VTeQ(ζJ, τ/TgQ(ζw / ?) <rod 4| |m.

( 4 ) α?m + δm/2 is partially normal with s = 1, q = 2<=>V be Q(ζ2m)
and τ/TgQ(ζJ. _

( 5 ) xm + δw / 2 is partially normal with s = g = 2 <=* l/ 6 £ Q(ζ2m)
or V T e Q(ζJ cwd i / t ^ Q.

(6) α;m — 6m/4 is partially normal with s = 2, g = 4
Q(ζ J , V T g Q(ζW2) α^d 411 m.

( 7 ) #m + 6m/4 is partially normal with 8 = 2, g = 4<
Q(ζw/2) and VTg Q.

(8) of* — 6 m / 6 ΐ β partially normal with s^3, q = 6<
J , τ / T ί Q(ζw/3) a^d 2 i I m.

(9) a;m + 6m/6 is partially normal with s = 3, q = 6<=

,J, T/Tί Q(ζJ a^d τ / T ί Q(ζ2w/3).

We will prove this theorem in § 5 after stating and proving some
useful lemmas.

4* Square roots and generators of cyclotomic extensions • In
this section we will state and prove some results which will be used
to prove our main Theorem 3,5. These results are independent of
the rest of this paper and are partial responses to the following
question: for what positive integers 6, m, n is it the case that
Q(ζmV~b) = Q(ζJ? We will use (implicitly) the following known result
from Galois theory. (See, for example, [2] p. 240.)

LEMMA 4.1.

(A) If p is an odd prime, then V~pe Q(ζp) iff p = 1 (mod 4)
and V^peQ{ZP) iffp = 3 (mod 4); i/^TeQ(ζ 4 ); i/TeQ(ζB).

(B) Let b be a square free integer. Then, if m is odd, b\m
iff VT or τ/^&eQ(ζJ = Q(ζ2J iff τ/TeQ(ζ4J iff V^beQ(ζim).
Further, if 81 m, then V be Q(ζ J iff b\m.

LEMMA 4.2. Let m and b be positive integers. Then
(A) // m is even, then VTe Q(ζ2m), VTί Q(ζJ, and VT$ Q(ζ2m/3)

iff β(Cf./.VT) - Q(ζJ. _ _ _

(B) If m is odd, then V b e Q(ζ J , V b g Q(ζw/3) iff Q(ζw/3l/ b) =

Q(CJ.

Proof. (A) It is sufficient to consider the case where b is square
free. Now VΎeQ(ζ2m) and l/T0Q(ζ2 w / 3) implies 3||m. Similarly,
l /Te Q(ζ2m) and V~b~£ Q(ζm) implies 8 | w . Thus there are two pos-
sibilities: (a) 2\\m in which case b = 3δi with (b19 6) = 1 [awd Vbγ e
Q(ζw/3) and (b) 4| |m in which case b = 6b, with (b19 6) = 1 and α/"^β
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Q(C/s) I Q both cases Q(ζim,tVΊ>) is an extension of Q(ζm/3). In case
(a),

= Q(C.,» C.

and, in case (b),

i)VΎ)

= Q(CJ

Conversely, suppose Q(ζ2m/y~b) = Q(ζJ. Thus C2m/8i/Te Q(ζ2J
and, therefore, i/ 6 e Q(ζ2m). If also α/ΊΓe Q(ζJ, then also ζ2m/3 e Q(ζJ
contradicting the fact that m is even. Thus τ/ΊΓg Q(ζJ. Finally,
if l / T e Q(ζ2m/3), then Q(ζ J £ Q(ζ2m/3) which is impossible. Thus also
V b $ Q(ζ2m/3). This completes the proof of (A).

(B) Again we may assume without loss of generality that b is
square free. Now i/TeQ(ζ2 m) and l/T?Q(ζ2 m / 3) implies Z\\m,b = Zbx

and V/-δ1eQ(ζ2m/3) = Q(ζm/3). Thus, since Q(ζtm/iV b) is an extension
of Q(ζm/3), we have

The proof of the converse is analogous to that of (A).

