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ON GENERALIZATIONS OF ALTERNATIVE ALGEBRAS

JOYCE LONGMAN

Let A be a noncommutative Jordan algebra in which
(l®> y]> z> «) = 0 for all x, y, z in A. In this paper the result
of Block [4] and Shestakov [13] that a simple finite dimensional
such algebra over a field of characteristic Φ 2 is either alterna-
tive or Jordan is extended to the infinite dimensional case
with idempotent. In the case of a noncommutative Jordan
algebra satisfying the weaker identity ([x, y],y,y)~0 for
all x, y in the algebra, a simple finite dimensional such algebra
is shown to be commutative, alternative, or an algebra of
degree two.

In §2 we consider in the first case, power associative
rings which satisfy (w, x2, z) = x-(w,x,z) and ([x,y]9yfy) =
0, and in the second case, flexible rings satisfying (w, x2

9 z) =
X'(w, x, z) + (a?, x, [w, z\). Under certain conditions the rings
are shown to be noncommutative Jordan or alternative respec-
tively.

Throughout this paper all algebras considered are assumed to
be algebras over a field of characteristic not two and all rings are
assumed to be 2-torsion free (i.e., if 2a = 0 for a in R then a = 0).

1* Nearly alternative algebras* Let A be a nonassociative alge-
bra. As is usual for x,y,z in A we denote the associator (xy)z — x(yz)
by (x, y, z) and the commutator xy — yx by [x, y], A is flexible
if (x, y, x) = 0, alternative if (x, x, y) = (y, x, x) = 0, and noncommu-
tative Jordan if (x, y, x) = (xz, y, x) = 0.

An algebra A is called simple if A is not a zero algebra, and
the only ideals of A are the zero ideal and A itself. In case Aκ =
AφFK is simple for every extension K^F then A over F is called
central simple.

We shall call a noncommutative Jordan algebra A nearly alter-
native if A satisfies the following identity for all x, y, z in A:

(i.i) ([x, vl z,z) = o.

Shestakov [13] called such an algebra "almost alternative." However
we choose not to use that terminology since Albert [2] had previously
called other algebras by the name "almost alternative."

THEOREM 1.1. If A is a simple nearly alternative algebra with
an idempotent e Φ 1 then A is commutative or alternative.
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PROOF. It is shown by Shestakpv [13] that if A is a noncom-
mutative Jordan algebra with idempotent eΦl satisfying ([x, y], z, z) =
0 then A has the following Peirce decomposition:

A. = Ax + A10 + A1/21/2 + AQ1 + Ao ,

where

Ai = {xeA\ex = xe — ix), i = 0,1

and

Afj = \x 6 A\ ex = ia?,- £e = ;?#}, i + j = 1, i, j == 0, —, 1 .
Δ

Shestakov also showed that multiplication of elements of the different
components ist given in the following chart:

"•1/2 1/2 -4-01 A o

A
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^* 01
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-^•1/2 1/2
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A
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A 1 0

A
-ΛLl/2 1/2

0

AA

that B = A10 + AOi + ΆioAo + -4.oi-4.io is an ideal of A, and that xy =
—2/# for any #, 2/ in A o (iφj). Furthermore, if A10 = A01 = 0 then
ajy = yx for all a?, ?/ in A1/21/2.

Before proceeding to the proof of the theorem, we note the
following:

LEMMA 1.1. / / Ai/21/2 = 0 then A is alternative.

Proof. Since A is simple, the ideal B = 0 or B = A. If B = 0,
then A10 = A01 = 0 and A~Aλ + Ao. This implies e = 1, a contradic-
tion. Hence B = A, and Aj = A1(H4.0i> A = -Aoi-̂  io We prove A is
alternative by showing

(1.2) (x, y, z) = ε(σ)(σ(x), σ(y), σ{z))

for all permutations αy with ε(σ) = 1 or --1 respectively for a even
or odd. It suffices to show that (1.2) holds for all possible choices
of x, y, z in the component subspaces. Since A is noncommutative
Jordan, it has been shown by Florey [5] that A satisfies thβ identity

(1.3) (iv, x%, z) — X'(w, x, z)
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for all x, w,z in A where x*y == xy + yx. A linearization of (1.8)
yields

(1.4) (wfx*y, z) = x (wt y, z)"+ y?(w, x, z).

