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SHARPNESS IN YOUNG'S INEQUALITY
FOR CONVOLUTION

JOHN J. F. FOURNIER

Let p and q be indices in the open interval (1, oo) such
that pq < p + q; let r — pql(p + q — pq). It is shown here
that there is a constant Cp,q < 1 such that, if G is a locally
compact, unimodular group with no compact open subgroups,
and if g and / are functions in LP(G) and Lq(G) respectively,
then

\\g*f\\r^CPιq\\g\\p\\f\\q

here g*f denotes the convolution of g and /. Thus, in this
case, Young's inequality for convolution is not sharp; this
result is used to prove a similar statement about sharpness
in Eunze's extension of the Hausdorff-Young inequality. The
best constants in these inequalities are known in many special
cases; the methods used here do not yield good estimates
for these constants, but they do lead to the first proof of
nonsharpness for general unimodular groups without compact
open subgroups.

1* Introduction* Throughout this paper, we assume that G is
a locally compact, unimodular group. We call a pair of indices
(p, q) internal if

p > 1, q > 1, and — + — > 1 .
p q

Given an internal pair of indices (p, q), we denote by r the index
such that

r p q

It is known [17, pp. 54-55; 8, Theorem 20.18] that if geLp(G) and

feLg(G), then the convolution g*f is finite almost everywhere, and

measurable; moreover,

( 1 ) llff*/llr^llflf||,ll/llff.

This inequality was first proved, for the circle group, by W. H.

Young [18]. Given a group G, and an internal pair of indices (p, q),

we let

( 2 ) cp,q(G) = BVLv{\\g*f\\r:geL>(G),feL<(G), \\g\\, £ 1, | | / | | , ^ 1} .

Inequality (1) states that cp>q(G) ^ 1. In Theorem 1 of § 2 of this
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paper, we show that, for each internal pair of indices (p, q), there
exists a constant Cp>q < 1 such that, if G has no compact open sub-
groups, then cp,q(G) <: Cp>q.

We call a pair of measurable functions (g, f) maximal if there
is an internal pair of indices (p, q) such that 0 < II^UI/H^ < °°, and
equality holds in inequality (1). A function φ on G is called a sub-
character if there exists a compact open subgroup H of G, and a
continuous homomorphism χ of H into the circle group, such that
φ vanishes off H, and φ coincides with χ on H. In Theorem 3 of
§ 3, we show that a pair of functions (g, f) is maximal if and only
if there is a subcharacter φ such that g and / coincide, almost
everywhere, with multiples, by nonzero constants, of left and right
translates of φ respectively.

To discuss R. Kunze's extension of the Hausdorίf-Young theorem,
we must recall a few facts from the theory of noncommutative
integration; this theory is developed in [15], [16], [9], and [10].
Let feLp(G) for some p, and let Lf be the, possibly unbounded,
operator on L\G) given by convolution on the left with / ; that is,
Lf:h\-*f*h. If Lf is a bounded operator on L2(G), let ||L/||«> be
the norm of this operator; otherwise, let ||Z//||oo = ©°. If Lf is a
projection, define m(Lf) to be the extended real number | |/ | |1; this
functional m can then be extended [15] to a canonical gage on an
appropriate set of positive operators so that

( 3 ) m(|L/r) = | | / | | ϊ ,

for all / in L\G). Finally, for each index q with 1 ̂  q < oo, let
\\Lf\\q = m(\Lf\

q)ι/q. It follows from these definition that

and \\Lf\\2 = | | / | | 2 ,

for all /. Now Kunze showed that, if 1 ̂  p ^ 2, then

( 4 ) \\Lf\\p,^\\f\\p.