LEMMA 4.3. Let m and b be positive integers with m even.
Then

(A) The following statements are equivalent
( i ) τ/Te Q(ζ2m) and VT$ Q(ζ J

(ϋ) β(CΛ.v/6) = Q(C.)
(iii) either 2||m, the square free part of b is odd and i/ — be

Q(ζw) or 4||m, t/ie square free part of b is even and i/δ/2eQ(ζm).
(B) 21| m, T/Te Q(ζ2J α^d l / T ί Q(ζ J - Q{ζmVT) - Q(ζ2J.

Proof. (A) We will show that (i) => (iii) « (ii) => (i). Suppose
VTe Q(ζ2m) and τ / T ί Q(ζJ. Thus 8 | m. It follows that, since m
is even, either 2||m or 4| |m. In the first case it also follows that
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the square free part of b must be odd and that τ/^6 6 Q(ζw). In
the second case it also follows that the square free part of b is even
and V b/2 e Q(ζm). This shows that (i) implies (iii).

Now assume that (iii) holds. Clearly Q(ζ2«τ/"δ) is an extension
of Q(ζw). Thus, in case 2||m,

In case 4||m,

- q(ζm, ζ8ζm/4τ/"2"Λ/-|-)

, ζ8τ/"2")

= Q(U .

This shows that (iii) implies (ii).
That (ii) implies (i) is obvious. This completes the proof of part

(A) of the lemma.
(B) If 2 | |m,v / TeQ(ζ 2 J and v T e Q ( ζ J , then V~=b e Q(ζJ.

Furthermore, Q(ζmτ/ 6) is an extension of Q(ζm/2) = Q(ζJ. Thus

Q{ζmVT) = Q(ζm/2,

= Q(C

Conversely, suppose Q(ζml/b) = Q(ζ2m). It follows easily that
VTeQ(ζ2w). If also τ/T6Q(ζJ, J h e n Q(ζ2w) £ Q(ζJ contradicting
the fact that m is even. Thus V b e Q(ζ2J and V b ί Q(ζJ. By part
(A) of the lemma, either 2||m or 4||m. We will show that the latter
is impossible. Indeed, suppose 4| |m and Q(ζmτ/~6) = Q(ζ2J. On the
one hand, Q(ζ2m) is an extension of Q(ζw/2) of degree 4. On the other
hand, Q(ζwl/ 6) is an extension of Q(ζm/2) of degree at most 2. Thus
4||m cannot happen and part (B) of the lemma follows.

5* Proof of Theorem 3*5*
(1) This is easy.
(2) In this case a =ζLVT and thus Q(α2) = Q(ζ2J) = Q(ζJ.

Consequently, 2\\m and
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Conversely, if 2||m and VΊΓgQ(ζm), then Q(ζmτ/δ) is an extension
of Q(ζJ of degree exactly 2.

(3) In this case, a = ζ'J/T, 8 = 1 and Q(a) = Q(ζJ. Thus
T/TG Q(ζ J . If also VTz Q(ζm/2), then by Lemma 4.3 (A), Q(ζwi/6) =
Q(ζm/2). Thus (i,m) = d * l . Consequently, Q(ζJ - Q(Zm/dVb) =
Q(ζm/d> V/ b) is an extension of degree 2 over Q(ζm/d). This can
happen only when d — 2 or 3. If eZ = 3, then by Lemma 4.2
QCCm/sVT) = Q(ζm/2) which is a contradiction. On the other hand, if
d = 2, then Q(ζw/2τ/T) = Q(ζJ. This and Lemma 4.3 (B) then implies
4||m.

Conversely, suppose T/IΓG Q(ζw/2). Then Q(ζml/ 6 ) is an extension
of Q(ζm/2)_and Q(ζmVT) = Q(ζm/2, ζmτ/T) - Q(ζm/2, ζ j = Q(ζJ. Thus
α: = ζmτ/ 6 generates the splitting field of xm — bm/2 which is therefore
p.n. (partially normal) with 8 = 1. On the other hand, suppose i/ b e
Q(ζJ, l/TeQ(ζm/2) and 4||m. Then by Lemma 4.3 (B), e(ζw / 2l/T) =
Q(ζJ so that xm - bm/2 is p.n. with 8 = 1.

(4) If a = ζίζ2ml/T'generates the splitting field of α;m + 6m/2

with Q(α) = Q(ζJ, then clearly V T eQ(ζ2J and v T e Q ( ζ J .
Conversely, suppose τ/!Γe Q(ζ2m) and i/ 6 g Q(ζ J . Then by Lemma

4.3 (A), Q(C2m-i/"5) = Q(ζJ. Hence α;w + δm/2 is p.n. with s = 1.

