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HALL-HIGMAN TYPE THEOREMS V

T. R. BERGER

This paper sets out the inductive machinery which makes
the computations of other numbers of this sequence useful.
Representation theory is cast in the framework of wreath
products which are then used to study the behavior of regular
orbits and modules under various types of induction. Tensor
induction is defined and studied along with the related con-
cept of form primitivity.

Let AG be a solvable group with normal subgroup G and
nilpotent complement A where (\A\, \G\) = 1. Assume that A: is a
field and that V is a faithful irreducible k [AG]-module. This series
considers the following two questions.

(1) If k ~ GF(r) for a prime r, then when (Joes the permuta-
tion representation of A on F# contain a regular orbit?

(2) If i? <̂  G is a normal extraspecial r-subgroup of AG where
Z(R) ^ Z(AG), CA{R) = 1, and R/Z(R) is an AG-ehief factor, then
when does V\A contain a regular k [A]-module?

This paper sets up the inductive machinery needed to study
these two questions. The actual method whose tools are described
in this paper is given in [12]. The introductions to [1, 3, 4, 5, 8, 10]
describe various aspects of this method. In its purest form, the
method is applied in [9]. Various other applications occur in [2, 7,
11, 13, 19].

In § 2, the relevant inductive schemes are defined in the suitably
computational framework of wreath products. In § 3, these induc-
tive schemes are studied for wreath products to determine when
regular orbits (modules) induce to regular orbits (modules). Section
4 translates the results on wreath products into the terms of general
representation theory.

Two methods of induction play important roles; namely, usual
group theoretic induction, and tensor induction (Definition (2.6)).
The method of tensor induction is applicable, but not directly, to
the study of primitive linear groups which contain normal extra-
special subgroups. Section 5 is devoted to the method by which
tensor induction is applied to a general primitive linear group having
a normal extraspecial subgroup (Theorem (5.18)). Solvability is as-
sumed but is not entirely necessary for this analysis.

If R is a normal extraspecial subgroup of a group G where
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Z(R) ^ Z(G) and R/Z(R) is a chief factor of G then obtaining the
main hypothesis of § 5 reduces to the "form invariant" induction
structure of the G-module R = R/Z(R) where R is endowed with a
nonsingular symplectic form g fixed by the action of G [20, Satz
13.7]. The module R will be "form invariantly" induced from a
"form primitive" submodule. Without any solvability hypotheses,
§ 7 defines and derives the major properties about form induction.
Similarly, § 6 derives the effect of ground field extensions on forms
(Theorem (6.7). There are two obvious situations which can occur
for a "form primitive" module. Theorem (7.9) shows that a third
situation can also occur. Section 8 is devoted to a translation of
this third case into the first two cases, by altering the group, the
form, and the module in a fixed reversible way. (Theorems (6.7),
(8.10), (8.13), and Proposition (8.18).)
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to further improvements. The present definition of minimal module
was given by L. Kovacs and is equivalent to others given in this
series. I am grateful to the many who have contributed to the
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1* Preliminary remarks* All groups considered in this paper
are assumed to be finite and solvable. The notation is standard and
conforms to that used in other papers of this sequence [3-8].

We state below two useful results with proofs sketched.

(1.1) PROPOSITION. Assume that k is a field, G is a group, and
V is a faithful k \G\-module. Suppose that V = V10 Vz 0 0 Vt

where the Vt are k [G]-submodules, and set Gt = ker Vt. If G/Gt

permutes the elements of Vt with at least s regular orbits for
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1 ^ i ^ t then G permutes the elements of V with at least s* regular
orbits.

Let vu,- -,vis generate s distinct Cr/Grregular orbits on Vt.
Then for all choices of indices iί9 , it ^ s, the vectors vUl + v2i2 +
• + vHt all generate distinct regular G-orbits on V.

(1.2) PROPOSITION. Assume that k is a field, G is a group, and
V is a faithful k[G]-module. Suppose that V = VΊ® (x) Vt

where the Vt are k[G\-modules and set Gt = ker F*. // a direct
sum decomposition of Vt contains at least s copies of the regular
k [G/Gi]-module for 1 <; i <; t then a direct sum decomposition of
V contains at least s* copies of the regular k [G]-module.

We may choose vectors vilf •• , ^ s e 7 i so that the set
j S s, he G/Gi} is linearly independent, and therefore, the vi3 generate
distinct independent regular Ar[G/GJ-modules. For all choices of
indices ilf , it ^ s, the vectors vUι ® v2i2 (x) ®vttt all generate
distinct independent regular &[G]-modules. Since the regular k[G]~
module is injective [14, (62.1) (58.6)], the proposition follows.

The following result on unitary forms will be useful.

(1.3) PROPOSITION. Assume that K is a field, v is an automor-
phism of order two on K, and F is the fixed field of v in K.
Suppose that V is a vector space over K, f is a nonsingular
unitary form on V with automorphism v, g — τμf where 0 Φ μ 6 K
and τ: K-* F is the trace. If char K Φ 2, 0 Φ a) eK satisfies
ωv = —ω, and V= W + ωW where W is a totally isotropic F-
subspace of V for g then for u, v 6 V

f(u, v) = (2μ)-1g(u, v) + (2μω)-1g(ωu, v) .

We may write u = ux + cou2 and v = v1 + cov2 where uif v3- e W.
Now g(ωu2, ωv2) = μf(ωu2, ωv2) + μvf(ωu2, ωv2)

u = -o)2[μf(u2, v2) +
μvf(u2, v2y] = —ω2g(u2, v2) = 0 so that ωW is totally isotropic. Con-
tinuing,

g(ωu2, v,) = μf(ωu2, v,) + μvf(ωu2, vγ)
v

= -W(u» ωv,) + μvf(u2, ωvtf]
= -9(u2, ωv,) .

Further,

0 = g(ulf vx) = μf(uί9 vx) + μuf(ulf vtf

so that

l9 v,) = -μrf(u19 v,Y .
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From this we obtain

g(ωu2, v,) = μf(ωu2, v,) + μvf(ωu2, v,f

= ωμf(u2, vx) + ω(-μ»f(u2f vxy)

= 2ωμf(u2, v,) ,

Gomputing

(2μ)~1g(u1 + ωu2, vλ + ωv2) + (2μω)~1g(ωuι + ω2u2, vγ + ωv2)

= (2μ)"ι[g(ul9 ωv2) + g(ωu2f v,)] + {2μω)-ι[g{ω^, v,) + ω2g(u2, ωv2)]

g(ωu2, v,)] + (2μω)-ι[g(ωuu v,) - ω2g(ωu2, v2)]

Vj)] + [f(u19 v,) - ft)2/(^2, v2)]

v^] + [/(ww v j + f(ωu2, ωv2)]

(ov2)

completing the proof.
The following form of Frobenius Reciprocity seems to be well

known.

(1.4) PROPOSITION. (Frobenius Reciprocity). Suppose that k is
a field, G is a group with a subgroup H, V is a k[G]-module, and
U is a k[H\-module. Then as k-vector spaces:

](ff, V\B) ~ HoiWZ7| β, F) ,

and

(2) H o π W F U , U) ~ Hom r o ](F, U\G) .

The proofs of (1) and (2) are similar. We sketch only the proof
of (1). Let xt = 1, x2, , xt be a transversal of H in G, so that
U\σ = Σ^x.^U. Let Φ be the mapping of Ή.omkί(n(U\σ, V) to
Homfc(ί7, V\H) determined by

where ^eHom^ίJI^ F) and ueU. Let f be the mapping of
Ή.omkίm(U, V\H) to Ή.omk(U\G, V) determined by

where ψ e Ή.omkίin(U, V\H) and ut e ?7. It is straightforward to verify
that Φ and Ψ are the inverse Λ-linear isomorphisms needed to prove
(1).

(1.5) COROLLARY. Suppose that k is a field, G is a group with
normal subgroup N, and V is an irreducible k[G]-module for which
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V\N == V1 + * 4- Vt where the F* are homogeneous components. If
H is the stabilizer in G of V1 then restriction to Vx is an isomor-
phism of Ή.orύkίGi(V) V) onto Hom^j^Fi, VΊ).

By Schur's lemma k = HomΛ[t?3(F, V) is a division ring* Note
also that any nonzero element of A: induces a ArfiSΠ-isomorphism of
Vx into F. Since FL is a homogeneous coihpohent, k stabilizes Vx.
Restriction obviously induces an isomorphism of k into k =
HomjkfHiίF^ Fx) since A: is a division ring. Since ΈLomki^iVΊ, V) =
Έίomhίin(V19 Vx) as A:-vector spaces, k = Hom^^F! , F) as A:-vector
spaces. By Clifford's theorems Vt \G(ίίoίn £Γ) ~ F so by Frobenius
Reciprocity k and A: have the same dimension over k. We conclude
that the Restriction map iδ onto Λ proving the coroMry.

(1.6) PROPOSITION. Assume that k is a field, G is a group with
normal subgroup H, and V is a k[G]-module. If C — HomΛ[ff](F, F)
then G acts naturally as automorphisms of C by

azv = z~ιazv

where zeG, aeC, and ve F.

It suffices to show that if aeC and zeG then az eC. Ac-
cordingly, let x 6 H and v e V so that azxv = z~ιazxv = z~ιc

)azv = xazv completing the proof.

(1.7) PROPOSITION. Assume that k is a finite field of odd char-
acteristic, G is a group with subgroup H of index 2, and V is a
k[G]-module for which V\H is irreducible. Let Jbe the 1-dimensional
faithful k[G/H]-modύle, k = Homfc[β](F, F), and A;=Hom*OT(F, V).
Then V(g)kJ=V if and only if kφk. IfϊcΦk then [k: ίc] = 2
and x e G\H acts upon k as an automorphism of order 2.

Let v e F and define z v = zv if z 6 H or —zv if z e G\ίί. This
makes F into a A;[G]-module isomorphic to F ®*«/. Assume that
V(g)kJ^ V. Thus there is a A:-isomorphism ^ of F to F such that
iί zeG then s t; = φ^zφv for v 6 F . In particular, zv = z-v = φ~ιzφv
for z e £Γ so that ^ e Λ. If a; e G\£Γ then x2 eH so that α; operates
on 1c as an automorphism of order 1 or 2. Now φ~ιxφv = x v — — xv
for v eV so that φz = α;~V^ = — Φ proving that a; acts with order 2
and kΦk (since clearly A: <̂  A:).

Assume now that k Φ k. By [14, (29.13)] F is an absolutely ir-
reducible fe[G]-module and an absolutely irreducible A [iϊ]-module.
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Let V — Λ®i V, so that V is an absolutely irreducible £[G]-module.
The mapping given by a (g) v H-> av defines a Λ[iί]-homomorphism of
V onto V. But dim* V — dims V — [k: k] dims V so that the kernel
of this homomorphism is a proper &[iϊ]-submodule of V. Con-
sequently, V\H is reducible. Since [G: H] = 2 and F|# is a sum of
absolutely irreducible constituents, F | f f is the sum of two such
irreducibles of equal dimension, one being V as a Λ;[jSΓ]-module.
Thus [A:: ίc] = 2. By (1.5) G acts as automorphisms of k. Since k^k,
if <? acts trivially, k — k. Therefore G acts as G/H, a group of
order 2.

Choose o)6 i and xeG\H so that ωx Φ ω. Set μ = α> — α> so
that /** = — μ Φ 0. If ^6G then z v = jM-1^̂  for veV so that μ
induces an isomorphism of V with usual action to V with •- action
proving that V = F ®fe J. The proof is complete.

(1.8) PROPOSITION. Suppose that k is a field; G is a group; and
Vt and V2 are completely reducible nonisomorphic k[G]-modules.
Assume that H is normal in G; G/H is a four group; Slf S2, S3 are
the maximal subgroups of G containing H; and V^s. = V2\Si for
i = 1, 2. Then V^m Vt\Sz.

Let χu χ2 be the Brauer (or complex) characters of Vl9 V2 re-
spectively. If char k = p > 0 we consider only p-regular elements
z of G. The modules we are considering are completely reducible
in any finite extension field of k [14, 69.9] so that the modules are
determined up to isomorphism by their Brauer characters [14, (82.7),
(29.11)]. By hypothesis, χ1 Φ χ2 so that for some zeG, χt(z) Φ χ2(z).
Since χ j ^ = χ2\Si for i = 1, 2, z g S, U S2. Since S^ H and G/iϊ is
a four group, zeSs. Thus χ j ^ ^ χ2(S3 proving the proposition.