Here, as in the rest of this paper, pf denotes the index conjugate
to p; that is, 1/p + l/pr = 1. When G is abelian, this inequality is
just the usual Hausdorίf-Young inequality [8, § 31.21], because ||L/||P/
is equal to the usual ZΛ-norm of the Fourier transform of / in this
case. To prove inequality (4), one must interpolate between the
known cases where p = 1 or p = 2. In [9], Kunze used complex
interpolation to this end. Recently, Peetre and Spaar [11] have used
the real interpolation method to give a second proof of inequality (4).

Given a group G, and an index p in the interval (1, 2), we let

(5) bp(G) =
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Inequality (4) states that bp(G) ^ 1 in any case. In Theorem 2 of
§ 2, we show that, for each index p in the interval (1, 2), there
exists a constant Bp < 1 such that, if G has no compact open sub-
groups, then bp(G) ^ Bp. In proving this, we reduce matters to the
case where p = 4/3, and then, following Young's original proof [18]
of inequality (4) for the circle group with p = 4/3, we show that

the desired result then follows from Theorem 1.
A measurable function / is called maximal if there is an index

p in the interval (1,2) such that 0 < | | / | | p < o o , and such that
equality holds in inequality (4). In Theorem 4 of § 3, we show that
a function is maximal if and only if it coincides, almost everywhere,
with a multiple, by a nonzero constant, of a translate of a sub-
character. Again, we derive this statement from the corresponding
assertion about maximal pairs of functions for convolution.

We now comment on the connections between these results and
the work of other authors. First, Theorem 4 is not new, having
been proved for the circle group by Hardy and Little wood [5, Theo-
rem 1], for all locally coihpact, abelian groups by Hewitt and
Hirschmann [7], for all compact, nonabelian groups by Hewitt and
Ross [8, Theorem 43.16], and in general by B. Russo [13], but the
proof that we give here is new. Theorem 3 does not seem to have
been stated before, although special cases of it follow easily from
Theorem 4. We give two proofs of Theorem 3; the first proof is
direct and elementary, while the second proof uses Theorem 4.

Theorems 1 and 2 do not seem to follow easily from Theorems 3
and 4. Consider the case of Theorem 2, for instance. If G has no
compact open subgroups, and 1 < p < 2, then, by Theorem 4, the
only cases of equality in inequality (4) are the trivial ones where
| |/ | |p = 0 or oo; it does not follow immediately, however, that
bp(G) < 1 in this case, because it is not known whether the supremum
in formula (5) must always be attained. By proving Theorem 2,
we settle a conjecture due to Russo [13]. The basis for this con-
jecture was the theorem of K. I. Babenko [1] asserting that, if p'
is even, then

( 6 ) bp(R) = lpv*/(p'y<*fγ''

it follows easily that bp(R) < 1 whenever 1 < p < 2. In [13], Russo
showed that, if the group G is central, or is a semidirect product
of an abelian group A and a compact group K acting on A, and if
G has no compact open subgroups, then bp(G) ^ bp(R); other instances
where this inequality holds are described in [12], and [14].
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Recently, W. Beckner [2] has shown that Babenko's formula (6)
holds for all indices p in the interval (1, 2). In the same paper,
Beckner used this result to compute bp(G) for all locally compact,
abelian groups; in every case, bp(G) = bp(R)n for some integer n.
It seems likely, therefore, that bp(G) ^ bp(R) whenever G has no
compact open subgroups. The methods of the present paper do not
yield this inequality, but they do permit us to prove Theorem 2 for
all unimodular groups.

The constants cp>q(Rn) have recently been computed by Beckner
[2], and by Brascamp and Lieb [3]. Again, the methods of the
present paper do not give us the exact values of the constants
cPtq(G), but these methods are elementary, and they yield the con-
clusion of Theorem 1 for all unimodular groups.

2 Upper bounds for cPtQ(G) and bp(G). In this section, we
prove the two theorems stated below.

THEOREM 1. Let (p, q) be an internal pair of indices. Then
there exists a constant Cp>q < 1 such that, if G is a locally compact,
unimodular group with no compact open subgroups, then cp,q(G) ^

•/J>>9"

THEOREM 2. Let 1 < p < 2. Then there exists a constant Bv < 1
such that, if G is a locally compact unimodular group with no
compact open subgroups, then bv{G) <I Bp.