Now suppose xl9 ylr zx e Ax. Since yγ = w10wQli

(Pif yι, «i) = ' ( * « Wlo Woir«i) - Wω CίCi, WOi, «ij. + , WOi?(«i, W10, Sx) = 0 .

Hence (Ax, A19 AJ alternates. We show that the remaining thirty six
associators with Ax in any position alternate.

By the Peirce multiplication chart and flexibility,

== (Ao, Ao, A x ) = (Ao, A l f Ao) = (Ao, Ax, Ai) = (A1 ? A l f A o)

= 0 .

Again from flexibility and the multiplication chart each of the.assp-
ciators(Ai, Alf A10), (A19A0ί, A10), (Aw Ao, A1Q), and (Ao, A1? A01) alternates.

Now suppose xt e Alf yiQ, z10 e A10. Linearizing (1.1) and /the flexible
law (xfy, x) = 0, we obtain

(1.5) ([x, y], z, w) + {[x, y], w, z) = 0

and

(1.6) (x;y,z) + (z,y,x) = 0.

Then

(»1, l/lO, «lθ) = (»1, ί/lO, [β, ΐioϊ) - . O/lO, »» «lθ).:= (̂ 10, «

A l s o - ( z 1 0 , i/10, x x ) = ' -(ί/io,••»!, «!ό) = - ( [ β , 2/1 0], a?!, «10) = (y 1 0 , Sio/ffi) =

—(«i> îo> l/io) by (1.5) and (1.6). This shows (Aίf A10, A10) alternates.
In the same manner (Alf A01, A01) alternates. Therefore every associator
with Ax or in an analogous manner with Ao in any position alternates.

We have reduced the proof to the case in which "xf,yrzeΆtί +
AJif i, j = 0,1, i + j = 1. Again using (1.5) and (1.6),

Vtj, [e, ziS\)

= i([β, «<ilf »<y, »ϋ) ~ K[e, zu], xtJf yiά)

= - i ( % , ̂ y, [e, Vij]) + j(xφ zijf [e, yi3

Also

ta* ^i , »<y) == ί([«f «<il* χih Vu) - i ( [ β , % ] , xi3; Vii)
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Combining these results yields (Aid, Aih Ai5) alternates. The case
x, y e Atj and z e AH is proved in a similar manner. Thus (Aijf Aίh AH)
alternates and the lemma is proved.

We are now in a position to complete our main result. Assume
A is not alternative. By the simplicity of A, the ideal B must be
A or the zero ideal. We found by Lemma 1.1 that B = A implied
A was alternative. Thus we are left with B = 0 from which it
follows that A10 = AQl = 0 and A = Ax.+ AU2U2 + Ao We next observe
that [x, A1/21/2] = 0 for all x in A. For if x e Aif ί = 0,1, y 6 A1/21/2,
then (x, e, y) = — (y, e, x) by flexibility implies (xe)y — x(ey) = —(ye)x +
2/(e#) SO that ## = yx* Shestakov [13] has proved xy = yx for x, y
in A1/21/2.

Next we show that xy = yx for x, yeAi9 i = 0,1. McCrimmon
[8] has shown that Z) = (Aί/2AUz)Q + A1/2 + (Ai/aAi/Ji is an ideal of A
where A is a noncommutative Jordan algebra and A = Ao + A1/2 + Alm

In our case A1/2 = A1/21/2. If D = 0 then AU21/2 = 0 and e = 1, a
contradiction. If D = A then Aj. = (A^aAi/^! and Ao = (Al/2A1/2)o.
Let x, y £ Aίf i = 0,1. Then α? = (uw)if y = (jjt)^ where %, w, 2;, ί 6 A1/2.
In a flexible ring the equation

(1.7) [x-y, z] = α; [̂ , 2;] + [α;, a;]-?/

holds [13]. Thus 2[uw, zt] = [w w, ^ ] = i6 [tc?, a ί] + [u, zt] w. But
^ 6 A t + Ao implies [^, ^ί] = 0 and [u, zt] = 0 since [A1/21/2, A] = 0
Hence 2[uw, zt] = 0 and α?2/ = yx in A*, i = 0,1. A is therefore com-
mutative, and the theorem is proved.