(1.9) PROPOSITION. Assume that k is a field, v is an automor-
phism of k of finite order, and k is the fixed field of v. Assume
that G is a group, V is a k[G\-module with ίc-basis {vίf , vt). For
Σ a%vi sV, ateic set v Σ aivi — Σ a^i* Make V into a k[G]-module
vV by letting x e ίc[G] act upon v e V as v~ι (xv) v. Then V = vV
as k[G]-modules.

Choose ωlf , o)8 as a A -basis for k. Then & = {(ύ&j \ 1 ^ i ^ s,
1 ^ JI ^ ί} is a ft-basis for V. Now y induces a fc-linear transforma-
tion P of the Λ-space V. If T(x) is the representation of xeG in
the basis ^ then v"1 (α y) v = v~ιT{x)vv for v e 7 . In particular,
the representation f(x) — v~1T(x)v of k[G] on v 7 is similar to T(x)
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on V proving the proposition.

2* The wreath product and representation theory*

(2.1) HYPOTHESIS. Let k be a field, G a group, H a subgroup,
U a k[H]-module, and i ϊ* a normal subgroup of H contained in
ker U.

We map G homomorphically into a wreath product G. We then
prove that A:[G]-modules induced from H extend naturally to k[G]~
modules induced from an appropriate subgroup of G.

A* The Frobenius embedding* We fix the following notation:
a factor group Ho = H/H*; a transversal J7~ — {1 = xlf , xn) for
H in G; and a set of integers Ω = {1, 2, , n}. Consider the homo-
morphism of G into Sn given by the action of G on the cosets of
H. That is, if xeG and a? —+ x where x is the image of x in Sn

then x is defined by the equalities

xXi H = %ii

where #(i) = j . We let G be the image of G in Sn. The wreath
product of iϊ0 by G (G = Ho ~ G) is defined to be the semidirect
product of H$ by G where ff? = {/: Ω~>H0\f a function} is the
group given by pointwise multiplication (i.e., H$ is the direct product
of n copies of Ho), and where the action of xeG upon feH$ is given

by f\i) = f{x{ϊ))
For xeG set

(2.2) fx(i) - x^xXiH+eHo where x(i) = i

and set

(2.3) Φ(a?) = xfxeG = H0~G .

(2.4) PROPOSITION. (Frobenius Homomorphism). Φ:G—>G is a
homomorphism with kernel Γ[ H*x (over xeG).

The proof is a straightforward computation using (2.2) and (2.3).
The proof is given in both [20, Satz 15.9] and [23, IΠ.δ.k] for the
case where i ϊ* = 1 and H is normal in G. Dropping these additional
hypotheses on H does not alter the proof.

The homomorphism Φ has the following useful conjugacy property.

(2.5) PROPOSITION. Suppose that J7~' is a transversal for H in
G with elements x\ — xthi where /̂  e H. If f'x(x e G) and Φ' are
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defined by (2.2) and (2.3) respectively for the transversal ^~' then

Φ'(x) = f-'Φ{x)f{x e G)

where feH% is defined by f(i) = hiβ

Let xeG so t h a t

f-^Φ{x)f = xf~*fj.

Evaluating at i and letting j = x(i),

f-*fj{ϊ) = hfxΐxxAH*

- rfj-'xx'iH*

proving the proposition.

B* Induced modules* For each integer i — 1, 2, , w consider
the Λ^iJa Γ'l-submodule α?< (x) ?7 of λ:[G] (x) £7 where tensoring is over
k[H], The direct sum of the modules xi (g) £7 is just the induced
module U\G — k[G]®U. We may also obtain a module by tensoring
(over &) the modules xt (x) U. This latter process gives a A:[G]-module
under more general hypotheses.

Instead of assuming that U is a AfίfJ-module of the usual kind,
we assume that U is a protective k[H]-modulef that is, there is a
factor set a: H x H—>k such that if h, hr eH and ^ 6 C7 then

) = α(Λ, h'){hh')u.

REMARKS. (1) If the factor set a of the protective module U
is 1, then U is a module in the usual sense. To emphasize this fact,
we will call such a module nonprojective.

(2) Since the protective and injective modules of general module
theory play no role here, there will be no confusion in this usage.
Strictly speaking, U is a module affording a protective representa-
tion of H with factor set a [14, § 51].

(2.6) DEFINITION. Set U \®G=(x, ® U) ® (x2 (g) U) (g) - ® (xn (g) U)
where tensoring between â  (g) £Γs is over k. We call U\®G the
tensor induced module.

There are two tensor signs used here, one over k[H] and one
over k. The positions of these signs make clear which tensor symbol
is meant, and therefore, we omit future reference to distinctions
between the two types.
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REMARK. In early versions of this paper and in some of the
author's papers, the cumbersome notation UG was used in place of
UfG.

(2.7) PROPOSITION, If U is a projective k[H]-module with if* <̂
ker U and factor set a then U\®G is a projective k[G]-modv,le with
multiplication given by

χ [(#i ® Mi) (x) (x) (xn (g) un)]

where xeG, UiβU, and wά = fx(i)Ui when j — x{i), and factor set
β given by

to y) = II
ί=l

where x, y sG.

Since if* is in the kernel of U, U is naturally a projective
Ar[£Γ0]-module. Let C7fl = U x x U (n copies) and define the
m a p p i n g mx: UΩ-*U\®G f o r xeG b y

mx(uίf , nn) = to (g) wA) (g) <g) (a?n ® wΛ)

where %€ and wy are as in the proposition. It is easy to verify that
mx is a balanced mapping linear in each variable [14, (12.3)]. If
c: UΩ —* U\®G is the mapping sending (uί9 , un) to to (g) wj ® (g)
(a?w®^%), then there is a unique linear transformation a? of U\®G

(whose restriction to tensors is given in the proposition) making the
diagram commutative.

I

To show that C7|®σ is a projective Λ[(τ]-module with factor set β we
compute the composition of x,yeG on Z7|®G.

w = x (y [(»! ® wθ (g) ® (»„ ® «„)])

where i = ^ ( ί ) , ft - sr^i), and Z = ^ - ' ( ί ) . But fm(h)f,(l)ut = α(/.(fc)f

fv(l))f,v(l) so that
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= [Π «(/.(*), Λ(i))][(*y) I P (»* (8) MO],

since k and £ run through 1, 2, , w as i does, and since k =
we have

Π «(/.(*), /*(«)) = Π α(/.(»(l)G Λ(0) = £(», y) .

We have proven that if zeG induces a linear transformation Tz on
U\®G then TβT f = T ^ α , y) proving the proposition.

Two properties of tensor induction are mentioned here without
proof. They are analogous to properties of ordinary induction. First,
recall the definition of equivalent projective representations. Stated
for modules: two projective λ:[G]-modules V and W are equivalent
if there is a crossed homomorphism Ύ:G—*k and a vector space
isomorphism φ: V —> W such that if xeG and veV then

Φ{xv) = Ύ(x)xφ(v) .

That is, V and TΓ are essentially "isomorphic", the deviation from
isomorphism being that the cocycle of the one module is obtained
by altering the cocycle of the other module by a coboundary.

(2.8) PROPOSITION. Consider a second projective k[H]-module W
and a subgroup H gj K ^ G. Then

(a) (U®hW)\w is equivalent to (U\®°) (x)fc (W\®G);
and

(b) (U\®K)\®G is equivalent to U\®G.

Next we prove that a Mackey decomposition holds for tensor
induction. Note that x (x) U is a projective [̂α Jϊα '^-module with
factor set

ax(xhx~\ xh'x~ι) = a(h, h') for h, hf e H .

(2.9) PROPOSITION. (Mackey Decomposition). Let K be a subgroup
of G. Let W= Π®(»® Z^U.-inx)!®' where the tensor product is
over a set of {K> H)-double coset representatives x in G. Then W
is equivalent to 171®*!*.

The proof is carried out by computing with tensors. If in the
proof of the Mackey decomposition [14, (44.2)] one replaces sums of
vectors by their tensors over k, then one obtains the proof for
tensor induction.
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REMARK. Induction and tensor induction are special cases of
more general "induction" procedures which we sketch now. Fix an
integer m between 1 and n and let ^£ be the set of all m-tuples
(̂ i> ^ * , im) such that 1 <^ \ < i2 < < ίm <L n. There is an action
G upon \^ given as follows: if xeG and g = (il9 •••, im)e^f then
{%(iι), » B(i«,)} is a set of m distinct integers, which when ordered,
gives an m-tuple gx = (jl9 , jm) e <̂ C Form the tensor products

Ug = (a?̂  (x) U7) (g) φ (a?<w (x) *7)

where # e .^C Finally, let Vm be the direct sum of all modules Ug

for g e .^C Using this notation, if ui9 , um e U we set

(2.10) x [(α^ (x) uO (g) ® (xim (X) w J ]

where a eG, 0 = (ix, , im), g* = (j19 , jm) e^9 and ws = ΛCΐ^ί
when j β = ίc(it). This action extends linearly to Vm and makes it
into a Λ:[G]-module. When m = 1, F m is the induced module, and
when m = w, FTO is the tensor induced module. If ^ i , •••, ̂  are
the G-orbits on ^ ^ and TΓ, = Σ® ̂  (flr 6 ^ ) then F m = Σ Θ Wt is a
Λ[G]-decomposition of Vm. Thus there is an "induced" module be-
longing to U for each m = 1, 2, , n and each orbit tf of G on

In what follows, we extend induced modules to a wreath product
and prove that certain mappings are compatible. This wreath pro-
duct may be used to show that induction is independent of the
transversal ^~. We discuss only induction and tensor induction, but
the arguments apply equally to all the "induced" modules described
in this remark.

C* Extension to wreath products* Recall the wreath product
G = HQ~G. Let G, = {xf\x(l) = 1, fe #?} so that Φ(H) £ Gx. We
make U into a ^[GJ-module (projective or otherwise) by setting

(2.11) cc/ u = f(l)u for xfe G, and u e U .

For the moment we call this module Uo to distinguish it from U.
Using the identification mapping τ: U-+Uo it is easy to see, since
U is naturally a A:[iϊ0]-module, that

φu) = Φ(h)τ(u)

for heH and ueU. We may "induce" the module Uo to G to

obtain a module F o which is either UQ\G or Ϊ7o|®
σ. We also "induce"

U to G to obtain a module F which is U\G or ?7|®β. Define mappings:
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(2.12) (a) If V=U\β and Vo = U0\
s then define I:V~+V0 by linear

extension of

I(Xi (x) u) — xt (x) τ(u) .

(b) IfV= U\®G and Vo = Uof
G then define I: V-»V0 by linear

extension of

/ ( I P (χt Θ u<)) = I P (««® τ(ίt,))

These vector space isomorphisms have the following property.

(2.13) THEOREM. In (2.12), if xeG and veV then

I(xv) = Φ(aOI(v) .

The proof is by direct computation, and for tensor and ordinary
induction, the proofs are of the same general shape. Therefore,
we only sketch the computation for tensor induction. Observe that
^ = {x. 11 <ς i <ς n) is a transversal for Gλ in G so that I defines a
vector space isomorphism of V onto Fo. If we set x — xfx then we
first ^compute fz{i)u where ueU0 and fc is defined for G with
respect to the transversal ^~ by (2.2). If H* is in the kernel of
Gt on UQ then with j = x(i)

f-(i) = xj^xfjxtβ*

= xj'xxjlΉ* .

Since x^xx^l) = 1, we have

Consequently, using the fact that τ(u) = u we have

- Π

where j = x(i) and w,- = fc{i)ut = fx(i)ut.
Using this embedding we may prove:

(2.14) PROPOSITION. Induction and tensor induction are inde-
pendent of transversal.

The transversal does not affect the group G. In fact, trans-
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versals J7~ and άΓf for H in G only alter the homomorphism Φ of
(2.4). When applying (2,13), by (2.5) t^ese two transversals give
rise to conjugate subgroups of G. The elemeiαt / of (2,5) then gives
the necessary equivalence of modules by its action on Fo.

The embedding (2.13) allows us to enlarge the group G to G
acting upon Vo ~ V (via Φ, I). Since G is the split extension of a
permutation group by a direct product of copies of Ho, it is often
easier to compute the action of G on Vo than that of G on V. It
is this computational advantage which we exploit in later sections.

REMARK. The Clifford theorems for tensor decomposed modules
only hold in a very narrow setting where the Fitting subgroup
F(G) has class 2. This setting reduces to ordinary Clifford theory
on F(G)/Z(G) viewed as a G-module. We shall discuss the appropriate
concepts in § 5.