(5) Suppose that a = ζ^mVlΓ generates the splitting field of
a - j . 6-/2 a n d Q(α«) = Q(ζjjζ j =- Q(ζ j β T h e n either i? 6 G_Q(ζm) or
l/ 6 e Q(ζJ. If the latter, then i/ & ί θ(ζ2m) also^ For, if V b e Q(ζ2J
and g Q(ζJ, then by Lemma 4.3 (A) Q(ζ2wl/ΊΓ) = Q(ζJ. It would
then follow that Q(a) = Q(ζJ contradicting the fact that s = 2.
Thus either τ/FeQ(ζJ or V~b£ Q(ζ2J. _ _

Conversely, suppose i/ 6 eQ(ζJ._Then Q(ζ2ml/6) = Q(ζm, ζ2wi/6) -
, ζ2m) = Q(C2m) Thus a: = ζ2 mi/ 6 generates the splitting field of

_ 6m/2 s o t h a t t h e i atter is p.n. with s = 2.
On the other hand suppose that v T g Q(ζ2m). Then Q(ζ2m"l/T) =
> C2mV/ 6) is at most a quadratic extension of Q(ζm). If, in fact,
VT) - Q(CJ S Q(C»J, then v T e Q ( ζ 2 J . Thus Q(ζ2mi/T) is an

extension of degree 2 of Q(ζJ. As a result, xm + 6m/2 is p.n. with
s = 2 with splitting field generated by ζ2 mτ/Έ

(6)_In this case, α = ζ ί^T_with Q(ζJ = Q(α2) = Q(ζί/ svT).
Thus v7 6 G Q(ζJ. Furthermore, V b £ Q(ζm/2) and 41|m using a slight
variation on the argument of Lemma 4.3 (B).

Conversely, suppose 411 m, V b G Q(ζm) and i/"6~ί Q(ζw/2). Thus by
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Lemma 4.3 (B), Q(ζm/2VT) = Q(ζ J . Thus a = ζm VT generates the
splitting field of xm — bm/i forcing the latter to be p.n. with s = 2.

( 7 ) If xm + bm/i is j>.n. w i t h β_= 2, then α = ζ;ζ2 m # T and
Q(ζj = Q(a2) = Q(ζί / 8ζmτ/6). Thus ϊ / T e Q ( ζ J . We claim_also that
V b e Q(ζm/2). For, if not, then by Lemma 4.3 (A), ζmV b e Q(ζw/2).
It follows from this that

J = Q(ζLl2ζmVT)

contradicting the fact that 4 |m.
Conversely, suppose that "l/ΊΓe Q(ζm/2). Then ζ2m ^ is a root

of a;2 - ζ m τ / T over Q(ζw) and, therefore, Q(ζm, ζ2m ^ T ) is an extension
of degree 2 over Q(ζw). Furthermore, Q(ζmT/T) - Q(ζJ_or Q(ζm/2).
The latter cannot happen by Lemma 4.3 (A). Thus ζ2 w M b generates
the splitting field of xm + bm/4 with s = 2.

( 8 ) If α = ζ i V y generates the splitting field of α;w - bm/6 with
Q(α3) = Q(ζm), then τ / T e Q(ζJ. Moreover, i / T ^ Q(ζm/3) since otherwise
Q(α3) = Q(ζL sVT) £ Q(ζw/3). It follows from this that 3||m. Further-
more, if 4 |m then [Q(ζJ: Q(ζm/6)] - 4. But [Q(α3): Q(ζm/6)] is at most
2. Thus also 2 | |m.

Conversely, suppose 211 m, 311 m, l / T e θ(ζw) and VΎί Q(ζ»/8)- Then
Lemma 4.2 (B) applies and Q(ζm/yj) = Q(ζJ. Finally, Q(ζw ^ T ) is
of degree 3 over Q(ζ J . Thus ζm V 6 generates the splitting field of
xm - 6W/6 with β = 3.

