THE R-BOREL STRUCTURE ON A CHOQUET SIMPLEX

R. R. SMITH

The R-Borel structure on a Choquet simplex K is studied. It is shown that the central decomposition and maximal measures coincide, and this is used to improve the wellknown theorem that maximal measures are pseudo-concentrated on the extreme boundary.

1. Introduction. Let K denote a compact convex subset of a locally convex Hausdorff topological vector space, and denote by $A^b(K)$ the Banach space of bounded real valued affine functions on K. The symbols A(K), $A(K)^m$, and $A(K)_m$ denote respectively the sets of continuous, lower semi-continuous and upper semi-continuous functions in $A^b(K)$. Set $S(K) = A(K)^m + A(K)_m$, and let $S(K)^{\mu}$ be the smallest subset of $A^b(K)$ containing S(K) and closed under the formation of pointwise limits of uniformly bounded monotone sequences. $S(K)^{\mu}$ is a Banach space, the following properties of which were obtained in [6].

THEOREM 1.1. Consider $a \in S(K)^{\mu}$. (i) $||a|| = ||a| \partial_{e}K||$. (ii) $a \ge 0$ if and only if $a|\partial_{e}K \ge 0$.

 $S(K)^{\mu}$ is an order unit space and thus possesses a centre $Z(S(K)^{\mu})$ defined in terms of order bounded operators [2]. However a more convenient formulation was obtained in [6]: $z \in S(K)^{\mu}$ is said to be a central element if and only if to each $a \in S(K)^{\mu}$ there corresponds $b \in S(K)^{\mu}$ satisfying b(x) = a(x)z(x) for all $x \in \partial_{e}K$. $Z(S(K)^{\mu})$ is then seen to be an algebra and a lattice with operations defined pointwise on $\partial_{e}K$.

Let π^s be the map which restricts elements of $S(K)^{\mu}$ to functions on $\partial_e K$. The following representation of $Z(S(K)^{\mu})$ as an algebra of measurable functions on $\partial_e K$ was proved in [6]. The statement has been modified slightly to suit the purpose of this note.

THEOREM 1.2. There exists a σ -algebra \mathscr{R} of subsets of $\partial_{\mathfrak{e}}K$ such that π^s is an isometric algebraic isomorphism from $Z(S(K)^{\mu})$ onto the algebra $F(\partial_{\mathfrak{e}}K, \mathscr{R})$ of bounded \mathscr{R} -measurable functions on $\partial_{\mathfrak{e}}K$. There exists a unique affine map $x \to \mathcal{V}_x$ from K into the set of probability measures on \mathscr{R} satisfying, for $z \in Z(S(K)^{\mu})$,

$$z(x) = \int_{{}^{\vartheta} e^K} \pi^s(z) d oldsymbol{
u}_x$$
 .

The σ -algebra \mathscr{R} is termed the *R*-Borel structure on $\partial_{e}K$, while the measures ν_{x} constitute the central representation of points of K with respect to $Z(S(K)^{\mu})$.

When K is a simplex, $S(K)^{\mu}$ is a lattice [5], and hence equal to its centre [2]. In this case \mathscr{R} is large, and it is the purpose of this note to investigate further the R-Borel structure in this special situation. In particular the central decomposition measures ν_x are related to the unique maximal representing measures μ_x , and an extension is obtained of the well-known theorem that maximal representing measures vanish on every Baire set disjoint from $\partial_e K$.

[4] contains further information on Borel structures on compact convex sets, while [2] is the standard reference for convexity theory.

2. The main theorems. For the remainder of this note K is assumed to be a simplex. $S(K)^{\mu}$ is a lattice [5], and it follows, by the methods of [1], that the lattice operations are given, for $f, g \in S(K)^{\mu}, x \in K$, by

$$f orall g(x) = \int_{\kappa} f \lor g d\mu_x$$
 $f
ightarrow g(x) = \int_{\kappa} f \land g d\mu_x$.