3* The wreath product and permutation representations* Let
G be a group, and C = <(12 n)) ^ Sn where Ω = {1, 2, , n}.

Assume that G is given as a permutation group on a set Γ.
Form the set ΓΩ = {g: Ω —*Γ\g a function}. We shall write elements
of G ~ C as yf where yeC and feGΩ. If g eΓΩ then yf acts upon
g by

gyf(i) =

Thus G ~ C acts naturally upon Γ°.
We shall study the following type of configuration. We have a

certain subgroup H of G ~ C for which we know that HGΩ = G ~ C.
Further, we assume certain facts about the orbit structure of G
upon Γ. For example, G may have regular orbits upon Γ. Our
question then is: when will H have regular orbits upon ΓΩΊ Cer-
tainly, if G ~ C has regular orbits upon ΓΩ, then H will also. We
study this case first.

(3.1) PROPOSITION. // G permutes the elements of Γ so that:
(a) there are at least two regular G-orbits on Γ and n > 2

then G ~ C has at least two regular orbits on ΓΩ;
(b) there are at least three regular G-orbits on Γ then G ~ C

has at least three regular orbits on ΓΩ.

Similar results are proved in [22]. In proving results like these
it is only necessary to obtain the right number of distinct regular
orbit representatives of G on Γ then to use these to construct regu-
lar orbit representatives for G ~ C on ΓΩ. Consequently, proofs
proceed by writing down the answer, then verifying that it is cor-
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rect. Most verifications follow a fixed pattern. Therefore, only a
few verifications are included, and they vary in completeness.

Let s = 2, 3 and #*i9 1 <; i <; s, be regular orbits of G on Γ.
Let α>4 e ^ , . Let

gx{i) — ωγ if i = 1

ω2 if i > 1

# 2 ( ί) = ω2 if i = 1

O>! if i > 1

flrj(i) = a>! if i = 1

ft)3 if i > 1

0 3(i) = <*>2 if i = 1

α)3 if i > 1 .

If we are in case (a) and s — 2 we consider the orbits generated
by {gίf g2}> In case (b) where s = 3 we consider the orbits generated
by {&, ώ, 03}.

Assume ft), ω' e Γ generate distinct regular G-orbits. Let

£(i) = o)' if i = 1

ω if i > 1 .

First we show that sf generates a regular G ~ C-orbit on ΓΩ. Sup-
pose yfeG~C fixes #. Then

for all i Assume /̂ =̂  1 and choose i so that y(i) = 1. Then g(i) =
α>' and flr(i/(i)) = 0(1) = ω. Thus

(α))/(ΐ) = co' .

But (ω)# ̂  ft)' for any 2 6 6 . Thus y = 1. Here we have

for every ί. But ft), ft)' generate regular G-orbits so

/(**) = i

for each i. Thus y/ = 1. This proves g generates a regular G ~ C-
orbit. In particular, gίf g2, g

r

2, gz all generate regular G ~ C-orbits.
Second, as an example of the computations, we show that for

n > 2, gίf g2 generate distinct regular G ~ C-orbits. Assume yfe
G - C and

0 ^ = 02
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Two possibilities occur.

(1) » = 1.
Now g{(i) = g2(i) for all i. In particular, for i = 1 we get

(Λ(l))/(1) = Λ ( l ) or

which is not possible since <«„ <w2 belong to distinct G-orbits.
(2) yΦl.
Choose i so that i Φ 1 and y(i) Φ 1. This is possible since n > 2.

Then

which is again not possible.
Therefore, glf g2 generate distinct regular G ~ C-orbits.
This completes the example. The rest of the proof is similar.
Recall the groups H <* G ~ C and G. In applications, we will

consider the case where both H and G are nilpotent. As is evident
from (3.1) we are looking for a situation where H has several regu-
lar orbits upon ΓΩ. The wreath product collects such orbits quite
rapidly for most subgroups H. For nilpotent groups which involve
more than one prime in their order this is especially true. The
next result makes this idea more precise.

(3.2) PROPOSITION. Let K = L X M^G ~ C with L^C, lφ
MS GΩ, and (\L\, \M\) = 1. Assume that G has at least s ^ 1
regular orbits upon Γ.

(a) If n> 4 then K has at least three regular orbits upon ΓΩ.
(b) If n = 8 and
( i ) \M\ > 2 , or
(ii) \M\ = 2 and s ^ 2, or
(iii) \M\ = 2, L = C, and Γ is not the regular G-orbit,

then K has at least three regular orbits upon ΓΩ.
(c) Ifn — 2 and
( i ) \M\ > 5 , or
(ii) \M\ = 3, 5 and s :> 2, or
(iii) |Λf| = 5, L = C, αm£ Γ1 ΐs woέ ίfeβ regular G-orbit,

then K has at least three regular orbits upon ΓΩ.
(d) If n — 3, \M\ = 2, £/&ew iΓ feαs αί ϊeαsί o^e regular orbit

upon ΓΩ.
(e) Ifn — 2 and \M\ — 3, 5 £Λ,ew JK" Aαs αί £eαs£ ί regular orbits

upon ΓΩ where t = 1 if \M\ = 3 or t = 2 if \M\ = 5.

For the proof we list, in each case, elements which generate
distinct regular if-orbits on ΓΩ. Suppose ω e Γ generates a regular
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G-orbίt. If there is another regular G-orbit & on Γ let μeέ? be
a generator.

Note that C^L and [L, M] = 1. For ί/eC and feM this
means /»(i) = f(ί) for all i. Thus /(I) = /(i) for all i. In particu-
lar, if /(I) = 3 then /(i) = z for all ί. With this in mind, we choose
/ e l * where /(I) = z. We now list the orbit generators in ΓΩ.

(a) If n > 4 set

^(i) = ft)2; if i = 1

ft) if i > 1

ft) if i > 2

^3(i) — ωz if i = 1, 3

ft) if i = 2 or i > 3 .

(b) ( i ) Choose / ' e M* so that f'(i) = u Φ z. Set

g^i) — ωz if i = 1

ft) if i > 1

ft) if ί > 1

ffβ(i) = 0)3 if i = 1

ft) if i = 3

(ii) Let μeΓ — ωG generate a regular G-orbit distinct from
ωG. Set

9$)

gJS)

= ft)^

ft)

= ft)

= i"
ft)

if i = 1

if %>1

if ί = 1

if i > 1

if i = 1

i f % > l

(iii) Let μeΓ — ωG generate a G-orbit distinct from ωσ. Set

μ if i > 1

flr?(i) = £« if i = 1

ft) if i > 1

ft) if ΐ > 1 ..
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(c) ( i ) Choose h, k e Λf * so that /, h, k are unequal and not
inverses of one another. Suppose h(l) = u and k(ΐ) = w. Set

gχ(i) = (OZ if i = 1

ft) if = 2

ft) if = 2

#3(i) = ft)w if ί = 1

ft) if = 2

(ii) Suppose μeΓ — ωG generates a second regular G-orbit. Set

gγ(i) — μ if i — 1

ft) if i = 2

flr2(i) = ωz if i = 1

ft) if i = 2

μ if ί = 2

(iii) Let μeΓ — ωG generate an orbit distinct from ωG. Let
h 6 ikf#, /ι(i) = u ^ z, z~\

gx(i) = 0) if i = 1

^ if i = 2

gr2(i) = ωw if ί = 1

ft) if i = 2

ft) if i = 2 .

(d) Set

ft) if i > 1 .

(e) Assume |Λf| = 5. Choose heM*, h(i) = u Φ z, z~\

gSj) — ωz if i = 1

ft) if ΐ > 1

ft) if i > 1 .

(e') Assume | M | = 3

gx(i) — ωz if i = 1

ft) if i > 1 .
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Let us look at a few examples in the proof. Suppose g(l) = ω
and g(i) = ωz for i > 1. We show that # generates a regular JΓ-
orbit. Suppose yf* e If fixes g. Consider first y Φ 1. Then

Now taking i = 1 we have, since #(ί) > 1, that

Since ωG is regular, /*(1) = z. For #(ί0) = 1, % > 1 we have ω =
*(i0) = ωzf*(i0). Now /*(i0) = sΓ1. Finally, for iΦi, % we have

o) = g{y{ϊ))f*{i) -

so that /*(ί) = 1. This tells us the value of /*. Namely,

(z < = 1
i = iQ

Let JS; be the stabilizer in K of g. Since [L, Λf] = 1 and (|L|, |Λf |) = 1
we have Kg = Lg x Λf̂ . For yf* e Kg, y Φ 1, we may assume that
yf*eLg by taking an appropriate power of yf*. But then yf*eL
so that y~xyf* = / * e i since y eC^L. Since the order of z divides
|ΛΓ| (/eΛf), /* lies in L n Λ f = l . This contradicts zφl. We
conclude that y — 1.

Now gr(i) = flf^i) = g{ϊ)f*(i). For i = 1 we obtain α)̂  = α)z/*(l).
For i > 1 we obtain ω = ωf*(ί). In any case, /*(i) = 1 for all i.
So »/* = 1.

We have proved that the various gt

9a all generate regular K-
orbits. We prove the case (e) to illustrate the method used to prove
the various orbits are distinct. Suppose glf* = g2. Assume that
y Φl. So y = (12). Now

ω n = Λ ( l ) = flrr(l) -
and

We have shown that /*(1) = u and /*(2) = z"1. Since # 6 If, 2/"1?//* 6
if. By order we have f e l . But then /*(1) = /*(2). Since w ^
^J"1 we conclude that y = 1. Again computing we have

αw = Λ ( l ) = i/Γ(l)
and

Thus /*(1) = z~ιu and /*(2) = 1. By the order of /* we must have
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/* e M. So /* is constant. We conclude that z~γu = 1. But u Φ z.
This contradiction completes the proof. We know that glf g2 generate
distinct regular if-orbits.

The remaining computations are much the same.
The next result enables us to treat wreath-free groups.

(3.3) PROPOSITION. Suppose K ^ G ~ C is nilpotent and KGΩ =
G ~ C. Assume n is a prime and Zn ~ Zn is not involved in K.
If G has at least one regular orbit ^ on Γ and Γ Φ £? then K
has at least one regular orbit έ? on ΓΩ and ΓΩ Φ £?.

Choose coeΓ so that ωσ is a regular G-orbit. Then choose
μ e Γ - ωσ.

Set

9i(i) = μ if i = 1
ω if i > 1

g2(i) = ω all i .

Certainly g19 g2 generate distinct G ~ C-orbits so ΓΩ consists of
at least two iΓ-orbits.

It is not difficult to see that CG~c{Qι) Π K ^ {feGΩ\f(l) eCG(μ);
f(i) = 1, i > 1}. If CG~c(9ι) ΓΊ K = 1 then gί generates a regular K-
orbit on ΓΩ. So we may assume that CG^G(QI) ΓΊ K — Ko > 1. Now
if KΠC = C then <C, KQ) <> K is either not nilpotent or involves
Zn ~ Zn. So we may assume K Π C = 1.

Eecall #2(ΐ) = ω all i. Now CG^c{g^ = C and X Π C = 1. There-
fore 02 generates a regular Z-orbit. So the proof is complete.

This improvement of an earlier lemma of the author is due to
E. C. Dade. Actually, we will need this lemma in a slightly dif-
ferent form also. Let {ΓΩ)* be the collection

Thus if ge(ΓΩ)*, g will have domain Ω — {a} for some choice of
aeΩ. For yfeG~Cwe still have the action

9yf{i) - (ff(»(i)))/(i)

where, if g(i) has domain Ω — {a} then g(y(ϊ)) has domain i2 —
{^(α)}. Thus G ~ C has a natural action upon (Γ^)*.

(3.4) PROPOSITION. Suppose K <^ G ~ C is nilpotent and KGQ =
G ~ C. Assume n is a prime and Z% — Zn is not involved in K.
If G has at least one regular orbit on Γ then K has at least one
regular orbit on ΓQ U {ΓΩ)*.
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Choose ωeΓ to generate a regular G-orbit. Set

g^i) = ω if i > 1
g2(i) = a) all i .

Now ^ e ^ ) * and g2eΓΩ. Using the same argument as in (3.3)
we see that either gt or g2 generates a regular ϋΓ-orbit.

4* Applications* In this section we combine the results of §§ 2
and 3 to obtain information about induced and tensor induced re-
presentions. We are interested in the regular structure of induced
modules.

(4.1) HYPOTHESIS. Assume the following:
(a) G is a nilpotent group with subgroup H;
(b) k is a field and V is a k[H]-module faithful on H = H/HOf

(c) G is faithful on V\G (or F|Θ < ?, as the case may be).