Proofs. Both theorems follow easily from the special case of
Theorem 1 where p = q = 4/3.

We first show how to derive Theorem 2 from this case of Theo-
rem 1. Let /eL 4 / 3 (G); denote by / * the function given by the rule
that f*(x) = fix'1) for all x in G. It is shown in [9, Theorem 4]
that (I//)*, the adjoint of the operator Lf, is just L(/*). Thus

LfY) = m([L{f*uf]
2)

= l l(/*)*/ | | ϊ , by relation (3)

since G is unimodular. The calculation above is just Young's original
argument [18] adapted to this setting. By this calculation,

^ c4/3,4/3(G)1/2 .

If G has no compact open subgroups, then
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bm(G) ^ (C4/3,4/3)
1/2,

by Theorem 1; thus the case of Theorem 2 where p = 4/3 holds with
-°4/3 — V ̂ 4/3,4/3/

The other cases of Theorem 2 follow by convexity arguments.
Suppose, for instance, that 1 < p < 4/3; the argument when 4/3 <
p < 2 similar. Let θ = 4(1 — 1/p); then

i x - θ + θ

+
p 1 4/3 *

By Riesz convexity [4, p. 143; 8, Appendix E],

Now b^G) ^ 1 in any case. If G has no compact open subgroups,
then 64/3(G) ̂  B4/3, and

bp(G) £ (B</9γ = Bp, say.

We now turn to the proof of Theorem 1 when p = q = 4/3. Let
λ be a number in the interval (0, 1) for which there exist functions
g and / in Lm(G) such that

(7) | | 0 | | 4 / 8 = | | / | | 4 / 8 = i f and | |<7*/ | | 2 >λ.

We will show that if λ is sufficiently close to 1, then G must have
a compact open subgroup.

We begin with a very special case, and show later that matters
can be reduced to this case. Suppose that g is the characteristic
function 1# of a set K, and that f=g*. Then μ(K), the Haar
measure of K, is equal to 1, because ||#||4/3 = 1. Now

= μ(xK Π K) .

Clearly, g*f is continuous, and 0 ^ g*f ^ 1.
We also consider two auxiliary functions, letting h = {g*f)u\

and φ = 1 — g*f. Then g*f <* h, and

= ί g*f(χ)dχ
JG
ί
JG

Given two sets E and F9 denote by E ~ F the set of all elements
of E that do not belong to F. For each element x of G, let s(x)g
be the left translate by x of the function g; that is, [s(x)g](y) =
gfr-'y), for all y in G. Then
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φ{x) = μ(xK ~ K) = \\\Λx)g - g\l .

It follows from the triangle inequality for L\G) that

(8 ) φ(x) - φ(y) ^ φ{xy) ^ ψ(x) + φ(y) ,

for all x and y in G.

Given an integer j between 1 and 5, let

Hό = {x 6 G: φ{x) < i/6} .

Outside the set Hlf the inequalities ^ ^ 1 / 6 , and g*f^5/6 hold;
therefore,

(g*f)2 £ \(g*f) = - | f e 2 o u t s i d e H»
b b

and

[ (
JG~H1

Then by relation (7) and the fact t h a t ||Λ,||2 = 1,

(^*/)2+ ( G/*/)2

6 JG~H1 jHt

6 Jo 6 JΛΊ

+ fc l
6 6 JHl 6

This has two consequences concerning the measures of the sets
First,

h2> &(x2 - —) = 6 λ 2 - 5

since h2 ^ 1 in any case,

( 9 ) μ{H,) ^ 6λ2 - 5 .