( 9 ) If a = ZLζ2m Λ/T generates the splitting field of xm + bm/Q

with Q(a*)=_Q(ζJ, then clearly τ / T e Q ( ζ J and Ί/TeQ(ζ 2 w ). Fur-
thrmore, V b £ Q(ζ2m/3) for, if otherwise, then

Q(ζJ - Q(aη = Q(ζί/8ζ2lll/sT/T) £ Q(ζ2w/3)

—clearly a contradiction.
Conversely, suppose v l Γ e Q ( ζ 2 J , τ / ¥ g Q ( ζ J and α/"Fί Q(ζ2w/3).

Then Lemma 4.2 (A) applies and

aV/T) - Q(ζJ .

Thus xm + 6m/6 is p.n. with a = ζ2m ^ Since Q(ζ2w ^ T ) is of degree
3 over Q(ζ J , s = 3.

This completes the proof of the theorem.
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We conclude this section with an example.

Lest one suspect that, if x™ — b is partially normal, its splitting
field can always be generated by a — ζm Λ/ 6, consider the polynomial
x12 — 36. According to Theorem 3.5 (3), this polynomial is partially
normal with s = 1, q — 2 and generating root ζf2τ/ 3 for some positive
integer j. Thus Q(ζί2ϊ/~3~) = Q(ζ12). If (j, 12) = 2, then by Lemma
4.3 (B), Q(ζ(2VΎ) = Q(ζ12) follows._However, if (i, 12^= 1, ζί2VΎ =
(±Q(±_C3)i/3 = (±l/2)i(~l + V-Z)VZ = (±l/2)(τ/-3 + 3). Thus
QCĈ V7 3 ) = Q(ζ3). Consequently, ζ12i/ 3 is not a generating root for
x12 - 36 but ζ6τ/~3~ is!

6* Galois groups of partially normal binomials* In this section
we will determine the Galois groups of the binomials listed in Theorem
3.5. We will assume the known facts about the Galois group of
Q(ζJ (see [4], Chapter 8): that G(Q(ζpn)) is cyclic of order (p - l)pn~ι

for p an odd prime and that G(Q(ζmJ) - G(Q(ζ J ) x G(Q(ζJ) wherever
(n, m) = 1. We will also assume the Galois theoretic fact ([4] p. 196)
that if A and B are two Galois extensions of C with groups G and
H respectively, then the group (over C) of the compositum AB is
G x H i f f 4 n δ = C.

The following theorem determines the groups of the binomials
of 3.5 except cases (6) and (7) (which will be treated separately).

THEOREM 6.1. Let G(xm — a) denote the group of the partially
normal binomial xm — a over Q. Then the following are the Galois
groups numbered according to the scheme of 3.5:

(1) G(xm - bm) = G(xm - 1); G{xm + bm) = G{x2m - 1).
( 2 ) G{xm - bm/2) = G(x2m - 1).
( 3 ) G(xm - bm/2) = G(xm - 1).
( 4 ) G(xm + 6m/2) ̂  G{xm - 1).
( 5 ) G(xm + bm/2) = G{x2m - 1).
( 8 ) G(xm - δm / 6) = Ss x G(xm - 1).
( 9 ) G(xm + &w/6) = S 3 x G(α;w / 3 - 1).

Here S3 denotes the symmetric group on 3 letters.

Proof. (1), (3) and (4) are clear. _
(2) In this case, Q{a) = Q(ζmτ/T) = Q(ζw, VΊΓ). Since τ / T e

Q(ζJ, the group of Q(α) is isomorphic to Z2xG(xm — 1) which, since
2||m, is isomorphic to G(α;2m — 1).

( 5) For this case,_either VTe Q(ζJ or VT$ Q(ζ2J. In the first

instance, Q(α) = Q(ζ2mτ/T) = Q(ζm, ζ2 mi/T) = β(ζ», ζ 2 J = Q(C,J. Thus
the group is G(α;2wι - 1). In the second, let m = 2feg, g odd. Then
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Q(a) = Q(ζ2mVT) = Q(ζq9 ζ2k, ζ2k+VT). Thus the group of Q(a) is
isomorphic to G(xq - 1) x G(Q(ζ2*, ζ2*+π/ b)). The second factor is
G(x2k + δ2*"1) which for k ^ 3 is isomorphic, by ([4], Theorem 9), to
Z2xZ2k~i. For k = 1, 2 it is easy to check that the same result holds.
Hence G(xm + bm/2) ~ G(x2m — 1) in the second instance also.