A* Induction*

(4.2) PROPOSITION. // H permutes the elements of F* so that
(a) there are at least two regular H-orbits and [G: H] is odd,

then G has at least two regular orbits on (V\GY;
(b) there are at least three regular H-orbits, then G has at

least three regular orbits on (V\G)*;
(c) there is at least one regular H-orbit and G does not involve

Zp ~ Zp for any prime p\[G: H], then G has at least one regular
orbit on (V\G)*.

In each case, the proof is the same. For (a) we use (3.1)(a).
For (b) we use (3.1)(b) and finally for (c) we use (3.4). We will
only prove (c). The proof is by induction upon [G: H]. If [G: H] —
1, then (c) is obvious, so that we assume [G: H] > 1 and (c) holds
for all indices smaller than [G: H]. Suppose [G: H] is not a prime.
Since G is nilpotent, we may choose Hγ so that H < Ht < G. In-
duction applies with Ήx in place of G. Thus there is a regular He
orbit on TΓ* = (V\Hl)*. Now induction applies with iΓt in place of
H and W in place of V. Thus we may assume that [G: H] = p is
a prime.

By (2.4) there is a natural embedding of G into 3 ~ C where
G = <(12 p)). By (2.13) this embedding is compatible with induc-
tion. If we take F* = Γ, then geΓΩ may be identified with the
vector
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*i ® 0(1) +. + », ® 9(P) € V\G

(xlf , xp a transversal of H in G)

where all g(i) Φ 0. Further, g e (ΓΛ)* may be identified with the
vector

where we set gf(i) = 0 if ί is not in the domain of g. Now (c) is
immediate by (3.4).

(4.3) PROPOSITION. Let [G: H] = p a prime, H = Q x B where
Q is a p-group and B is a p'-group, \B\ Φ 1. Assume H has at
least one regular orbit on F*.

(a) If p > 3 then G has at least three regular orbits on {V\GY.
(b) If p = 3 and
( i ) |J5 |> 2, or
(ii) \B\ = 2 α^ώ i ϊ fcαs αί ieαsί ί^o regular orbits on F*, o?̂
(iii) \B\ = 2, |Q| = 1 and F* is wo£ ίΛe regular B orbit,

then G has at least three regular orbits on (V\Gy.
(c) If p = 2 and
( i ) | β | > 5, or
(ii) |JB| = 3, 5 and H has at least two regular orbits on F*, or
(iii) |JB| = 5, |Q| = 1, and F* is noί ίfee regular H-orbit,

then G has at least three regular orbits on (V\Gy.
(d) If p = 3, \B I = 2 £/&en G Λas aί ieasί one regular orbit on

(v\βy.
(e) If p = 2 and | £ | = 3, 5 ίfeβn G feas aί ieasί s regular orbits

on (V\GY where s - 1 if \B\ = 3 and s = 2 i/ |B | = 5.

To prove this we apply (2.4), (2.13), and (3.2). In looking at G
embedded in 3 ~ C we may have to enlarge G to Go = <G, QΩ) to
make certain that C ^ Go. Observe that Go is nilpotent. Then (3.2)
applies to Go. The result for G is obtained by restriction. We let
Γ = F* and identify JΓΛ with the set of vectors x1®v1+ + a?p (8)
vpeV\G with all ^ ^ 0 (α;̂  •• ,α?p a transversal for i ϊ in G) via
fir ^ xι (g) flr(l) + + α?p

B* Tensor induction* The results here go exactly as in the
case for ordinary induction. The pattern is as follows. Suppose
F = V1 + + V8 + W where each F< is a regular k[H]-module.
Then we may choose St = {hvt\hzH) for some fixed vt e V€ so that
Si is a Jfe-basis for F4. If TF ̂  (0) we choose w e TF* and let T =
{fewl/^efl'}. We take Γ = ϊ7 U (U ̂ ) Then 5" permutes the ele-
ments of Γ with at least s regular orbits. Let {xlf , xp} be a
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transversal of H in G if \G: H] = p. We identify ΓJ with

(8) vp) I v4 e Γ}

via g^fa® g(ί)) ® ® (α?p (g) #(p)) where g: Ω—>Γ is a function.
Let ^ be the set of all g e ΓQ with g(ί) e \J Sj for all i. It is clear
that y is a linearly independent set of vectors in V\®G and is a
basis for the £[G]-module <^>. Let ^ " be the set of all geΓΩ

such that g(i)eT for some i. Then ^ ~ contains a basis for the
λ:[G]-module < J O Further <^> + <^"> is a direct sum of A[G]-
modules. Note that <^> has the G-permutation basis SΊ If W Φ
(0) then <^"> ^ (0). Embedding G in 3 ~ C we see that ΓΩ cor-
responds with its counterpart of § 3.

We now have the following results for tensor induction.

(4.4) PROPOSITION. If V contains at least s copies of the regular
H-module where

(a) s — 2 and [G: H] is odd then V\®G contains at least two
copies of the regular G-module;

(b) s = 3 then V\®G contains at least three copies of the regular
G-module;

(c) s = 1, V is not the regular H-module, and G does not
involve Zp ~ Zp for any prime ρ\[G: H] then V\®G contains at least
one copy of the regular G-module and V\®G is not the regular (?-
module.

Actually we use (2.4), (2.13) (i.e., the compatibility of the em-
bedding with tensor induction) and (3.1), (3.3) in the proof. Other
than that everything proceeds as in the induction case.

In a similar way we obtain the following variation of (4.3).

(4.5) PROPOSITION. Let [G: H] = p, a prime, H = Q x B where
Q is a p-group and B is a pf-group, \B\Φl. Assume V contains
at least one copy of the regular H-module.

(a) Ifp>3 then V\®G contains at least three copies of the
regular G-module.

(b) If p = 3 and
(i) \B\>2, or
(ii) \B\ = 2 and V contains at least two regular H-modules, or
(iii) \B\ = 2, \Q\ = 1, and V is not the regular H-module,

then VψG contains at least three copies of the regular G-module.
(c) // p = 2 and
(i) \B\>5, or
(ii) |JB| = 3, 5 and V contains at least two regular H-modules:

or
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(iii) \B\ = 5, |Q| = 1, and V is not the regular 3-module,
then V\®G contains at least three copies of the regular G-module.

(d) / / p = 3, \B\ = 2 £foew F|®G contains at least one regular
G-module.

(e) If p = 2 αm£ | J5| = 3, 5 £/&ew F p 6 1 contains at least s regu-
lar G-modules where s = 1 i/ |J5| = 3 αwd s = 2 i/ |J5| = 5.

REMARK. A few observations are in order on these results.
Recall the choice of ΓΊ in the proofs of (4.2) and (4.3). Excepting
possibly the case where [G: H] = 2 in (4.2) (c) there are more orbits
of G upon (V\°Y than those in ΓΩ.

For tensor induction, a similar conclusion holds. The module
(S^) cannot be the given number of regular modules. For example,
look at (4.5) (e) when \B\ = 5. Then <^> cannot be a sum of just
two regular modules. Note that | G \ \ p \ Q \p \ B | = 101Q |2. On the
other hand | Sf \ = \ QB \p = 251Q \\ This latter number is much larger
than 2|G|. Thus V\®G is more than just a sum of two regular G-
modules.

The results (4.2) and (4.4) apply in a general setting. The re-
sults (4.3) and (4.5) apply when \H\ has composite order. These
latter two results indicate that it is much harder for a group of
composite order to avoid some kind of regular structure.

5* A transference theorem*

A* The main construction* In this section we prove a technical
theorem which makes the method of tensor induction applicable in
the study of primitive linear groups. The setting is rather complex
so that we fix the following hypotheses.

(5.1) HYPOTHESIS. Assume G is a solvable group with normal
extraspecial r-subgroup R where Z(R) <; Z{G) and R/Z(R) is a chief
factor of G. Suppose H ^ G, Rx<k R so that

(1) R1 is extraspecial,
(2) xR.x'1 = R19 or [xR,χ-\ R,] = 1 for all xeG,
( 3) H normalizes R19 and
(4) as a G-module R/Z(R) = (RJZ(R))\G where RJZ(R) is viewed

as an H-module.

REMARK. For T ^ R we set T = TZ(R)/Z(R). Clearly condition
(4) implies that H = NaiR^. Now since R is a chief factor for G, G
acts irreducibly on it. This together with the fact that Rι \

G = R
tells us that R < H.



24 T. R. BERGER

(5.2) PROPOSITION. There is a subgroup N of G so that
(1) NR = G,
(2) NnR = Z(R), and
(3) N^C(R).

If M^G satisfies (1), (2), and (3) then Mx = N for some xeG.

Set C = CG(R/Z(R)). Let Γ/C be minimal normal in G/C. Since
G is solvable, TjC is an elementary abelian ί-group for a prime £.
But R/Z(R) represents G/C faithfully and irreducibly so that T/C
is an r'-group acting fixed point freely upon R/Z(R). Let S be a
ί-Sylow of T so that T = SC. The normality of Γ in G means that
G = N(S)T = N(S)C by the Frattini argument. (Also S is fixed
point free on R since T = SC)

By [18, (5.4.6)] we have G = C(R)R so that we set N = N(S)C(R).
Since S is fixed point free upon R (=R/Z(R)), so is SC(R)/C(R),
and SXC(R)/C(R) Φ SC(R)/C(R) for any a? 6 R\Z(R). Iί xeNΠR then
a; = yz where 2/ e i\r(S), z e C(R). We now have SXC(R) = SyzC(R) =
SzC(i2) = SC(i2) so that a? £ R\Z(R). This shows that iV Γi i2 ^ £(#),
and since Z(i2) £Nf)R we conclude that Z(R) = N Π R. Therefore,
(1), (2), and (3) hold for N.

Suppose that M ^ G satisfies (1), (2), and (3). Now G/C(R)
(=MR/C(R)) has RC(R)IC(R) (=R) as a normal subgroup which is
minimal (since G acts irreducibly on R), and clearly is unique (as
any other minimal normal subgroup would centralize it). Also
M/C(R) and N/C(R) are complements for R in G/C(R), and so there
is y e G such that My = N. This completes the proof.

We set up some notation now. Choose N as in (5.2) and form
the semidirect product

G* = N-R ,

and then set

and

H* = N0 R

where the starred groups are subgroups of G*. The mapping φ:
G* —*G given by

φ(x, y) = xy

is a homomorphism of G* onto G. In addition, 9 maps Go* onto
Go = iVo^ and H* onto i ϊ = N0R. It is the group G* which will
concern us for the time being.
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Let Rt = CJJtΐ) = Π(xRιx~ι) where the product is over all xeG
such that xRγx~ι Φ Rγ. It is easy to see that R is the central prod-
uct RJtt.

The construction we now undertake shows that if U is a pro-
jective &[G0]-module such that U\Bi is nonprojective, faithful, and
irreducible then U has a protective extension to U*f a Λr[iϊ]-module,
such that Z7*|Θff= V is a protective λ;[G]-module for which V| s is
nonprojective, faithful, and irreducible. Since Ϊ7* is constructed in
a canonical fashion, we will alter the definition of tensor induction
so that U\®G is defined to be U*\®σ. This abuse of language will
not cause any confusion since the situation surrounding this con-
struction of Ϊ7* \®G is so complex that it will clearly indicate that
when U\®G is written, really 17*1®* is meant.

If T ^ N is being viewed as a subgroup of N then we set
T* = {(t9 l)\teT}> and if T ^ R is being viewed as a subgroup of
R then we set T* = {(1, t)\teT}. With these conventions, we view
Z(R) as a subgroup of 7τJ unless explicitly stated otherwise.

We have pre-empted the bar notation for R = R/Z(R) so that
we use ^-notation where we have used a bar in previous sections.
Let ^ = {xι — 1, a?* •••, a?β} be a transversal for No in JV. Since
iSΓH = G and N Π H = No, J7~ is also a transversal for H in G. Let
α; —• ^ be the permutation representation of G upon 42 = {1, 2, , s}
given by x(i) = i if and only if α ^ i ϊ — α yiϊ. Form the wreath
product

G = Gϊ -G^G Gf .

In the following, we embed G* into a factor group of G. If L ^ G*
let LΩ = {/eG0*

f il/(i)eL for all i}.
Next define

that is, if f(ί) = (1, «*) where zteZ(R) and /eJkf then 77^ = 1. It
is straightforward to show that M <\G. We wish to embed G* in
G/M.