Second,

ί fe2 ^ ί A2 ^ 6 ( 1 - λ 2 )

since /ι2 = 1 — 0 ^ 1/6 on the set Hδ ~ Hu

(10) μ(H5 - i ϊ j ^ 36(1 - λ2) .
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Now suppose that λ2 > 41/42. We claim that the set H4 ~ H2

must be empty. Indeed, if x e H4 ~ H2, then, by relation (8), the
set xHx is included in Hh ~ Hx. Hence μ(Hδ ~ Hγ) ^ K&i)> s o that,
by relations (9) and (10), 6λ2 - 5 ^ 36(1 - λ2), and λ2 ^ 41/42, con-
trary to our assumptions. This proves the claim.

We claim further that H2 is a compact open subgroup of G.
First, H2 contains the identity element e, because φ(e) = 0. Next,
φ{x~ι) = φ{x) for all x, so that (H2)~l = H2. Now H2Ή2cz H4, by
relation (8); since H4 ~ H2 is empty, H2- H2a H2. Thus H2 is a sub-
group of G. Furthermore, H2 is open, because φ is continuous.
Finally, since g*f> 2/3 on H2i and | | # * / | | 2 < °°, the open subgroup
H2 has finite Haar measure, and is therefore compact.

We now drop the assumption that g and / have the special
forms prescribed above, and we merely suppose that the relation
(7) holds; when it is convenient, however, we may, without loss of
generality, replace the pair of functions (g, f) by another pair for
which these relations hold. For instance, since | # | * | / l ^ \9*f\t we
can assume that g ^ 0 and / ^ 0. In this situation, let h = (<74/3*/4/3)1/2.
Then

by Fubini's theorem, the fact that g and / are nonnegative, and the
normalizations in relation (7). The proof of Young's inequality for
convolution in this case consists in showing that g*f ^ h. Indeed,

=
JG

= ί
JG

We used the Schwarz inequality in the third line above; applying this
inequality again, we have that

because G is unimodular. Thus 0 <; g*/ <; h, and \\g*f\\2

On the other hand, | | # * / | | 2 > λ||Λ||2, by relation (7), so that there
exist points a in G such that



390 JOHN J. F. FOURNIER

0 <Xh(a) < g*f(a) < oo .

By replacing g by an appropriate left translate of itself, we
can arrange for this relation to hold with a = e, the identity element
of G. Moreover, by passing to an equivalent Haar measure on G,
and renormalizing g and /, we can arrange that h(e) = 1. To do
this, we replace dx by cdx, g by c~3/4g, and / by c~3/4f; then h is
replaced by c~1/2h, and g*f by c~l/Xg*f). The norms | |#| ! 4/ 3, ll/IL/s,
| | # * / | | 2 , and \\h\\2 are unaffected by this change, as is the ratio
g*f(e)/h(β). In summary, we can assume that

that g S 0 and / ^ 0, and that

I l # * / H 2 > λ , and g*f(e)>X.

Let ε = 1 — λ. The idea now is to show that, if ε is sufficiently
close to 0, then, in the metric of Z//3(G), the functions g and / * are
both close to a constant multiple of the characteristic function of a
certain set. This will allow us to reduce matters to the very special
case considered earlier in the proof.

Consider the proof that g*f(e) ^ k(e) = 1. Since g*f(e) > 1 — ε,
the two applications above of the Schwarz inequality must be fairly
sharp. The near sharpness of second application implies that
||0 /8 _ (/*)»/»112 ^ 2ε1/2. Letting fe = {gfΎ\ we have that ||fe - gm\\2

and ||fe - (/*)2 / 3 | |2 are both at most 2ε1/2. Let a = ||fc||2. The near
sharpness of the first application of the Schwarz inequality implies
that ||fe2 - k/a\\2 ^ (2ε)1/2. Let K be the set where fe > l/2α; then
||fe - {lja)lκ\\2 ^ 2(2ε)1/2. Letting 7 be the ratio of inner products
(k,lκ)/(lκ,lκ), we also have that ||fc - 7 l x | | 2 ^ 2(2ε)1/2, and that
| |τ:U| | 2 ^ _ 1 . Thus, | |0 2 / 3 - 71*11, and | | ( /*) 2 / 3 - Ύlκ\\2 are both at most
2(1 + 1/2 )ε1/2. Using the inequality | a - b \ ̂  \ α2/3 - δ2/31 | aι/3 + 61/31,
and Holder's inequality, we have that \\g - Ύ^lxWm and | |/* -7 3 / 2lA. | | 4 / 3