Let \mathscr{B}_0 and \mathscr{B} denote the Baire and Borel structures on K respectively, and let their restrictions to $\partial_e K$ be denoted by $\overline{\mathscr{B}}_0$ and $\overline{\mathscr{B}}$.

THEOREM 2.1. $\overline{\mathscr{B}}_{0} \subset \mathscr{R} \subset \overline{\mathscr{B}}_{\bullet}$.

Proof. The second inclusion is clear since every function in $S(K)^{\mu}$ is Borel measurable.

Let E be an arbitrary compact G_{δ} subset of K. Then there exists a uniformly bounded decreasing sequence of continuous functions $(f_n)_{n=1}^{\infty}$ with pointwise limit χ_E . By [2, II.3.14] and Theorem 1.1, there exists a uniformly bounded decreasing sequence $(g_n)_{n=1}^{\infty}$ from $S(K)^{\mu}$ such that f_n and g_n agree on $\partial_e K$. This sequence has pointwise limit $g \in S(K)^{\mu}$, and clearly χ_E and g agree on $\partial_e K$. Hence $E \cap \partial_e K =$ $g^{-1}(1) \cap \partial_e K \in \mathscr{R}$.

It is now clear that \mathscr{R} contains $\overline{\mathscr{B}}_0$.

LEMMA 2.2. Let f and g be nonnegative functions in $S(K)^{\mu}$ such that $f^{-1}(0) \cap \partial_{e}K = g^{-1}(0) \cap \partial_{e}K$. Then $f^{-1}(0) = g^{-1}(0)$.

Proof. Let $E = f^{-1}(0) \cap \partial_e K$. Then $E \in \mathscr{R}$, and so let h be the

unique element of $S(K)^{\mu}$ with the property that

$$E=h^{\scriptscriptstyle -1}(0)\cap \partial_{e}K$$
 , $E^{\scriptscriptstyle c}=h^{\scriptscriptstyle -1}(1)\cap \partial_{e}K$.

For $n \ge 1$, $E_n = \{x \in \partial_e K : f(x) \ge 1/n\}$ is an element of \mathscr{R} . Let $h_n \in S(K)^{\mu}$ be the corresponding function for which

$$E_n=h_n^{\scriptscriptstyle -1}(1)\cap \partial_e K$$
 , $E_n^c=h_n^{\scriptscriptstyle -1}(0)\cap \partial_e K$.

By Theorem 1.1, $(h_n)_{n=1}^{\infty}$ is a uniformly bounded increasing sequence from $S(K)^{\mu}$ with pointwise limit h. Hence $h^{-1}(0) = \bigcap_{n=1}^{\infty} h_n^{-1}(0)$. Now for each $n \ge 1$, $nf \ge h_n$, and thus $f^{-1}(0)$ is contained in $h_n^{-1}(0)$. It follows that $f^{-1}(0)$ is contained in $h^{-1}(0)$. Conversely, $f \le ||f||h$ and so $h^{-1}(0)$ is contained in $f^{-1}(0)$.

In conclusion $f^{-1}(0) = h^{-1}(0)$, and the fact that $g^{-1}(0) = h^{-1}(0)$ is established by the same reasoning.

COROLLARY 2.3. If $f \in S(K)^{\mu}$ attains its lower bound then it does so at an extreme point.

Proof. It may be assumed that $f \ge 0$ and that $f^{-1}(0)$ is nonempty. To derive a contradiction, suppose that $f^{-1}(0)$ does not contain an extreme point. Now apply Lemma 2.2 to the functions f and $\mathbf{1}_{\kappa}$.

Let \mathscr{S} denote the smallest σ -algebra of subsets of K with respect to which every function in $S(K)^{\mu}$ is measurable. [2, I.1.1, I.1.3] together imply that every continuous function is \mathscr{S} -measurable. Since every function in $S(K)^{\mu}$ is Borel measurable, it follows that

 $\mathscr{B}_0 \subset \mathscr{G} \subset \mathscr{B}$.

The following theorem relates the maximal representing measures to the central decomposition measures.