Let ^ be a transversal for Z(R) in i^ containing 1. By the
bar-convention, if K ^ R then K = KZ(R)/Z(R). Set

From (5.1) we have

5 = β x + β 2 + + Rs .

(Clearly s = [ΛΓ: -ZV0] = [G: if] = number of distinct conjugates of R1

in 7?.) Let x e R. Then there are unique elements rlf r2, , rs e &
so that
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x = xx r1 + + xs rs .
Consequently

x = zΠiXiTiXT1)

for some unique z e Z(R). We set r^x) = zrx and r,(αθ = r< for i > 1
so that

a? = ΠiXtTtixίxT1)

where the rt are functions upon R.
For α eiSΓ, ye i? set

Ξ(x, y) =
where

(a) /.W = (a%(>αo 1),
(b) Λf(0 = (1, rM).

(5.3) PROPOSITION. Γ/ιe mapping Ξ: G* --• G/M is a monomor-
phism.

First, we prove that Ξ is a homomorphism. Let (#, ̂ /), (u, v) e
G*. Then

(x, y)(u, v) = (#w, yuv) .

Starting with y*v we have

yuv — (u~ιyu)v = [//(u" 1^^^)^ 1^)]^ .

Let i be an index dependent upon i by the relation u~ι(i) — j .
Then u~ιXi = a?iw< for some wt e NOf so that

We may assume that j is independent and that ί = ίi(j) so that

ί/tt/y - [Π
0

since i? is the central product of the 22/s But we also know that

yuv = ΠiXjTjiy'vϊxj1) .

Comparing components in 5 we now must have

(5.4)

where i = u(j) and «,- e Z(R).
But now
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yuv =

= [Π
3 3

= (»"«)(Π «/)
i

Therefore, ΠZi = 1.
Let /(i) = (1, s<) for all i so that / e AL Then

Ξ(x, y)Ξ(u, v) =

In a fashion analogous to [23, IΠ.δ.k, 20, Satz 15.9] we have flfu =
/βtt. Computing the value at each ΐ, by setting u{i) = j , we have

= (1, x^u-'
= (1, Wyr^y^r^i;))

where xτιu~ιxά = ŵ  eiSΓ0. By equation (5.4)

w(i) = (1, ^.r,^^))

We conclude that w = hyuvf. Since fsM we have

, v) = xufxuhyuvM

Consequently S: G* —> G/Af is a homomorphism.
Finally we show that Ξ is a monomorphism. If Ξ(x, y) = M

then xfJiyM = M. Using the proof cited in [23, IΠ.δ.k] we may
show that xfx = 1, so that x — 1. Therefore, hyeM and hy(i)e
Z(R)* for each i. But ^? n ^(5) = 1 so that Λf(i) = 1 for all i > 1.
Since Πrt(y) — 1 (i.e., /^ 6 AT) we conclude that r^y) = 1 and λy(i) = 1
for all i. Therefore, hy = 1 so that (a?, #) = (1,1). The proof that
Ξ is a monomorphism is now complete.

(5.5) PROPOSITION. Let k be a field and U a projective Λr[G0*]-
module. Assume that T ^ G* is a subgroup containing R* and
that U\τ is nonprojective. Further, suppose that U\R* is faithful
and absolutely irreducible. The subgroup of G fixing 1 in Ω =
{1, 2, , s} is H. If x eH and fe G*Ω then set

xf u —
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for ueU. This defines a projective k[HGtΩ\-module U(—U) which
is nonprojective upon restriction to HTQ. Set V— U\®°.

(1) The kernal of R*Ω upon V is M.
(2) The module V\B*Q is absolutely irreducible.
( 3) The module V\%TQ is nonprojective.

Since ^ = {xl9 x2, •••, x8) is a transversal for HG*Ω in G, V is
the tensor product of the modules xi (x) U. If ue U, /eG 0 * β , xeG
then

xf- χt <8) u = χ5 (x) /(i)u

where i = x(i). First, assume that feRf. If f£Z{R)*Ω then we
may choose w 6 C7 and i so that / ( i ) ^ and u are linearly independent
since f(i) does act not via scalar multiplication on U [18, (5.5.4)].
Therefore, v = (α^ 0 u) (x) (g) (xs (g) u) and

/ . v = (^ ® /(l)u) ® . . . (8) (ί 4 (8) /(i)u) (x) (x) (a?β (8) f(s)u)

are linearly independent. If z e Z(R)* then m = X(z)u for u 6 U and
λ a faithful linear character of Z(R)* since z acts via scalar multi-
plication on U. Let / ' e Z{RγΩ so that if wx, '",useϋ and if vf =
(ίi (8) ̂ i) (8) ® (». (8) ̂  ) then

) (8) (X) (

These calculations show that an element feR?Ω is in the kernel of
F if and only if feM which proves that (1) holds.

It is easy to see that R'*ΩjM is isomorphic to the central product
of s copies of Rx. If Rx has order r2e+1 then dim U = re so that
RfΩ/M is extraspecial of order r2se+1 and dim V — r8e. If Vlnf is
nonprojective then (2) follows from (1) and knowledge of the dimen-
sion of faithful absolutely irreducible modules of extraspecial groups
[18, (5.5.5)]. Therefore, part (2) follows from (3).

If x, y eG; f,ge TΩ, u e ΰ, and a is the factor set of G* upon
U then a\τxτ = 1 since U\τ is nonprojective, so that with j = x(i)
and k = y{j),

yg {xf - χt (8) w) = xk (x) g(j)f(i)u

since a(g(j), f(i)) = 1. Therefore, GΓQ has trivial factor set upon
F. Part (3) holds completing the proof of (5.5).

If we start with the projective Ar[G<r]-module U then we finish
with a projective A;[G*]-module V(=V) defined by

xv = Ξ(x) v
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for xeG* and ve V(-V). Since 3 maps i2* onto RfjM, V\R* is a
nonprojective faithful absolutely irreducible A:[β*]-module by (5.5)
since R* = R?Ω/M. Before describing properties of this module, let
us show that the construction of V is essentially choice-free.

The choices involved in the construction for V were those of
and ^ . Our choices are restricted by the conditions that 1 e
Q N and le&. Suppose that we alter our choices to ^ " ' =

{x'i — xtat 11 <; i ^ s} where α* 6 No and to &' where for y e R r[{y)
is the rrfunction defined for the ^ \ ^'-system. Let f(i) = (ai91),
and conjugate Ξ(x, y) = xfxhyM, by /. We have, as in (2.5),

By a simple computation we obtain

where /» is the appropriate function defined for the ^ ' , ^'-system.
Computing the value of y 6 j? in the ^ , «^- and ^ " ' , ^'-sys-

tems gives

y = ΠfariMxT1)

Since r o rj are constructed from transversals for ^(i?) in i^, and
since α{ e iVo normalizes JBX we must have

rt(y) = a^K

for ζ,(̂ /) 6 ^(i2) and Πζ^y) — 1. Consequently

where λ, is the appropriate function defined in the ^~'f ^'-system.
Set f\i) = ζt(y) so that f'eM. Then

proving that the &~\ ^'-system gives 5", an embedding of (?*
conjugate in G/ikf to that given by 8. The transformation induced
by fM upon V is therefore an equivalence from the ^ " , ^ -
construction of V to the ^ \ ^'-system construction of F.

(5.6) PROPOSITION. The k[G*]-module defined upon ϋ\^ by xv =
Ξ(x) v /or α? 6 (?* α^cί v e 6̂ 1®* is independent of the choices for
and &.
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We may "factor" G as a semidirect product

N-Rf

where N = N* ~ G. Using the Mackey Decomposition (2.9), we have

that U\®^\% is equivalent to U\slNf\®*. The embedding Ξ restricted

to iV* maps it into N via

Ξ(x, 1) = xf. .

Therefore, by (2.13) U\®^, viewed as an iSP-module via Ξ is equiva-
lent to U\N*\®N\

(5.7) PROPOSITION. The k[G*]-module ϋ\®d defined in (5.6) is
equivalent as a k[N*]-module to U\N*\®N\

We may now transfer this all back to G.

(5.8) DEFINITION. Let U be a protective Λr[G0]-module such that
ϊ7|Λ l is faithful, absolutely irreducible, and nonprojective. If (&, y) e
G* then set (x, y)u = xyu for ueU. Let y be a transversal for
Z(R) in N. Let V be the λ:[G*]-module ϋ\^ defined in (5.6). Define
a protective A:[G]-module V(=V) by setting

xyv = (x, y)v

for x e £f, y eR, veV. We call V the tensor induced module of
the λr[G0]-module U and write V = U\®σ. This definition requires
the hypothesis (5.1), and therefore, should not be confused with
ordinary tensor induction.

The transversal &* belongs to the central extension

(5.9) 1 > ker φ > G* - ^ G > 1 ,

and therefore, the cocycles introduced by Sf and another choice Sf*
belong to the extension (5.9) and are equivalent. In particular, dif-
ferent choices for S? in Definition (5.8) give equivalent A:[G]-modules
V.

The construction of V requires the choice of the group N. By
(5.2) all choices for N are conjugate in G. This conjugation gives
an equivalence of modules constructed for two distinct choices of N.

Summarizing our results thus far we have

(5.10) THEOREM. Assume (5.1). Let k be a field and assume
that U is a projective k[Gt\-module such that U\Bl is nonprojective,
faithful, and absolutely irreducible. Let V — U\®G be as in Defini-
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tion (5.8). Then the following hold:
(1) V is a projective k[G]-module;
(2) V\B is nonprojeetive, faithful, and absolutely irreducible)
(3) up to equivalence of projective modules, V is independent

of the choices of N, J7~, &, and S^\
(4) if B is a subgroup of N and B Π Z(R) = 1 then V\B is

equivalent to U\No\®N\B where ordinary tensor induction is meant
here; and

(5) in (4), if U\Nof]Bχ is equivalent to a nonprojeetive module
for x running over a set of B, N^double coset representatives in N
then V\BR is equivalent to a nonprojeetive module.

Part (1) follows from (5.6), (5.9), and Definition (5.8). Since S
maps U* onto Rf/M, (2) follows from parts (l)-(3) of (5.5). Par t
(3) follows from (5.6) and the discussion following Definition (5.8).
We may choose Sf so that for (4), B £ SK Then (4) follows from
(5.7). To prove (5) we need the Mackey Decomposition (2.9)

U\No\®N\B is equivalent to Π®(x<g> Z 7 ) U o α - i n B Γ .

By (4) V\B will be equivalent to a nonprojeetive module if each
module (α?(x) U)\xNQX-inB is equivalent to a nonprojeetive module.
Mapping via or1 we ask only that U\NoΓιB* be equivalent to a non-
projeetive module as x runs over B, iVo-double coset representatives
in N. Thus V\B is equivalent to a nonprojeetive module. Since
B £ £f it follows that V\BR is equivalent to a nonprojeetive module.
The proof of (5) and the theorem are now complete.

REMARK. Can one give a wreath product free construction of
U\ZG in (5.10)? The sequence (5.9) gives an extension G* of G by
a group isomorphic to Z(R). In turn, the embedding Ξ gives an
extension

1 > M > G+ > G* > 1

by M (where G+ is the inverse image in G of SίG*) ^ G/M). We
may identify Go* as a subgroup of G+ ZG such that Go* Π M = 1.
The embedding Ξ allows us to extend the module U projectively to
G%Rf in G+. The action of G%Rfx~ι upon x (x) U involves a cocycle
ax whose action "comes from" an element of Z{R)*Ω 2 M. Since G+

acts nontrivially upon M, it acts nontrivially upon these cocycles ax.
Thus ax is not a factor set (central cocycle) of G. To eliminate the
wreath products from this construction, one must find the cocycles ax

explicitly, giving the G-action upon them. One must then show that,
at least for R, tensor induction of U (as a projective Ar[iϊ]-module
where H=GϊR?Ω/K for an appropriate K^M) to G (=G+/L for an
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appropriate L ̂  M) reduces the product of the cocycles upon the
various x ® U to a trivial factor set. Such a construction seems
quite formidable, more so than the present wreath product construc-
tion. Clues may appear in [16, 21].

We turn next to applications of Theorem (5.10). First we need
a lemma allowing us to compute the sign of certain determinants.

B* A lemma on permutation groups*

(5.11) NOTATION. Let & = {1, 2, , d) and Ω = {1, 2, , n} for
integers n, d > 1. Let £&Q be the set of functions from Ω to &.
Let Sn be the symmetric group upon Ω. If fe&Ω, xeSn, and
ieΩ, then set /*(i) = /($(i)) Let # denote the permutation induced
by x upon &Ω, and G denote the image of a subgroup G<^Sn under
the mapping # —*x.