are both at most 4(1 + τ/"2~)ε1/2.
L e t t i n g gf = Ύ3/21K a n d / ' = (g*)*f w e h a v e t h a t \\g'*f - g*f\\2 ^

8(1 + 1/2 )ε1/2, so that

||flf'*/'||. > 1 - ε - 8(1 + l/Y)ε1 / 2 = 1 - δ , say.

By replacing g by g'lWg'Wm and / by /711/ΊL/s and by passing to
an equivalent Haar measure, we can arrange that g = lκ, and / = g*,
and that relations (7) hold with λ = 1 - δ. This is the very special
case considered above; hence G must have a compact open subgroup
if (1 - δ)2 > 41/42. This inequality holds whenever ε sufficiently
small, that is, whenever the original value of λ is sufficiently close
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to 1. This completes the proof of the case of Theorem 1 where
p = q = 4/3.

The other cases of the theorem follow by simple Riesz convexity
arguments, which we omit. Our methods do not lead to optimal
values for the numbers Bp and cp,q, but we can specify values for
these numbers. We now do this for C4/3;4/3. The inequality (1 — δ)2 >
41/42 holds if δ <i 1/84, and the latter inequality holds if ε = 3 x
10~7. We can therefore let

^4/3,4/3 — 1 O X 1 0

Our value for Bi/3 is then (C4/3)4/3)
1/2 < .9999999. This is much larger

than &4/3(i2), which is approximately .937.

3* Maximality• In this section, we characterize the maximal
pairs of functions for convolution, and the individual functions that
are maximal for the Hausdorff-Young inequality. Before stating our
results, however, we consider the basic examples, and the operations
that preserve maximality.

First, we check that if χ is a subcharacter, then the pair (χ, χ)
is maximal for all internal pairs of indices. Now

r
κ\V) ~ \ Jί\Z yjJCyZjaz .

JG

Let H be the compact open subgroup that is the support of χ. Then
the product χ{z~xy)χ{z) vanishes unless both z and z~]y belong to H;
in that case, y e H also, and χ{z~1y)χ{z) = χ(y), because the restric-
tion of x to H is a character. Thus χ*χ = &H)χ. It follows easily
that the pair (χ, χ) is maximal for all internal pairs of indices.

Recall that, for each element a of (?, and each function / on
G, the left translate of f by a is the function s(a)f defined by
letting /(a)f(y) = fia^y) for all y in G\ similarly the right translate
of f by a is the function *(α)/ defined by letting +(a)f(y) = f{ya~ι)
for all y in G. Let us say that two pairs (g, f) and (g', / '), of
functions on G, are equivalent if there exist elements a and b of
G, and nonzero constants c and d such that gr and / ' coincide,
almost everywhere, with c/(a)g and d*(b)f respectively. It is easy
to check that maximality is preserved by this notion of equivalence.
In Theorem 3, below, we show that a pair of functions (g, f) is
maximal if and only if there is a subcharacter χ such that (g, f) is
equivalent to (χ, χ).