THEOREM 2.4. For each $x \in K$ the maximal representing measure μ_x may be restricted to a measure $\overline{\mu}_x$ on $\mathscr{S} \cap \partial_e K$. $\mathscr{S} \cap \partial_e K = \mathscr{R}$ and $\overline{\mu}_x = \nu_x$.

Proof. Define an equivalence relation on the algebra of bounded Borel measurable functions on K by setting $f \sim g$ if and only if, for all $x \in K$,

$$\int_{\kappa} |f-g| \, d\mu_x = 0$$
 .

If $f, g \in S(K)^{\mu}$ then the relations

$$f arphi g \sim f \lor g$$
, $f \land g \sim f \land g$

are an easy consequence of the fact that functions in $S(K)^{\mu}$ satisfy the barycentric calculus (see [2]).

Let \mathscr{H} be the set of Borel sets E for which there exists $h \in S(K)^{\mu}$ such that $\chi_E \sim h$. The proof now proceeds in several stages.

(i) Suppose that $E, F \in \mathscr{H}$ with associated functions $f, g \in S(K)^{\mu}$ respectively. Then

$$\chi_{{\scriptscriptstyle E}\,\cap\,{\scriptscriptstyle F}} = \chi_{\scriptscriptstyle E}\,\wedge\,\chi_{\scriptscriptstyle F}\,{\sim}\,f\,\wedge\,g\,{\sim}\,f\,\,\&\,g\in{
m S}(K)^{\mu}$$

and

$$\chi_{\scriptscriptstyle E^{\,c}} = 1_{\scriptscriptstyle E} - \chi_{\scriptscriptstyle F} \sim 1_{\scriptscriptstyle K} - f \in S(K)^{\scriptscriptstyle \mu}$$
 .

Hence $E \cap F$ and E^{e} are members of \mathcal{H} .

Suppose that $(E_n)_{n=1}^{\infty}$ is an increasing sequence from \mathscr{H} with associated sequence $(h_n)_{n=1}^{\infty}$ from $S(K)^{\mu}$. Theorem 1.1 implies that the latter sequence is uniformly bounded and increasing with pointwise limit $h \in S(K)^{\mu}$. Let $E = \bigcup_{n=1}^{\infty} E_n$. Then the dominated convergence theorem implies that $\chi_E \sim h$. Since $K \in \mathscr{H}$, it follows that \mathscr{H} is a σ -algebra.

(ii) Suppose that f is a nonnegative element of $S(K)^{\mu}$, and write $E = f^{-1}(0)$. Then $E \cap \partial_{e}K \in \mathscr{R}$, and there exists a unique element $g \in S(K)^{\mu}$ such that

$$g^{- ext{-1}}(1)\cap \partial_{e}K=E\cap \partial_{e}K$$
 , $g^{- ext{-1}}(0)\cap \partial_{e}K=E^{e}\cap \partial_{e}K$.

By Lemma 2.2, $E = g^{-1}(1)$ and hence $g \ge \chi_E$. If $x \in E$ then

$$\int_{\kappa} (1_{\kappa} - g) d\mu_x = 1 - g(x) = 0.$$

 $g \leq 1_{\kappa}$ and thus μ_x is supported by $g^{-1}(1)$. Hence $\mu_x(E) = 1$. Similar arguments applied to 1_{κ} and $1_{\kappa} - g$ yield $\mu_x(E) = 0$ for $x \in g^{-1}(0)$. $g^{-1}(0)$ and $g^{-1}(1)$ are complementary split faces [1, 3]. Each $x \in K$ then has decomposition g(x)y + (1 - g(x))z where $y \in g^{-1}(1)$, and $z \in g^{-1}(0)$, and

$$\int_{K} \chi_{E} d\mu_{x} = \mu_{x}(E) = g(x)\mu_{y}(E) + (1 - g(x))\mu_{z}(E) = g(x) = \int_{K} g(x)d\mu_{x} .$$

Since $g \ge \chi_E$ it follows that $\chi_E \sim g$ and $E \in \mathscr{H}$.