Clearly x —»x defines a homomorphism of Sn into the symmetric
group S* upon £&Ω. Let A* be the alternating group upon 2f°m

We wish to determine when Sn ̂  A*.

(5.12) PROPOSITION. S^ ̂  A* wwZess
(1) d s - 1 (mod 4), or
(2) d ΞΞ 2 (mod 4) ami w = 2.

Let a? = (12) e S% be a transposition. It is sufficient to determine
the parity of x. Let Ωo — {1, 2} and Ω1 — {3, , n}. There is a
canonical one-one correspondence between 2fQ* x 3fΩ^ and ^ u . The
pair (g, h) corresponds to / if and only if g(i) = f(i) for i = 1, 2;
and ft(i) = /(ΐ) for i = 3, , n. Note that (gx, h) corresponds to
fx. So x acts upon 3fQ* x ^ ^ i exactly as it acts upon 3fQ, so for
each two cycle of x on ϋ ^ 0 we get | StΩ^ \ = cJ%~2 two-cycles on
-̂i?o x έgΩ\ Let ί be the restriction of x to ̂ ^ Then the parity

of x, π(x), is equal to (π(x))dn~2 where π(x) is the parity of x. Now
x fixes the d constant functions of 3fΩ* and permutes the remaining
d2 — d functions in orbits of length two. Thus

π(x) = (~l)«*2-<*>/2 .

Finally

π(x) = (-l)--*<'2-')/«

Now π(^) = 1 unless dn~\d — l)/2 is odd or

d*-\d - 1) Φ 0 (mod 2) .

But
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d%-χ(d - 1 ) Ξ O (mod 4)

unless conditions (1) and (2) occur. In those cases, π(x) — — 1.

(5.13) COROLLARY. Assume G <̂  Sn. Then the group G <*ΊS" is
in A* unless

(1) d s - 1 (mod 4), G < An, or
(2) (Z==2(mod4), G = S\ n = 2.

This is an immediate consequence of (5.12).

C* Unique extensions*

(5.14) THEOREM. Let R be an extra special r-group. Suppose
that A is an r'-group of operators on R centralizing Z(R). Form
the semidirect product AR of A and R. Let k be a field of char-
acteristic c, unequal to r, containing a primitive \R\t\x root of
unity. Let Uλ be an irreducible k[Z(R)]-module with character
XΦl. Then there is a k[AR]-module Vλ determined uniquely up
to isomorphism such that:

(1) Vχ\Z[R) is isomorphic to a sum of copies of Uλ;
( 2 ) Vχ\R is irreducible; and
(3) ifxeA induces a transformation £(α?) on Vλ then detX(α ) = 1

for all choices of xeA.

There is a proof of this for k of characteristic 0 in [17]. The
uniqueness of VX\R satisfying (1) and (2) is a general fact about
extraspecial groups. Because it will be of some value later, we shall
indicate how a proof is carried out for finite fields. Actually, we
prove a slightly more general result from which this theorem fol-
lows as a corollary.

(5.15) THEOREM. Assume that G is a group with normal sub-
group N, and that X is a G-stable absolutely irreducible represen-
tation of N in a finite field k having degree m. There is a pro-
tective extension 36 of H to G. If y eG we say that 36(#) has (*) if
its order is finite and relatively prime to m, and if its determinant
is 1.

(1) If ye G\N and %(y) has (*) then %{y) is uniquely determined.

(2 ) / / £f £ G\N is a set of elements of G of order prime to

m then X may be chosen so that %(y) has (*) for every y eS<

(3) If K is a subgroup of G of order prime to m for which

K n N = 1, then for each x, y eK, %(y) may be chosen so that it

has (*) 36(α?#) = %(x)%(y), and, therefore, %\KN is nonprojective.
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Since X is absolutely irreducible, by extending X linearly to
k[N] we obtain a central simple algebra %(k[N]). If zeG then z
induces an automorphism of X(k[N]), centralizing its center, given
by X(w) —> Ί{z~xuz) for uek[N]. By the Skolem-Noether theorem,
this automorphism induced by z is inner. In fact, by Schur's lemma,
there must be an invertible element Z of %(k[N]), uniquely de-
termined up to a multiple by any nonzero element of k, such that

(5.16) ^(z-'uz) = Z-ιX(u)Zf u 6 k[N] .

We set X(is) = H(z) if zeN, and leaving the Λ-multiple to be de-

termined, for each z e ^~ where ^~ is a fixed transversal for N in

G we set %{z) — Z where Z is determined by (5.16). Finally, we

set %{xy) = X(#)%/) where a e ^ and yeN, so that X is defined on

all of G. The important point to note here is that if yeG\N then

%(y) is uniquely determined by (5.16) up to any nonzero Λ>multiple.

Since both X(a?)X(2/) and X(xy) taken for Z (with xy taken for z)

satisfy (5.16) where x, yeG, and since Z is unique up to a multiple

from k,

(5.17) i i $

where α(#, #) 6 A:. Therefore, 36 protectively extends ϊ to G.

Suppose that y e G\N and 36(̂ /) has (*). Assume also that X* is

a protective extension of X to G such that X*(#) also has (*). By

(5.16) we know that X*(#) = X(?/)δ for some scalar 6. Since both

X*(#) and %(y) have order prime to m, there is an integer t, prime

to m, such that X*(̂ )* = X(#)* = 1 so that 6* = 1. We conclude that

6 is an m' root of unity. Taking determinants,

1 = det ϊ*(y) - bm det % ) = 6W ,

proves that b is also an mth root of unity. We conclude that 6 = 1

and X*(#) = %(y) proving (1).

Suppose next that y e G\N has order t, prime to m. From (5.17)
we conclude that

HvY = 6 W - bl

where b is a scalar and I is the identity. Since kx is finite and

(£, m) = 1, there is a scalar eekx such δc* has finite order prime to

m. Thus X(#)c has finite order s, prime to m. If det X(#)c = d

then 1 = [det X(̂ /)c]s = d8 so that cί has order prime to m. We may

now choose a power a of d such that a~m = (Z. We conclude that

X(̂ /)cα has order prime to m and determinant 1. For each y e y

we may find c and α and replace %{y) by X(y)ca proving (2).
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Taking K £ _̂ ~ and K\l = y we find that only the final asser-
tion of (3) requires proof. To complete the proof, it is sufficient to
show that %\κ is nonprojective. Accordingly, let x, yeK so that by
(5.17) %(x)%(y) = %(xy)a for some aek. Taking determinants on both
sides we find that am = 1. Let K be the linear group {%(y)w\yeK,
wekx}. This group is an extension of kx by some factor group
K/Ko of K. Since K/Ko has order prime to m and since kx is cen-
tral, there are unique subgroups KX<*K and K2 <; kx such that K =
JKΊ x Ĵ2> -KΊ has order prime to m, and every prime divisor of \ίt2\
divides m. Note that %(x), %{y) and X(xy) must all lie in jζ by
order considerations. We conclude that α must be an m'-root of
unity. Since am = 1 also, a = 1 proving that £1^ is nonprojective.
The proof of the theorem is finished.

REMARK. This proof works as soon as we know that the factor
set a(x, y) of (5.17) maps G x G into roots of unity in k. Details
on the order of a(x, y) in fields of characteristic 0 are given in [15].

D* Applications of transference* The unique module whose
existence is given by (5.14) will be called Vλ{AR) in order to keep
track of the essential ingredients: λ; A) and R.

(5.18) THEOREM. Let k be an algebraically closed field of char-
acteristic c, prime to r. Assume that

(a) G satisfies (5.1), and
(b) A is an r['subgroup of G.

Then there is a conjugate of H (in place of H) and a subgroup N
of G such that

( i ) G = NR, NΠR = Z(R), A^N;
(ii) H = (Nf) H)R, Af] NO H is an r1-subgroup of NΠ H;
(iii) Go = (ΛΓn-ff)^;
(iv) there is a protective extension U of Vλ((A f) H)R^) to Go

such that U is nonprojective for (A Π H ) ^ for all xeNΠ H;
(v) ϊ/|ΘGr = V (as in Definition (5.8)) is a protective k[G]-module

which is equivalent to a nonprojective module when restricted to
AR; and

(vi) V\AB ίs equivalent to Vλ(AR) unless both dim Z7= — 1 (mod4)
and the permutation representation p of A upon the cosets of H
in G is not in the alternating group of degree [G: H]. In this
exceptional case, V\AB is equivalent to Vλ{AR) (g)ft W where W is a
1-dimensίonal module affording the alternating character of p.

(vii) V\A is equivalent to Π®^1 (g) Vλ(A f] (H Γ) N)*ψΛ where
aΓ1 runs over a complete set of A, H Π N-double cosets in N and



36 T. R. BERGER

Vχ(A Π (H Π NY) is taken to be Vλ{[A n (H n N)*]^) restricted to

Conditions (i)-(iii) are easily demonstrated by (5.2), and by using
an appropriate conjugate of H and a correct choice for N. By (5.15)
we may extend U to (N f] H)Rι = Go in such a way that if X is the
protective representation of Go afforded by U then for all r'-elements
y e GQ both det X(y) = 1, and 3£ has factor set 1 for <y>Λlβ The
uniqueness given in (5.14) and (5.15) together imply that UTBί =
VxiTR,) for every r'-subgroup T of (N Π JEΓ)^. Consequently, ί7
satisfies (iv).

Fix 2 e Z(R) and ueU. Then zw = λ(2)w for the character λ of
Z(i2). The element z e ^(i?) acts upon V as 2(1, 2) = hzM does. But
/&2(1) = z and fc,(i) = 1 for i > 1. Therefore if ^ ® •• ® ^ ί e F
where UiβXi^ϋ then 2 (^ ® ® ^8) = (zu^ ® ^2 ® ® ^ 8 =
M^X î ® ® wβ). In particular, Z(R) acts upon V via the char-
acter λ. By (5.10) and (iv), V is a protective A:[G]-module which is
equivalent to a nonprojective module for AR, proving (v). In addi-
tion, V\B is nonprojective, faithful, and absolutely irreducible. If
V affords the representation ^/ and det *%/(%) = 1 for all xeA then
V\A is equivalent to Vλ(AR) by (5.14).

Every element of the set J^ = \J(Af] HY, xeH, acts with
determinant 1 upon U. Thus, every element of the set J ^ * β £ G
acts upon U\®^ with determinant 1. The elements of Ξ(j*f*) all lie
in As^*Ω and have the form xf for ί e i and / 6 J / * β . Therefore,
the determinant of ^/{x) for a e i is equal to the determinant of x
upon ϋl*3.

Choose a basis uίf , ud for £7" and let 2f = {1, 2, , cZ}. We
set %/ = (^ (g) W/(1)) (x) ® (xs ® %(,)) where f: Ω —> 3t. The set
{Uf\fG<&0} is a basis for t^ | s σ . The action of £ upon this basis is
given by x uf — n^-u Thus A acts upon the u/s contragrediently
to the action f—>fx. In particular, the determinant of x upon
6̂1®̂  is just the parity of x upon the f's. We are in a position to
apply (5.13). That is, det %/(x) = 1 for xeA unless (1) or (2) of
(5.13) holds.

Assume that (5.13) (2) holds. If d Ξ= 2 (mod 4) then dim U =
d = r* Ξ 2 (mod 4) so that d = r* = 2 where 1^1 = r2ί+1. Further,
s = 2 and A ^ A% the alternating group of degree s so that 2||A|.
But then 2 divides (r, |A|) = 1. Therefore, (5.13) (2) cannot hold.

Assume that (5.13) (1) holds. Then d s - 1 (mod 4) and A £ A\
If x 0 A8, in this case, det ^/(x) = — 1. Part (vi) follows from these
considerations.

By (5.10) (4) and Mackey's Decomposition (2.9) V\A is equivalent
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to Π®(x~ι (x) U)\{HnN)*nA\®Λ where aΓ1 runs over A, H f] iSΓ-double coset
representatives in G. But x~ι ® Ulumwfu is equivalent to x~ι ®
F^A Π (H Π 2N0β) so that (vii) follows. The proof of (5.18) is now
complete.

Using Clifford's theorems again [14, (51.7)] we may prove the
following extension of this theorem.

(5.19) COROLLARY. Assume the situation of (5.18) holds. If Y
is an irreducible k[G]-module such that Z(R) acts upon Y via the
character λ and Y\B is nonprojective, then there is a protective
k[G]-module X with R in its kernel such that Y is equivalent to
V®kX.