( 8 ) Since in this case 2| |m, 3| |m, and τ/ΊΓeQ(ζJ, we have
Q(a) - Q(ζm, VT) = Q(ζm, ( VJYιVT) = Q(ζw, Vb) - Q(ζw/3, ζ8, VT).
Thus since Q(ζm Λ) Π Q(ζ8, V & ) = Q and Q(ζ3, V 6) has group S8, we
conclude that G(α;m - δm/6) = S3 x G(xw/3 - 1 ) ^ _

( 9 ) If xm + 6W/6 is p.n., then a = ζ 2 w V & and therefore ζ w ^ 6 e
Q(α). Since also ζ m eQ(α), we must have that %/b$Q{a). Conse-
quently,_e(ζ3, VT)dQ{a). Furthermore, Q(ζ3, VT) ΠQ(C /8) - θ and
[Q(C8,J^ & ): QHQ(Cwa): Q] = 3^(m) since 3| |m. Hence Q(α) = Q(ζm/3,
ζ3, ^ 6) with Galois group S3 x G(a;m/3 - 1).

The remainder of this section will be devoted to calculating the
groups of (6) and (7) of 3.5. To do this we will use the following
lemma and its corollaries.

LEMMA 6.2. Let a and b be relatively prime square free integers.
Suppose that A and B are cyclic fields of degrees 2* and 2j over
A{] B = Q such that V a e A, V b e B. If i ^ j , then there is a
cyclic field C of degree 2i over Q with Vab e C, CB = AB and

Proof. Let GA, GB be the groups of A, B respectively. Then the
groiφ of AB is GA x GB. If σ, τ generates GA, GB respectively, then
σ{V~a) = — V~a and τ( i/T) = —VΎ. The subgroup H of GA x G
generated by (σ, τ) is cyclic of order 2j and fixes Vab. Let C be
the fixed field of H. Then Vab e C, GA x H = GA x GBf C has group
GA and the fixed field of GA is B with group H = GB. The lemma
follows.

B

COROLLARY 6.3. Let alf ,an be paίrwise relatively prime
square free integers, Kt a cyclic field of degree 2k with Vat e
Ki (ί = 1, , n) arranged so that j \ ̂  j 2 ^ <; j n . Assume that
Kt ΓΊ Kj — Q whenever i Φ j . Then there exists a cyclic field Ko of
degree 2h with Vaγa2 an e Ko and a field K such that Ko Π K = Q
and K0K - K,K2 Kn.

Proof. Use the lemma and induction on n: successively construct
pairs of fields Jif L{ such that J, is cyclic of degree 2h containing

i aif Jtn Li = Q and JiLi = KJt2 Kt. Then Ko =

% satisfy the conclusion of the corollary.
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COROLLARY 6.4. Let m and b be positive integers such that m
is odd and b is square free. Let b = pxp2 pn be the prime fac-
torization of b and, for i = 1, , n9 let j t be the positive integer
such that 2ji\\pi — l. By relabelling, if necessary, assume that j \ ^
3 2 ̂  ^ i» Then, if V be Q(ζm), there exist sub fields Fo, F of
Q(ζJ such that Fo is cyclic of degree 2ά\ VYe F09 Fof] F = Q and
F0F = Q(ζ J .

Proof. By Lemma 4.1, b\m. Let d be the largest divisor of m
relatively prime to b. Then G(x™ - 1) = G(xd - 1) x G(xm/d - 1). Let
G = G(xm/d — 1), G2 its Sylow 2-subgroup, and Glf the direct product
of its Sylow p-subgroups, p an odd prime. Then G = G2 x Gx. Let
J2, J19 be the fixed fields of G19 G2 respectively. It is easy to see that
T/ΊΓe J2 and that J2 is the compositum of pairwise linearly disjoint
cyclic fields Kt with V±pieKi and [K,: Q] = 2jί(i = 1, ••-,%). The
hypotheses of Corollary 6.3 are thus satisfied so that we can find if0,
Kc J2 with iΓ0 cyclic of degree 2'\ KopιK = Q and iΓojKΓ = J2.

The corollary follows with Fo = Ko and F -

We can now compute the group of case (6) of Theorem 3.5.