We next consider a noncommutative Jordan algebra A which
satisfies the following identity for all x, y in A:

(1.8) ([a?, »]f y, y) = 0 .

LEMMA 1.2. If A is a noncommutative Jordan algebra which
satisfies (1.8) έftew £fte identity

(x-y, z, w) + (α, 1/, « w) = x (y, z, w) + y-(x, z, w)

+ z-(x, y, w) + w*(x,yy z)

holds in A.

Proof. We use the Teichmϋller identity

(1.10) (x, yz, w) = (a?», «, w) + (x, y, zw) - x(y, z, w) - (a?,

and flexibility to obtain (a?, y z,w) = (a?, ys, w) + (a?, «y, w) = (a?f y«, w) -
(w, zy, x) - {xy, z, w) + (a?, y, zw) — a?(», », w) — (x, y, z)w - (wz, y, x) -
(w, z, yx)+w{z, y, x)+(w, z, y)x=^(x-y, z, w) + (x, y, z-w)~-w-(x, y, z) —
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x*(y, z, w). Next we apply (1.4) to (x, y,z*w) to get y (x, z, w) +
z (#, y, w) = (x y, z, w) + (x, y, z w) = x (y, z,w) + y (x, z, w) +
Z'{x, y, w) + w*(x, y, z) and the lemma is proved.

We now follow a process similar to that of Shestakov [13] to
classify a central simple finite dimensional noncommutative Jordan
algebra satisfying (1.8).

THEOREM 1.2. If A is a simple finite dimensional noncommu-
tative Jordan algebra satisfying identity (1.8) then A is alternative,
commutative, or an algebra of degree two.

Proof. By considering A over its centroid and taking a scalar
extension, we see that it is enough to prove the theorem when the
base field F is algebraically closed. Then by the known classification
of central simple noncommutative Jordan algebras [8] A has one of
the following forms:

(1) A is a Jordan algebra;
(2) A is a quasiassociative algebra, i.e., A is isomorphic to B

as vector spaces, where B is a complete matrix algebra over F,XΦ
1/2 in F, with multiplication (xy)Λ = (x y)B + (1 — λ)(y a?)B;

(3) A is an algebra of degree one or two.

Assume A is not commutative, i.e., Case 1 does not hold. Suppose
Case 2 holds. The identity ([xf y]f y, y) = 0 implies

([%, y]y)v - [«, vW = o

in A. Then

[%, V]A = (XV)A — (VX)A = λ& y + (1 — \)y x — Xy-x — (1 — \)x y

We have in B,

(2λ - l){λ(λ[a?, y]B y + (1 - X)y-]*, »]B) » + (1 - λ)» Iλ[a?, y\B y

α, »]J - λ[aj, ί/]ΰ i/
2 - (1 - X)y2 [x, y]B) = 0 .

This yields (2λ - I)[λ2[^, y]B - y2 + λ(l - λ)» [a?, »]B y + ( 1 - X)Xy [a?, y]B y+
(1 - λ ) V [x, y]B-X[x, y]B y2 - (1 - λ)^/2 [#, y]£] = 0 which becomes
( 2 λ - l ) t λ ( λ - l ) [ x , y]B-y2+(l -λ)(-λ)i/2 [a?, y]B+2x(l~x)y[x, y]B-y]=
0 or (2λ - l)λ(λ - l)[[χ9 y]B-y2 + y*-[x, y]B - 2y[x, y]B-y] = 0. If λ ^
0,1 then [x, y]B y2 + y2-[x, y]B - 2y-[x, y]B y = 0. With the elements
x =z e12, y = eιlt z = e22 from the usual matrix basis we have [ei2, en] el2 +
βL [β12, eu] - 2eu [e1Xf en] e 2 2=0 and (-β12) β22~-2e22 (~e12) e2 2+β2 2 (-β1 2) =
0 implies e12 = 0, a contradiction.
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Kleinfeld and Kokoris [6] have shown there are no simple non-
commutative Jordan algebras of degree one over a field F of charac-
teristic 0. Kokoris has classified the nodal noncommutative Jordan
algebras over a field of characteristic p Φ 2 [7]. Block's proof that
there are no nearly alternative such algebras [4] applies to our case
as well.