REMARK. If Y\R is irreducible then X must be one dimensional.

6* Field extensions and forms* We shall say that a bilinear
form g on a vector space V is classical if g is (i) symmetric, (ii)
symplectic (alternating), or (iii) unitary. If g is unitary, we shall
use v to denote the associated field automorphism of order two.

(6.1) HYPOTHESIS. Assume that K is a finite field; G is a group;
and V is an irreducible K[G]-module. Suppose that g: V x V—>K
is a nonsingular classical bilinear form on V which is fixed by G
(i.e., g(xu, xv) = g{u, v) for all u, v eV and x e G).

The object of this section is to study the form g in extension
fields of K.

(6.2) PROPOSITION. IfK= Hom*:[(?](F, V) then K is a finite ex-

tension field of K. If I is the anihilator of V in K[G] and A =

Hom£(F, V), then

K[G]/I = A .

There is an antiautomorphism a of A such that if

( i ) x is the image of xeG in A then xa = x~\

(i i) a\t is an automorphism of order one or two of K (if g
is unitary then a\κ — v), and

(iii) g(auf v) — g(u, aav) for all u,veV and a e A.

Define aQ:G~+G by setting xaQ = or1 for xeG. Thus defined,
a0 is an antiautomorphism of K[G]. If g is unitary, we extend v
linearly to an automorphism of K[G] by making it act trivially on
all elements of G. We take aγ — a0 except when g is unitary when
w e l e t at = va0. S i n c e g(xuy v) = g(u, x~xv) f o r a l l u,veV a n d xeG,
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we must have

g(au, v) = g(u, aaίv)

for all u,veV and aeK[G]. Since g is nonsingular, this latter
identity implies that a1 must stabilize the anihilator I of V in K[G].

Since V is irreducible, Schur's lemma implies that K is a divi-
sion algebra, and by Wedderburn's theorem on finite division alge-
bras, K is a finite extension field of K. By the Wedderburn struc-
ture theorems for simple algebras, K[G]/I = A where K is the center
of A. Now we see that at induces an antiautomorphism a of A
such that xa — x"1 where x is the image in A oί xeG. Since at

has order two on K[G]9 a will certainly have order one or two on
A. Further, since a is induced by alf and since V is naturally an
A-module, we have

g(au, v) = g(u, aav)

for all u, v e V and a e A completing the proof of (i) and (iii).

In order to prove (ii), assume that aeK9 the center of A, and
that x is the image in A of any xeG. Then

xaa = (χ-ι)aaa = (ax'1)" = (^"'α)01 = a^x'ψ = ααx

for all a? 6 G. We conclude that aa eK so that α fixes K, and there-
fore, must be an automorphism of K of order one or two. If t e K
then (t + I) α = {t«ί + I) = tv + I when # is unitary. In this latter
case, a\κ — v completing the proof of the proposition.

NOTATION. We shall let K = Ή.omκm(V, V) and A = Homi(F, F).
We denote trace mappings as follows:

(a) A: A—>K of A (linear algebra trace); and

(b) τ:K^K of K.

(6.3) PROPOSITION. If be A and a is as in (6.2) then

J(ba) - Δ{b)« .

Fix a if-basis for V and identify an element aeA with its
matrix a written in this basis. Let a be the automorphism of A
given by applying a\& to the entries of a matrix α. Let t be the
antiautomorphism of A given by transposing a matrix α. It is
straightforward to show that the composition aat is an automor-
phism of the central simple algebra A which centralizes K. By the
Skolem-Noether theorem, aat is inner. That is, written as matrices,
aaat = b^ab for some invertible matrix b. Written differently with
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c~ι = bia we have

aa = c -1α tαc .

Taking traces we have

Δ(aa) = Trace (δα)

= Trace (3*«)

= [Trace (α)]α

- 4α)β

completing the proof.
Fix a nonzero vector t e F , and a primitive idempotent e 6 A

such that ev = v. The mapping 0: Ae —> F defined by ^(αe) = cw,
α e A , is an A-isomorphism, so that

(6.4) g(ae, be) - g(φ(aβ), φ{be))

defines a nonsingular classical form g on Ae equivalent to g on V.
The representation x \-+ x of x on V gives a homomorphism of G
into A and thus defines an action of G on Ae isomorphic to that of
G on V. For the time being, we will treat the module Ae and the
form g in place of V and g respectively.

(6.5) PROPOSITION. There is an element deA such that
(i) da = d if g is symmetric or unitary, and da = — d if g

is symplectic, and
(ii) g(u, w) = τΔ(dwau) for all u, w e Ae.

It is straightforward to verify that if a, be A then a, b t-> Δ{ab)
defines a nonsingular symmetric IΓ-bilinear form on the i£-space A.
Likewise, r, s i-> τ(rs) defines a nonsingular symmetric jfiΓ-bilinear form
on the jfiΓ-space K. Since Δ is ^-bilinear, we conclude that for
a, b e A, α, b\-+τΔ(ab) defines a nonsingular symmetric jfiΓ-bilinear form
on the /iΓ-space A.

The mapping

a i • ^(αe, e)

defines a jfiΓ-linear functional on the ϋΓ-space A. By nonsingularity,
we conclude that there is a d 6 A such that

ί/(αβ, β) = τΔ(da)

for all α e A. If u, w e Aβ then

g(u, w) = ^r(^e, we)

= g(waue, e)

= τΔ(dwau) .
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To complete the proof we need only show that da — εd where
ε = 1 if g is symmetric or unitary and ε = — 1 if g is symplectic.
If g is not unitary, we let v = 1. If a e A then by the symmetry
of A{ab) we have

0 = g(ae, e) — g(ae, e)

= g(ae, e) - εg(aae, e)v

= τΔ(dά) - ε[τJ(daa)f

= τΔ{da) - ε[τ{Δ{daa)a}\ .

Because τ\K-+K is the trace, τ{ua) = τ(^)p for % e ί so that

0 = τA{da) - ετΔ(daa)

εda]ά)

for all α e i . Since τΔ(ab) is nonsingular, cί — εda = 0 or cZα = εd
completing the proof of the proposition.

(6.6) PROPOSITION. Define

h(u, w) = Δ(dwau)

for u, w e Ae. Then

( i ) h is fixed by G,
(ii) if u, wly w26 Ae and ceK then

h(cw1 + w2, u) = ch(wlf u) + h(w2, u) ,

(iii) if u, w 6 Ae then

h(u, w) = εh(w, u)a

where ε = 1 i / flr is symmetric or unitary and e = — 1 if g is
symplectic,

(iv) /& is nonsingular, and
( v ) i/ = τh.

Let α?eG and ά be the image of x in A. Then

ft(α;t6, a?w) = h(xu, xw)

— Δ(d(xw)a(xu))

= Δ(dwa(xax)u)

= Δ(dwau)

= h(u, w)

for all u, w e Ae so that G fixes h.
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Part (ii) is an obvious calculation using the X-linearity of Δ.
To prove part (iii), use the symmetry of Δ{ab) to note that

h(u, w) = Δ(dwau)

= Δ(uawda)a

= Δ(dauaw)a

= εΔ(du"w)

= εh(w, u)a .

Now (v) follows from Proposition (6.5) (ii), so that the non-
singularity of g implies the nonsingularity of h completing the proof
of (iv) and the proposition.

(6.7) THEOREM. Suppose that Hypothesis (6.1) holds. Set K =
Homft[0](V, V) so that K is a finite extension field of K. Then one
of the following occurs.

(i) There is a nonsingular classical form g on the K-space
V of the same type as g which is fixed by G and for which

where τ:K—+K is the trace mapping.
(ii) The form g is symmetric or symplectic; there is an automor-

phism a of order two of K which fixes K; there is an element μ
such that μ = 1 if g is symmetric and μa = — μ if g is not sym-
imetric; and there is a nonsingular unitary form h on the K-space
V fixed by G such that

g = τ(μh)

where τ:ίt—*K is the trace mapping.

Since φ: Ae —* V is an A-isomorphism, we may define

g(u, w) — h(aef be)

where u — av, w — bv for a, b e Ae and h is as in Proposition (6.6).
If g is unitary or a is trivial on K then part (i) follows directly
from Proposition (6.6).

Assume now that a is nontrivial on K and that g is symmetric
or symplectic. If g is not symmetric then K has odd characteristic
and we may find μ e K, μ Φ 0, such that μa = — μ. In all other
cases let μ = 1. Then μa = εμ where ε = 1 if g is symmetric and
s =z — 1 otherwise. Set

h = μ~ιg .
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By part (iii) of Proposition (6.6),

h(u, w) — h{w, u)a

for u, weV. By (i)-(iv) of that proposition, h is a nonsingular
unitary form on the if-space V fixed by the action of G. Finally,

g = τg = τ(μh)

by part (v) of Proposition (6.6) completing the proof of the theorem.
Nonsingular and totally isotropic subspaces of V may sometimes

be followed through this extension process.

(6.8) PROPOSITION. Consider the situation of Theorem (6.7). If
N is normal in G, U is a homogeneous component of the K[N]-
module U, and f is the extended form of the theorem (f=g in (i)
or f — h in (ii)) then U is totally isotropic (nonsingular) for f if
and only if it is also for g.

If τ:K—>K then there is a μ such that τμf' = g. From this it
follows that if U is totally isotropic for / then it is also for g, and
if U is nonsingular for g it is also for /. Suppose that / is non-
singular. If 0 Φ v 6 U, then there is a u e U such that f(v, u) Φ 0.
By taking a scalar multiple of u in place of u we may assume
f(v, u) has some preassigned nonzero value. In particular, this
preassigned value ω may be taken so that τ(μω) Φ 0. Thus g(v, u) =
τμfiy, u) Φ 0 proving that g is nonsingular. Finally assume that U-
is totally isotropic for g. By our argument above, U must be
singular for /. Let S = stab (G, U) be the stabilizer in G of U.
Since V is an irreducible UΓ[G]-module, U is an irreducible K[S]-
module. But the radical of / in U is not (0) and is S-invariant
implying that U is totally isotropic, proving the proposition.

REMARK. The results of this section may be used to simplify
some parts of § 3 of [4].

7* Minimal if [G]-modules*

(7.1) HYPOTHESIS. Assume that K is a finite field, G is a group,
and V is an irreducible K[G]-module. Suppose that g: V x V-+K
is a nonsingular classical bilinear form on V fix$d by G.

We shall say that V is form induced by U if there is a sub-
group S of G and a nonsingular UL[S]-submodule U of V such that
both U\G ^ V and the distinct subspaces among xU, xeG, of V are
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pairwise orthogonal. An irreducible module which is not form in-
duced from a proper submodule will be called form primitive.

The following obvious result shows that form induction is just
"form invariant" induction.

(7.2) PROPOSITION. Assume (7.1). Let S be a subgroup of G and
U a K[S]-submodule of V which form induces V. Let xl9 x29 , xt

be a transversal for S in G. Define g on U\G x U\° by setting

#(Σ Xt ® ui9 Σ »i ® Vi) = Σ g(uif vt)
i 3 i

for UitVjβU. Then g is a nonsingular form on U\G. Further,
the isomorphism φ: U\G—»V defined by φ(x(g)u) — xu> xeG, ueU,
sends g to g — φg.

Suppose t h a t Σ ^ ( g ) ui9 Σ χi ® Vό εU\G where uίt vt e U. Then

<7(Σ »i ® ui9 Σ »y ® V,) = Σ 9(ui9 vt)

= Σt.i

Σ
= φg(Φ Σ Xi ® w4, ^ Σ »y ® vy)

since g(XiUi9 XjVj) = 0 for all i =£ j .

Equally obvious is the following fact.

(7.3) PROPOSITION. Assume (7.1). Γfeere is a subgroup S of G
and a form primitive K[S]-submodule U of V so that U form
induces V.

If V is form primitive we simply take G = S and V = U. In-
duction upon |G| and the transitivity of module induction complete
the proof.

Like the primitive modules, the form primitive modules are dif-
ficult to know. In classifying primitive modules, one usually studies
quasiprimitive ones. We follow an analogous course here. Since
"form quasiprimitive module" is too cumbersome, we opt for simpler
vocabulary.

(7.4) DEFINITION. Assume (7.1). We say that V is a minimal
K[G]-module if for any normal subgroup N of G either V\N is
homogeneous or V\N = V1 + V2 where the Vi are the homogeneous
components and are totally isotropic subspaces.
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REMARK. In other numbers of this sequence, a different, ap-
parently more restrictive, definition of minimal module is given. By
Corollary (7.11) this other definition is equivalent to the present
one. This fact was first noted by L. Kovacs.