THEOREM 6.5. Let xm — bm/4 be a partially normal binomial of
type (6). Let D4 denote the dihedral group on four letters. Then
there exists a direct cyclic factor H of G(xm/i — 1) of order 2 such
that G(xm - bm/i) = A x (G(xm/i - ΐ)/H).

Proof. Let m = Aq with q odd. Then

Qia) - Q(ζ4q VT) = Q{ζq, ζ4, VT) .

By Theorem 3̂ 5, VTeQ(ζiq) but VTί Q(ζq). Thus V-be (ζq) and
Q(ζJ Π Q(ζ4, ^ 6 ) = Q(V-b). By Lemma 4.1 the integer j x of Corollary
6.4 must be 1. Hence, by the same corollary, there is a field FaQ(ζq)
with Q{V^b)'F~Q{ζq) and Q(V^b) n F = Q. Thus Q(a) - F Q(ζ4, ^F)
and F n Q(ζ4, v7 6 ) = Q. The theorem follows.

We now turn to case (7) of Theorem 3.5. Let p(x) = x2km + 62fc~2w

be a fixed partially normal binomial with m odd, b a square free
integer and k ^ 2. Thus, by 3.5, i/ΊΓe Q(ζ2*-i J and α = ζ2fe+im VT. It
is clear that Q(a) = Q(ζm, ζ2Λ+i ^"6).

To compute G(p(x)), let δ = 2'% where ε0 = 0 or 1 and b, is odd.
Let δ = 0 or 1 so that iδVb^eQ(ζm) (by 4.1). Then by Corollary 6.4
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there are fields Fo, FaQ(ζm) so that F0F =_Q(ζJ, G(Q(ζJ) - G(F0) x
G(F)9 Fo is cyclic of degree 2h and iδVbι e Fo. Thus it is easy to
see that G(p(x)) = G(F0(ζ2k+ι VT)) x G(F). Since G{F) can be com-
puted from 6.4, it is sufficient to determine G(F0(ζ2k+i V b)).

Let β — ζ2&+i V 6. We know that F0(β) is an extension of degree
2 over F0(ζ2k) so that there is an automorphism σ of F0(β) such that
a(β) = — /3 with fixed field F0(ζ2k). On the other hand, the group of
F0(ζ2k) is the direct product of cyclic groups of orders 2h

9 2, 2fc~2 with
respective generators p9 σl9 σ2. Denoting by the same letters exten-
sions of these generators to F0(β), we have that the group G' of
F0(β) is generated by σ, p, σί9 σ2. On F0(ζ2k) these generators are
defined by

- ζ2*, p(VT) - ( - 1

= (-l)VT

where ε0 is as defined above and ει = 1 if 6 is odd or ε0 = 1 and 6/2 > 1
and 0 otherwise. To see how p, σ19 σ2 may be extended to F0(β), it
is sufficient to determine how they act on β:

p(β) = i φ,

σx{β) = ζ2fci
εo,8 ,

σ2(β) - ζ-,1^ .

From these formulas, it is a straightforward matter to determine
relations amongst the generators σ, p9 σl9 and σ2. For one, σ\k~2 = σ.
We summarize the rest in the following.

THEOREM 6.6. The group G(x2km + bik~ιm) is isomorphίc to the
direct product of an abelian group G(F) with a nonabelian group
Gf of order 2h+k generated by p9 σ19 σ2 and satisfying the following
relations:

of-1 = o\ = pa = 1 (where a = max (2^, 4e0) ,

In particular,

(a) i / ε, = 0, ί/ιe^ j \ = 0 and G(F) = G(#m — 1); furthermore G'
is isomorphic to a group generated by σ19 σ29 satisfying relations
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(b) if ε0 = ελ = 1 and jι^ k — 1, then G{p{xj) is isomorphic to

G(xm - 1) x (σ19 σ2).

Proof. The relations (*) are easily determined from the discus-
sion preceeding the theorem. Part (a) follows from(*) and the fact
that b = 2 in this case. Finally, (b) follows from (*) by setting
T = pσγ. Then σ2τ = τσ2 and τ is an element of order 2h. By Co-
rollary 6.4, <τ, G(F)) = G(xm - 1). Furthermore, <τ> n (σlf σ2) = {1}
and thus G(p(x)) = (σlf σ2) x G{xm — 1).
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