2* Generalizations of nearly alternative rings* In this section
we consider rings more general than nearly alternative rings. We
shall call a power associative ring R an F ring if R satisfies the
following identities:

(2.1) (w9 x
2, z) — x (wf x, z)

(2.2) felf],ϊ,ϊ) = 0.

That an F ring is a weaker concept than a nearly alternative
ring is shown by an example due to Anderson [3] of a power associative
algebra satisfying (2.1) and (2.2) which is not flexible; hence not
noncommutative Jordan. We are able to prove, however, that a
flexible F ring is noncommutative Jordan.

LEMMA 2.1. In a flexible F ring the following equations hold:

(x Vf z, w). + fa V, s w) = x-(y, z, w) + y fa'z, w)

+ z fa y9 w) + w fa y, z)

(2.4) [x, (x, x, y)] = 0

(2.5) (x\ y9 x) = x{x9 x, y) - (x9 x, xy) .

Proof. Property (2.3) is proved in Lemma 1.2 using only (2.1)
and flexibility. For property (2.4) we use the Teichmϋller identity
(1.10) twice to get (xy9 z, w) + (x, y, zw) — (x, yz, w) — x(y9 zf w) —
(x, y, z)w = 0 and (wz, y, x) + (w, z, yx) — (w, zy9 x) — w(z9 y, x) —
(w, zy y)x = 0. Add these equations to obtain by flexibility

(xf yΛ*> w]) - (w, [z, y]9 x) + ([x, y], z, w) - [x, (y9 zf"w)\

+ lw,(x,y,w)] = 0 .

Let z = x9 y = x, w = y in (2.6). Then it. follows that (x9x,9 [x9 y]) —

(y, [%, x], x) +••<[#, %], χ,y) - [χ9 fa χ9 y)] + [v9 fa %> χ)\ = o» and
[x, (x9 x9 y)] = 0.

To prove property (2.5), let y — x9 w» = x, z = y in (2.3). Then
(x x,y9x).+' fa x,y-x) — x-fa y, x) + x*fa y, x) -^ y-fax, x)+ &{χ, χ,y)
becomes
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(2.7) 2(x2, y, x) + (d?, x, y-x) - a;-(a?, xf y) = 0 .

But property (2,4) implies #•(#, #, #) == 2#(#, #, y), and (#, #, [a?, y]) = 0
implies (a?, x, xy) = (x, x, yx). Hence (2.7) becomes 2(x2, y, x)+2(x, x, xy) —
2x{x, x, y) = 0. Since R is 2-torsion free, (x2, y, x) = cφ?, a?, #) —
(a?, a?, α y ) .

THEOREM 2.1. A flexible F ring is a noncommutative Jordan
ring.

Proof. Since E is power associative (x, x, # 2 )=0. Partially line-
arize (x, x, x2) = 0 to get

(2.8) (α?,.,α?, xy) + (a?, a?f ya?) + (a;, y, x2) + (y, x, x2) = 0 .

This implies

(2.9) 2(a>, x, xy) + (y, x, x2) - (x\ y, x) ,

Subtracting (2.5) from (2.9) gives 3(», a?, a?y) — a?(a?, «, y) + (y, a?, xz) =
0 or

(2.10) (#2, α, y) = 3(a5, x, xy) — x(x, x, y) .

N o w p r o p e r t y (2.3) w i t h z — y = x,w = y g ives 2(x2

9 x, y) + 2(x, %, xy) =
6x(x, x, y) which becomes

(2.11) (x\ xy y) = 3a?(a?, x, y) - (ays,

Subtracting (2.11) from (2.10) gives ±x(x, x,y) — 4(#, xr xy) = 0 or

(2.12) x(x, x, y) = (a?, x, xy) .

Substitute (2.12) in (2.5) to get (x2, y, x) = 0. The theorem is thus
proved.

We next consider flexible rin*rs which satisfy the identity

(2.13) (w, x\ z) =-,a? (w, x z) + (x, x, [w, z]) .

THEOREM 2.2. If R is a simple flexible ring which satisfies
identity (2.13) and e Φ 1 is an idempotent of R such that (e, e, R) —
0 then R is alternative.