Let us say that two functions / and /', on G, are equivalent
if / ' coincides, almost everywhere, with a multiple, by a nonzero
constant, of a right translate of /. It is easy to check that equiva-
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lence preserves maximality. It is shown in [13] that a function is
maximal if and only if it is equivalent to a subcharacter; in Theo-
rem 4, below, we give a new proof that every maximal function is
equivalent to a subcharacter. Now left translation also preserves
maximality, and it may be surprising that this operation does not
have to be included in the characterization of maximal functions.
This omission is possible, however, because every left translate of
a subcharacter is also a right translate of a possibly different sub-
character. Indeed, given a subcharacter χ, with support group H,
and an element a of G, let χ' be the function /(a)*.(a~ι)χ\ then χ' is
a subcharacter, with support group aHa~\ and s(a)χ = *(α)χ\

The following two theorems imply that, if a pair of functions
is maximal for one internal pair of indices, then this pair of func-
tions is maximal for all internal pairs of indices, and if a single
function is maximal for one index in the interval (1, 2), then this
functions is maximal for all indices in the interval (1, 2).

THEOREM 3. A pair of functions (g, f) is maximal if and only
if there is a subcharacter χ such that the pair (g, f) is equivalent
to the pair (χ, χ).

THEOREM 4. A function is maximal if and only if it is equiva-
lent to a suhcharacter.

Proofs. We have already seen that if χ is a subcharacter, then
every pair of functions that is equivalent to the pair (χ, χ) is maxi-
mal for all internal pairs of indices. To prove the converse, we
start with a pair of measurable functions (g, / ) , and an internal
pair of indices (p, q) such that

(10) 0 <||flr| |,< oo, o < 11/11, <oo, and ||flr*/||r =

we then have to find a subcharacter χ such that the pairs (g, f)
and (χ, χ) are equivalent. In the course of the proof, we may, with-
out loss of generality, replace the pair (g, f) by an equivalent pair
whenever this is convenient.

First, we consider the case where g ^ 0 and / ^ 0. We can as-
sume that Horn, = | |/ | | f f = 1. Let h = (gp*fq)ί/r; then ||Λ||r = l. The
proof of Young's inequality for convolution, in this case, consists in
showing that g*f^h everywhere. Indeed

= ί /(iΓ'a
Jo

= ( [f(y-1χ)qg(y)ψrf(y~ιχy-q/rg(yy-1>/rdy.
}G
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The definition of r implies that 1/r + 1/p' + \\q' = 1; also, (1 — q/r)p' =
q, and (1 — p/r)q' = p. Apply Holder's inequality, with indices r, p',
and q\ to obtain the estimate

ΓC -\i/p

g* f(x) ̂  Λ(θ|J/( W J
= Λ(s), because | | / | | , = ||flr||, =

Since the pair (g, f) is maximal,

and we must have that g*f=h almost everywhere. Let

H= {xeG:0 < h(x) < oo , a n d g*f(x) = h(x)} .

For each x in H, the application above of Holder's inequality is
sharp; the condition for sharpness [6, p. 140] is that

(12) fiy^ygjyy = fiy^Y = g(v)p

\ \ g(y)pdy
JG

for almost all y in G. To be precise, this condition is necessary for
sharpness when 1 < r, p', qf < oo, which is the case here, because
the pair (p, q) is internal. Since | |/ | | f f = ||g\\p = 1, we can rewrite
condition (12) as

( 1 3 ) f(y~ιx)qg(y)p

 = f^y-^y = g(yy9 for almost all y .
h(x)r

By translating g appropriately, we can arrange that eeH;
moreover, by passing to an equivalent Haar measure on G, and
renormalizing g and /, we can arrange that h(e) = 1. Then

(14) f{y~ι)qg{yY - f(y~Ύ = g(y)p, for almost all y .

Let K = {yeG: g(y) > 0}, and K! = {y e G: f(y) > 0}. Then, for al-
most all y in K,

f(y~γ = 1, and g(y) = f{y~ψ* = 1

in particular, g = lκ, almost everywhere. Similarly, for almost all
y in K',

) ^ ! , and

Hence f = g* almost everywhere; we can assume that g = lκ, and that
/ = lκ — 1 everywhere. Observe that μ(K) — 1, because ||flr||p = 1.