(iii) Suppose $f \in S(K)^{\mu}$ and $\alpha \in \mathbf{R}$. Write $g = f \wedge \alpha \mathbf{1}_{K}$ and $h = f \otimes \alpha \mathbf{1}_{K}$, and denote $g^{-1}(\alpha)$ and $h^{-1}(\alpha)$ by G and H respectively. For $x \in K$,

$$\int_{K} (g-h) d\mu_x = 0$$
.

 $g \ge h$ and thus the set on which g > h has μ_x -measure zero. This

224

set contains $G \setminus H$, hence $\mu_x(G) = \mu_x(H)$, and it follows that $\chi_H \sim \chi_G$. However by (ii), $H \in \mathscr{H}$, and therefore $G \in \mathscr{H}$.

 $G = \{x \in K: f(x) \ge \alpha\}$ and, since f and α were arbitrary, every function in $S(K)^{\mu}$ is \mathscr{H} -measurable.

(iv) Suppose that $E \in \mathscr{H}$ and that E is disjoint from $\partial_{e}K$. If $\chi_{E} \sim h \in S(K)^{\mu}$ then $h | \partial_{e}K = 0$. By Theorem 1.1 h = 0, and, for all $x \in K$, $\mu_{x}(E) = 0$.

(v) From (iii), \mathscr{H} contains \mathscr{S} , and it is not difficult to show that $\mathscr{S} \cap \partial_e K = \mathscr{R}$. Thus, by the methods of [2, I.4.13, I.4.14], each μ_x may be restricted to a measure $\overline{\mu}_x$ on \mathscr{R} satisfying, for $f \in S(K)^n$,

$$f(x) = \int_{\vartheta_{e^{K}}} f d\bar{\mu}_{x}$$
 .

The uniqueness of the central decomposition measures (Theorem 1.2) now implies that, for each $x \in K$, $\overline{\mu}_x = \nu_x$. The proof is complete.

REMARKS. (i) Since $\mathscr{B}_0 \subset \mathscr{G} \subset \mathscr{G}$, it is clear that Theorem 2.4 extends the result that maximal measures are pseudo-concentrated on $\partial_e K$. For a nonmetrizable Bauer simplex it is clear that \mathscr{S} strictly contains \mathscr{B}_0 . On the other hand there exists a simplex K and a maximal measure μ such that $\partial_e K \in \mathscr{B}$ and $\mu(\partial_e K) = 0$. In this case \mathscr{S} and \mathscr{B} cannot be equal. This example is discussed in [2, II.3.17].

(ii) The set of step functions is dense in $F(K, \mathscr{S})$ and hence any \mathscr{S} -measurable function is equivalent to an element of $S(K)^{\mu}$. In particular if $f, g \in S(K)^{\mu}$ then fg is \mathscr{S} -measurable, and there exists $h \in S(K)^{\mu}$ such that $fg \sim h$. Denote the product of f and g in $S(K)^{\mu}$ by $f \circ g$. Then, for $x \in \partial_e K$, $f \circ g(x) = f(x)g(x)$, and thus h and $f \circ g$ agree on $\partial_e K$. It follows from Theorem 1.1 that $h = f \circ g$, and thus, for $x \in K$,

$$f\circ g(x)=\int_{\kappa}fgd\mu_{x}$$
 .

Direct approaches do not seem to yield this formula.

References

^{1.} E. M. Alfsen, Borel structure on a metrizable Choquet simplex and on its extreme boundary, Math. Scand., 19 (1966), 161-171.

^{2.} _____, Compact convex sets and boundary integrals, Ergebnisse der Math., Berlin, Springer, 1971.

^{3.} J. B. Bednar, Facial characterization of simplexes, J. Functional Analysis, 8 (1971), 422-430.

^{4.} C. M. Edwards, Spectral theory for A(X), Math. Ann., 207 (1974), 67-85.

5. U. Krause, Der Satz von Choquet als ein abstrakter Spektralsatz und vice versa, Math. Ann., 184 (1970), 275-296.

6. R. R. Smith, Borel structures on compact convex sets, to appear J. London Math. Soc.

Received February 1, 1977.

Texas A & M University College Station, TX 77843

226