Proof. Since (β, e, i?) = (J2, β, e) = (e, i2, β) = 0, R has Peirce de-
composition into the direct sum --B=JB1. + .,JB10 +,i?Oi + ^o where 72̂  =
{x€jB|ecα = xe = ia?} for i = 0,1, and R^ — {α? 6 i21 βίc = iα?, α e — jx}
for ί, i = 0,1, i Φ j . We first determine the multiplication table.of
the decomposition as
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Eι

0

0

Rio

Rio

Roi

Ro

0

Roi

0

•ffio

•ffoi

Ro

0

-Bio

0

Linearize identity (2.13) to get

(214) ^w* x'y>zϊ = x'(w> v> *) + y(w> x> zϊ + (?' v> iw> ^i)
+ (V, a?, [^, s]) .

Flexib i l i ty clearly implies R^RX = ROίRo == JRO#IO = 0 and .R^iZy £ i ^ ,

ΛiΛii £ i?ϋ for i, i = 0 , 1 , i ^ j . For xl9 y, e # „ fo, y w e) = - ( β , y w x,)

implies fay^ = 0 and ( ^ Λ ) 0 1 = 0 or RLRt QR0 + J81# B u t fo/ifc-tf, β) = '

yi (»w ^ e) + e-(xlf ylf e) + (ylf e, [xlf β]) + (β, ^ , [a?w e]) implies 2(xlf y19 e) =

«•(*» »» β) or 2(xιy1)e - 2x,y, = e [(^yjβ - a ^ J . Hence (^^/Jo = 0

and jBii?! £ i? l e In a similar manner R0R0 Q RQ. Again by flexibility,

(Xι, y<» β) = — (β, y w «i) and x^eR, + Ro. Also (xlf e, y0) = — (y w β,.a?J.

implies a?^ = y ^ . Applying (2.14) yields (xίf β-y0, e) = β (α?w y0, β) +

yo (Xi, e, e) + (e, y0, [ ^ β]) + (»0, e, [»» β]) or e (xl9 y0, e) = 0. This gives

(»i»o)i = 0. Again by (2.14), (yOf e xlf e) = β (y0, a?w e) + xAVo, <>> e) +

(e, x19 [2/0, βj) + (a?!, β, [2/0, e]) which implies 2(#0, *i, e) = e-(y0, xl9;e) or

2(yo^i)β - 2y0x, = β K y ^ β - yo»J. This gives (yo^i)o = (̂ i2/o)o = 0 and

RXRO = J?oi?i = O. Therefore i?0, Rx are orthogonal subrings. Now by

ident i ty (2.14), (β, α?10 e, yίQ) = x10-(e9 e, ylQ) + e-{e, x109 yl0) + (x109 β9 [e9 yί0]) +

ifif »io, K Viol) or a?10y10 - β(a?10ylβ) = β [^10y10 - e(«ioVio)l - ÎOVIO + «ioVio - :

Φ10V10). This becomes α?10y10 = β [α?10y10 - β(aj10y10)] and x10y10eR01. We

have JSloi2iO C ΛOi. Similarly RoιROi £ i21 0. In the case R10R01, apply

(2.14) t o obtain (e, xlo>e, yod=x10'(e9 e9 yoι) + e (e, xm yOί)+(xm e9 [e, y o j) +

(fi, »iw [̂ » 2/oJ) or fooVoi) ~ β(a?10y01) = e [a?10y01 - β(a?ιoyOi)] - 31 0y

This becomes 2(^1 0y0 1) - 2e(a?10y01) = β [αj10y0i - Φ>ioVoi)L and

•Sio Apply (2.14) once more to obtain (e9 yOί e, xlQ) = yol (e, e9 xί0) +

e (e, y01, ^10) + (y01, e, [β, xlo])+(e9 yOi, [e, a?10]) which becomes β (β, y01, ̂ 1 0 ) =

0 since (y01,β,a?10) = - (a?]0, β, y01) = 0. Thus β (a?10, y01, β) = β [(αloVoi)e -»ioVoJ =

0 and (αloyOi)io = 0. I t fol lows t h a t JBIO-BOI £ -Bi and JBOI-BIO £ -Bo I n

a similar manner using flexibility and identity (2.14) the multiplication

chart is verified.