Now g and / both belong to L\G) Π L°°(G) so that g * / and Λ
are both continuous; since g*f—h almost everywhere, these func-
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tions coincide everywhere. Then H is simply the set where g*f > 0,
so that H is open. Since / = g*, and g = lκ, formula (13) now
reads that, for all x in H,

= Q(x~ιy) = 9(v)f for almost all y .y
h(x)r

Fix x in if, and choose 7/ in G so that these relations hold, and so
that g(y) Φ 0; then h(x) — g(x~ιy)ι/r. Since h(x) Φ 0 and g takes the
values 0 and 1 only, h(x) = 1. That is, g*f = h — lπ. Hence μ(H) — 1,
because ||fc||r = 1. If xeH, then, by formula (15), /{x)g = # almost
everywhere; conversely, if s(x)g = g almost everywhere, then
9*f(x) > 0, and xeH. Thus

(16) H = {#: s(x)g(y) = g(y) for almost all ?/ in G} ,

and i ϊ is a subgroup. Finally, since μ{H) < ©o, the open subgroup
H is compact.

Consider relation (16). By Fubini's theorem, we have that, for
almost all y in K,

g{x~ιy) — g(y), for almost all x in H .

Fix an element y oί K for which this relation holds. Then g(x~ιy) = 1
for almost all x in J5Γ. That is, almost all elements of the set Hy
belong to K. Since μ(Hy) = 1 = μ(K), we conclude that 1£ is es-
sentially the right coset Hy of H; we can assume that, in fact,
K = ίfy. Let i f = y~Ήy\ then ^ = yH'. Thus ^ = /(j/)l^,, and
/ = *(y~ι)lH,, so that the pair (g, f) is equivalent to the pair (1^., 1H).

Now we drop the assumption that g and / are nonnegative, but
we continue to assume that they form a maximal pair for the in-
ternal pair of indices (p, q). Since | # * / | ^ | # | * | / L the pair of
functions (\g\, \f\) is also maximal; by the analysis above, we can
assume that \g\ = | / | = lπ, where H is a compact open subgroup
with μ(H) = 1. Since

| < 7 * / | < ^ | * | / l , and | | ^ * / | | r = 1 = \\ \g\ *\f\ | | r ,

we have that \g*f\ = | ^ | * | / | almost everywhere. But the func-
tions I fir*/1 and | # | * | / l a r e continuous, and therefore coincide
everywhere. In particular, \g*f(e)\ = \g\*\f\(e) = l, and we may
assume that g*f(e) — 1.

Let φ = g*f. To complete this proof of Theorem 3, we will
show that φ is a subcharacter, and that the pair (g, f) is equivalent
to the pair (φ9 φ). As noted above, φ is continuous and supported
by H. Fix x in H; then, because \g*f(x)\ — |0 |* |/ | (aO, we have
equality in the inequality
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I \/(y-1χ)9(v)dy\ ^ \\f{y~ιχ)g{y)\dy .

This can happen only if the integrand on the left has essentially
constant argument on its support; this argument must then be the
same as that of g*f(x). Since \g\ = \f\ = 1H, we conclude, for each
x in H, that

(17) f{y~ιχ)g{y) = Φ{χ)

for almost all y in H. By Fubini's theorem, there exists a point
y in H such that relation (17) holds for almost all x in H. Fix
such a point y. Then, as x runs through H, the product z — s/"1^
also runs through H, and we conclude that

f(z) = Φ(yz)/g(y) ,

for almost all z in H. We can modify / so that this relation holds
for all z in H; then / is continuous. Next, by relation (17), with
x = e,

g(y) = Φ{e)if(y-*) = "

for almost all y in H. Again, we can modify g so that this relation
holds for all y in if, that is, so that g — f*. Then /, g, and φ are
all continuous, and relation (17) holds for all x and y in H. We
replace y by y~x in this relation, and use the fact that g{y~ι) = l/f(y)
to conclude that

(18) φ{x) = φ^ for all x and y in H.
f(y)

Let a; and z belong to H. Then

f(e) f{z) f(e)

Thus ^ is a subcharacter. By relation (18), with y = e, we have
that / = f(e)φ. Then

g - /* = /(*)** = /(Φ
This completes the proof of Theorem 3.