That B = JR10 + i201 + R1QR01 + i2Oi#io is an ideal of R follows from

flexiblity and the multiplicative properties of the subrings. If B =

0, R10 = R01 = 0 and i? = JB0 + 12^' a contradiction. B — R implies

R10R01^Rί9 R0ίR10=R0, and (JB1,JB1>Λ1)=O since (a?i,yx, «!) = (»„ ylo Voi,«i)=;

Vio (»i, Vow Si) + Voi («i, Vioi «i) + (Vio, V01, l«» Sj) + (Vow Viw [̂ i» «il) Or

(«?i, Vi, Si) = -([«?» s j , 2/01, V10) = 0. Similarly (i?0, i?0, Ro) = 0.
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F o r a l ter nat iv i ty, we first consider (Rί9 R109 R10). We observe

t h a t for x10 e i210, (xί0, x10, e) = - ( e , x109 xί0) implies x% = 0 and (xί0 + # 1 0 ) 2 =

0 implies x10y10 = -y10x10- Therefore (x19 yί0, z10) = -(zm yι0, xt) implies

<X2/io)Zio = — (»ioί/io)»i and (a?!, zί09 #1 0) = (x1z10)y10 = - ( # 1 0 Z i 0 K = (z l o # l o )#i =

to, 2/io, Sio). Also (s10, α w y lβ) = - s 1 0 t o # i 0 ) = to#lo)Zio = to, #io, ««) = -

too, #io, »i). Therefore we have to, # 1 0, s10) = - t o o , #io, »i)=(«iof #i, #io) =

-(l/io, #i, «io) = (#io, îo, »i) = - ( ^ i , £io, #io), and (Rlf i?10, Rί0) alternates.

Similarly (R19 R01, R01) alternates.
That all other associators with at least one R± in any position

alternate follows from the chart, flexibility, and (Rly R19 RJ = 0.
Likewise we can see that all associators involving at least one Ro in
any position alternate.

It remains to verify (RiJf Rijf Rti) and (RH, Rij9 Rti) with i, j =
0,1, i Φ j alternate. Letting a?1Of y10, z10 e ^o and applying (2.14) we
obtain (a?10, yl0 e, z1Q) = ^10 (a?10, e, zί0) + e (x10, #10, zί0) + (#10, β, b i 0, «i0]) +
(e, y10, [x10, z10]) which becomes (xίOyίO)zίO - ^ l o ( # l

e [(^io#io)^io - *io(»iΛo)l + 2#10(^i0^io) - 2e[y10(α;1oS1o)] or

2a)io(l/^io) - #io ( * A ) . Since i2 is a direct sum, (

and xlo(ylozlo) = -ylo(a?iO«io). This implies (a?10, z10, #10) = (XifaaVn -

) = -(Zio, ^10, #10). AlSO (y1 0, »10, «10) =

o + »io(»io«io) = -(» iw #10, «io) W e h a v e

(^10, #10, ^10) — (^10, #10, ^10) = : (#10, ^10, ^ 1 0 ) : = (^10, ^10, # 1 0 ) : r r (^10, ^10, #10) = =

(#10, 1̂0, »10). This proves ( β l 0 , i?10, i?10) and similarly (i201, i201, i201)

a l t e r n a t e . Last ly, let a?10, # i 0 € i210, «w 6 i201. I t follows t h a t ( ^ #10, »10)=

V ^lO, #J0, ^01/ = = \ ^10#10/^01 ^ \#10 ^10/^01 = = (#10, *^10, ^01/ = = \^01, *̂ 10, #10/

Also b y (2.14), (β, a?10 «0i, #10) = »io (e, 0̂1, #10) + Soi fo ^10, #10) + too, «oi,

[β, #10]) + (̂ 01, ̂ 10, [β, #10]) w h i c h becomes 0 = sOi tooWio) + too, ^01, #10) +

(̂ 01, #io, #10). B u t z01 tooVio) = 0 s ince x10y10 s R01 and (xί0, z01, y10) =

-(^01, »io, #10). We there fore h a v e (a?10, # 1 0 , z01) = - ( « 0 1 f y l β, «10) =

(#10, Z01, «io) = - t o o , 2oi, #10) = (̂ 01, #io, #10) = -(#10, »io, «oi) ThiS shθWS
that (JBOI, i?io, Λ10) and by a reversal of subscripts that (i210, R01, Roι)
alternate. The theorem is proved.