We now consider the proof of Theorem 4. It is shown in [13,
p, 295] that every subcharacter is maximal, for all indices in the
interval (1, 2); it follows that every function that is equivalent to a
subcharacter is maximal for all such indices. To prove the converse,
let l<p<2, let feLp(G), and suppose that \\Lf\\p, = | | / | | p Φ 0.
Suppose first that p = 4/3. Then Young's argument, as presented
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in the proof of Theorem 1, shows that the pair of functions (/*,/)
is maximal for the pair of indices (4/3, 4/3); by Theorem 3, the func-
tion / is equivalent to subcharacter. Now suppose that p Φ 4/3,
and let / ' - |/|3*/ 4 sgn/. Evidently, /'eZ//3(G), and | |/ ' | | 4 / 8 Φ Q;
the argument in [13, pp. 295-296] shows that \\Lf,||4 = H/ΊL/s Hence
/ ' is equivalent to a subcharacter; then / is equivalent to the same
subcharacter. This completes the proof of Theorem 4.

The problem of characterizing maximal pairs of functions has
received less attention than the problem of characterizing functions
that are maximal for the Hausdorff-Young theorem. It has been
known for a long time, however, that there are no maximal pairs
of functions on the real line [6, Inequality 280],

We now outline a second proof of the difficult half of Theorem
3. Suppose that (g, f) is a maximal pair of functions, for the in-
ternal pair of indices (p, q). Let gr = \g\3p/4 sgng, and / ' = \f\3q/i sgn/;
then the maximum modulus theorem can be used, as in [13, pp.
295-296] to show that the pair of functions (gf, /') is maximal for
the pair of indices (4/3, 4/3). By Young's argument, as in the proof
of Theorem 1, the functions / ' and (g')* are both maximal in L4/3(G).
Now Theorem 4 is already known [13]; so, we can use it to conclude
that there exist subcharacters χ and φ such that (g')* is equivalent
to χ, and / ' is equivalent to ψ. Then the pairs (g'9 /') and (χ, ψ)
are equivalent; hence so are the pairs (g, f) and (χ, φ). Let H and
K be the support groups for χ and φ respectively; then the pair of
functions (1H, lκ) is maximal for the indices (4/3, 4/3). Consider the
proof, in § 2, of Young's inequality for convolution in this case.
The second application of the Schwarz inequality there must be sharp
for almost all x in the support of ljj*lx; hence, for such x, the
function s(x)lκ must be a constant multiple of 1H. This means that
the subgroups H and K coincide. This fact implies that if χ Φ φ,
then χ * φ = 0. Hence the only way for the pair (χ, φ) to be maximal
is for the two characters to coincide. Thus the pairs (g, f) and (χ, χ)
are equivalent.

Theorems 3 and 4 suggest the following questions.
1. Is it true for all unimodular groups G and all indices p in

the interval (1, 2) that there exist functions / in LP(G) such that

(19) 11̂ /11̂  = 6,(^)11/11,^0?

2. Is it also true that, for each internal pair of indices (p, q),
there exist functions g and / such that

(20) 0 < | |<7*/| | , - c

3. For what functions do relations (19) and (20) hold?
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The results in this section provide answers to these questions
when bp(G) = cP}q(G) = 1, that is, when G has a compact, open sub-
group. It is known [2, 3] that the first two questions also have
affirmative answers when G = Rn. It is also known, when G = Rn,
that relation (20) holds if and only if the functions g and / are
both obtained from a gaussian function h and a character χ by
translating the product χ h, and multiplying it by a nonzero con-
stant [3, Theorem 13]. This in turn leads to the same characteriza-
tion of the functions for which relation (19) holds, in the special
case where G = Rn, and p' is even.
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