In the case of a finite dimensional algebra A we can prove the
following:

THEOREM. If A is a simple flexible finite dimensional power
associative algebra over an algebraically closed field F of charac-
teristic Φ2,Z which satisfies (w, cc2, z) — x (w, x, z) + (x, x, [w, z]) and
e Φ 1 is an idempotent of A then A is noncommutative Jordan.

Proof. Oehmke [9,10] has shown that a simple, flexible, stable,
finite dimensional power associative algebra over an algebraically
closed field of characteristic =£2,3 is a noncommutative Jordan algebra.
We show A is stable, i.e., AiA1/2QA1/2 and A1/2AiQAι/2 for i = 0,1.
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Since A is power associative, A == Aι + A1/2 + Ao where A£ —
{x € A\ex + xe .=?. ix}. Also AtA0 — A , ^ = 0, A*A* <E A/ for ί t= 0,1,
Aî At/a £ Ai + Ao, and AiA1/2 £ Ax/2 '+• A^^, A1/2Aί £ A ^ + A^^ ίor
i = 0,1.

By flexibility (e, #1/2, e) ±= 0 implies le(xιne) =:(ex1/2)e, and a?1/2 =
βίCi/a + #i/2β implies e#1/2 = e(ex1/2) + e(xί/2e) br ea?1/8'= eίβa?!^)-^ (exUi)e.
Hence exι/2eAί/2 and α?1/2e6A1/2.

Next we consider AγAm. By identity (2.14), for x fe Ai, 1/ 6 A1/2,
(a?,* y e, e) = v(x, e, e) + e (a, 1/, e) + (y, β, [a?, β]) + (β, y, [x, e]) and
(α;, y, e) — «•(&, »,""e), i.e., (», y, β) e A1/2. We also have (#, e-e, y) =
2(α;, e, y) = 2β (a?, β, y) 4- 2(e, β, [cc, y]\ Therefore (x, e, y\ = (a?, ̂ , y)o = 0
and (x9 e, y) 6 A1/2. Again by (2.14), (e, » e, y) = a? (β, β, y)-+ e (β, x9 y) +
(ίc, e, [e, y]) + (e, #, [e, y]). Since A is a direct sum and (x, e, [e, y]) e
A1/2, it follows that

(2.15) 2(e, x, y\ = [x\(e,r e, y)]Q + (e, x, [e, y]\ .

Apply the Teichmϋller identity (1.10) to get

(2.16) (e, x, ey) = -(ex, e, y) 4- (β-, a?βΓy) + β(a?, e, y) + (β, .a?, e)y,

and

(2.17) (e,x, .ye) = ' —(βa?, y, e) +• (e, £#, e) + β(a?,,y, β) + (β, a?, y)e .

But the Ao components of (2.16) give (β, cc, β2/)0 = (β, #, y)0' and those
of (2.17) give (e, x, ye\ — [(e, x, y)e]0 — 0. Substituting these results
in (2.15) yields 2(β, x, y\ — [a? (e, e, y)]0 + (β, a;, βy)0 — (e, x,ye)0. This
becomes

(2.18) (€, a?, 2/)0 = [x (e, e, ^)]0 .

Now consider [x (e, e, y)]0. As in [4], x*(e, e, y) = αj2/ —• (^, β, y) —
x(?v)''% Ή e> βy) -f e(ya?) + (e, y, x) — e[(βί/)α;] — (e, et/, a?). AH terms on
the right side except the first and third are in A1/2. Therefore

(2.19) [« (e/β,.y)]0 = (xy)o-[x(ey)]Q .

Substitute (2.19) into (2.18) to get

(2.20) (e, x, y% = (xy\ - [x(ey)]0 .

Identity (2.20) : expanded becomes ]xy\*~ [e(xy)]0 ~ (xy% — [x(fiy)]Q.
Since [e(xy)]Q .=. 0 it follows that \x{ey)]0 == 0, and since (x, e, y) e A1/2,
it follows that (xy\ — [x(ey)]0 = 0. We have therefore (xy)0 = 0 or
A^Ayji £ A1/2. Identity (2.20) becomes (e, a?, y)0 = 0 and by flexibility
(y> a?» β)p. ~-p^ Thus |(i/^β}0 •— (yx)w?= 0. This gives JLi/aAi £ A1/2. In
a s h n i l a r iμannei? •.;A^i^S:Λi/2r4i/^..&4i/»,.a!nd .. A is stable. The
theorem is therefore proved.
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