The object of this section is to show that form primitive modules
are minimal and to derive a few simple properties of minimal modules.
We first study the effect of restriction to normal subgroups.

(7.5) PROPOSITION. Assume (7.1). If H<\G and V\H = Vx +
"' + Vt where the Vi are homogeneous components then either all
Vi are nonsingular or all are totally isotropic.

Let S = stab (G, Vi) be the stabilizer in G of Fx. Since S fixes
9, V1 (Ί Vi is a UL[S]-module. But Vlf as an S-module, is irreducible
since V.f (from S) ~ V and V is irreducible. Therefore, V, Π Vi =
V1 or (0). So Vx is totally isotropic or nonsingular. Since Vt = xVx

for some x e G and since G fixes g, we must have Vt nonsingular
if and only if V1 is also. A similar situation holds if Vx is totally
isotropic. The proof is complete.

(7.6) PROPOSITION. In (7.5) if Vx is nonsingular then all the
Vi are pairwisβ orthogonal so that V1 form induces V from S =
stab ((?, Vi).

Since Vt = xVt for some xeG and since G fixes g, it is sufficient
to prove that V1 and V3 are orthogonal for j > 1. The subspace
Σi>i Vi is the unique UL[Jϊ]-complement to Vλ in V because the Vt

are homogeneous components. But H fixes g, and Vt is nonsingular,
so that Vi is a UL[iϊ]-compleinent to Vλ in V. Therefore, Vi =
VJί>l completing the proof.

(7.7) PROPOSITION. In (7.5) if V1 is totally isotropic then there
is an xeG so that

(a) x2eS== stab (G, Vi) and x e NG(S),
(b) U = Vί + xVγ is a nonsingular K[K]-module where K ~

(S,x>,
(c) U form induces V, and
(d) Cs(Vi) - Cs(xVi).

Since V1 is totally isotropic VΊ £ F^. By complete reducibility
of V\B we may find a ^"[Jϊ]-complement F* to the JfiC[jBΓ]-module
Vi in F so that F = F* 4-Fχ1. The nonsingular it y of F guarantees
that F* + Fx is a nonsingular space. The form g is fixed by H so
that nonsingularity of g on F* + Fx assures us that the module F*
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is contragredient to Vx. In particular, F* is a homogeneous K[H\-
module. Since dim F* = dim Vt we know that F* = V3- is a homo-
geneous component of V\H. There is some xeG so that V3- = α?V\.
There is a unique ii[jff]-complement in V to Fx + F,,-, and it is
Σi*i,i ^ B u t (^i + ^O 1 is a lf[iϊ]-complement to Fx + V3 so that
(F, + V,) = Σ^i,i ^ .

Let 2/eG be such that T/F! or yxVγ is F1# Then y(Vx + xVJ—
Vι + Vi for some i. Since F^ 2 Σ *i,y K an<* since Fx + F< is
nonsingular, we must have i — j so that {yV^yxVJ is {F1? #FJ.
With y = x we have {α F^ αfFJ = {Fx, xVλ) so that a?2^ = Vx and
a;2€S. If yeS then yF t - F t so that {V19 yxVJ = {Vl9 xV,}. From
this we conclude that yxVγ = xVλ or x^yxeS. This completes the
proof of (a). Part (b) follows since K = <S, α;> has S as a subgroup
of index two, since F J 6 (from S) = F is irreducible, and since V^0

(from S) = ( F J ^ Γ = U\G. Now yl7 £ Σ^i,i Vt for 2/ ί i^, and U1 =
Σi#i,i ^i s o ^ a t yU QU1 for yiK. Therefore, the distinct modules
among yU, yzG, are pairwise orthogonal proving (c).

The group S fixes g and acts upon the complementary totally
isotropic subspaces F x and xV1 of U. Thus the action of S on V1

is contragredient to that on xV^ In particular, yeCsiVj) if and
only if y'eCsixV,) proving (d).

We may now prove:

(7.8) THEOREM. In (7.1) if V is form primitive then V is a
minimal module.

If V\N is homogeneous for all N<\G9 then F is a minimal
module. So assume that N <\G and V\N = Vx + + Vt where the
Vt are homogeneous components and t > 1. By (7.5) either all the
Vi are totally isotropic or all are nonsingular. Let S = stab (G, FJ.
If the Vi are nonsingular, then by (7.6) F J β (from S) =V and F is
form induced. Therefore, all the Vt must be totally isotropic. By
(7.7) there is a group K > S such that [K: S] = 2 and Fx Γ (from S) ^
Vι + ^ i (for s o m e 0 > 1) is nonsingular. In addition, with U =
^i + V"/, Ϊ7 form induces F. We conclude that U = F and t = 2
completing the proof of (7.8).

We turn now to the structure of minimal modules.

(7.9) THEOREM. Assume (7.1) holds. Suppose that S and T are
distinct subgroups of G of index 2 such that V\s = VY-\-V2 and
V\τ = Ux + C/z where Vt and U3-, i, j = 1, 2, are homogeneous totally
isotropic components of V. Fix x e S\T and y e T\S, and set H =
S Π T and K = <iϊ, xy}. Then either

(1) aiί the modules Vi and Ujf i, j = 1, 2, are irreducible iso-
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morphic K[H]-modules such that VΊ (Ί Uj = (0) for i, j = 1, 2; or
(2) Fx Π C/Ί + F 2 Π 17* αwc£ F x Π Ϊ72 + F 2 Π E/x a r e orthogonal non-

isomorphic irreducible K[K]-modules either of which form induces
V.

We set Vid = F, Π ̂  for i, j = 1, 2. Note that F^ is a
module. Since S and T are of index 2, G/fZ" is a four group. Since
[S: H] = 2, and since V1 is an irreducible ϋΓ[S]-module, VX\H is the
sum of at most two JΓ[17]-modules.

Since Vu Φ V19 if VUΦ(Q) then F J ^ is reducible. If V1\H is
reducible and W is an irreducible K[ϋΓ]-submodule of Vι then W +
yW is a proper ^[Γ]-submodule of F. The only such submodules
are ϋx and J72 so that (0) Φ W ^ Fx Π I7y = F u for some j . Con-
sequently, VJjy is irreducible if and only if Vls = (0) for j — 1, 2.

Assume that F^ = (0) for all i, j = 1, 2. By our observations
above, Vt\H and Z7 |̂ff are irreducible for i, j — 1, 2. Since F t + F 2

and Ut + ^2 are two distinct decompositions of V|ff into a sum of
irreducible UL[iϊ]-modules, V\H could not have two nonisomorphic,
hence unique, homogeneous components. We conclude that V\H is
homogeneous and all of FJ H , Uj\H, i, j — 1, 2, are isomorphic irre-
ducible jK"[£Γ]-modules proving (1).

After renumbering, we may now assume that Vn Φ (0). By
our previous comments, Vn is one of two irreducible constituents
in V\H. Since xVx = Vlf yV1 = Vif xUt = ?72, and since Fx Π V2 =
UιΠUi = (0), we have

(7.10) V = Vn +

where corresponding summands are equal (e.g., F12 = xVn).
With W, = F n 4- F22 and W2 = F12 +• F21, we know that W, and

W2 are jqί]-modules and xWγ = W2. Therefore F = W,\G (from JSΓ).
We prove that T^ ^ W2. Notice that F n ^ ^ + U1 where Fx

and J7χ are totally isotropic. Consequently, FA ^ VΊ + E/Ί = F u +
F1 2 + F2 1 ^ TF2. Similarly, Fέ ^ W2 so that TΓ,1 ^ Fά n F^ ^ TF2.
We conclude that the modules Wx and W2 are nonsingular and or-
thogonal to each other. Thus WΊ form induces F from K.

Finally, assume that W1 = TΓ2 as jfiΓfiΓJ-modules. Since F n +
F22 = WΊ and F12 + F21 = W2f F n is isomorphic to one of F12 or F21

as a K[iϊ]-module, because the modules ViS are all irreducible K[H]-
modules. From (7.10) we have

Vx = F u + F12 = Vn \s (from H) , and

F2 - F2 1 + F22 = F2 1 \
8 (from H) s F 2 2 | s (from H) ,
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as UL[S]-modules. Since Vι and V2 are nonisomorphic ίΓ[S]-modules,
Vn is isomorphic to neither V2l ^or V22 as ϋΓ[iϊ]-modules. Thus
Vn is isomorphic to Vί2 as a K[H]-moάule. Applying the same
analysis to U^ = Vn + V2ly U2 = V12 + F22, and Γ in place of Vί9 V2,
and S we find that Vn cannot be isomorphic to V12 as a
module. We conclude that Wλ and W2 are nonisomorphic
modules proving (2) and the theorem.

(7.11) COROLLARY. In Theorem (7.9), if V is a minimal module
then Vi\N is homogeneous for all N ^ S, N <\ G.

Assume that Vt\N is not homogeneous so that V\N is not homo-
geneous. In the theorem we replace Ui9 i = 1, 2, and T as follows.
By the definition of minimal module, V\N— U1 + U2 where L7< is
totally isotropic and a homogeneous component. We set T —
stab (6?, Dy. Since Vt\N is not homogeneous, S Φ T. Let W be a
component of Vt\N so that (0) Φ W ^ Vt Π l/y for some j. Applying
the theorem to this choice for S and T forces conclusion (2) to occur.
But then V\κ is the sum of two nonisomorphic nonsingular or-
thogonal homogeneous components violating the fact that V is a
minimal module, and proving the corollary.

8* Reduction theorems for minimal modules* Situation (1)
of Theorem (7.9) brings some complexity into the analysis of minimal
modules. We set that situation as hypothesis and examine it in
some detail.

(8.1) HYPOTHESIS. Assume that K is a finite field; G is a group;
V is an irreducible K[G]-module; and g:V xV—>K is a nonsingular
classical bilinear form on V fixed by G. Suppose that S and T
are distinct subgroups of G of index 2 such that V\s = V1 + V2

and V\τ = Uι + U2 where Vt and U3 , i, j = 1, 2, are homogeneous
totally isotropic components of V. IfH—Sf)T then Vt and Vh

i, j — 1, 2, are irreducible isomorphic K[H]-modules such that Vt Π
Uj = (0) for i, j = 1, 2.

N O T A T I O N . Choose x e S\T, y e T\S. Set H = Sf]T and K =
<iJ, xy). This notat ion conforms to t h a t of Theorem (7.9).

(8.2) LEMMA. Assume that (8.1) holds. Let L ^ H be a sub-
group of G of index 2 such that V\L = W1 + W2 where the Wt are
homogeneous components.

(1) char K = p > 2.
(2) If f o r w e W t w e d e f i n e z > w = z w f o r z e H o r — z w i f
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zeL\H then the --action of L on W1 is isomorphic to the action of
L on W2 but not the action of L on WΊ.

(3) Hom*W3(F, V) = Romκm(Wlf Wx) =

By hypothesis, F|# is homogeneous. In particular, V1\H^ Wι\H,
and therefore Kx = Ή.omκυn(Wly WJ = ΈLomκun(Vl9 VΊ). Since Wx φ.
W2 as JRΓ[L]-modules, there are two nonisomorphic extensions of
WX\H to L. These extensions are isomorphic to composition factors
of Wi|H|L = Wt®k J where J is the regular ϋΓ[L/iϊ]-module [14,
(51.7)]. Thus J has two nonisomorphic 1-dimensional composition
factors (one with zeL\H acting as —1 and the other with z acting
as +1). Obviously we must have char K = p > 2, proving (1). The
properties of the --action follow immediately since J is the sum of
a trivial UL[L]-module and a module on which zeL\H acts as — 1.
From Proposition (1.7), since WX\H is irreducible and has two distinct
extensions to L, it follows that Hom*[jL](TFi, WΊ) = RomKim(Wlf Wx).
By Corollary (1.5) we conclude that Hom^[(?](F, V) = B.omKiLi(Wlf WΊ)
proving (3) and the lemma.

(8.3) LEMMA. Assume that (8.1) holds. There is a unique
K[H\-isomorphism φ: Vx—> V2 such that φ'{v) = v + φ(v) and φ"{v) =
v — φ(v) define K[H]-isomorphisms of Vt onto ϋΊ and U2 respectively.
If x, y eG are as in Theorem (7.9) then for v6 Vlf

(1) xφv = — φxv, and
( 2) φyφv = yv.

Since dim F, = dim Ui = 1/2 dim V and U1V\V1 — (0), for each
veV1 there is a unique φv e V2 such that v + φv e Ux. It is straight-
forward to verify that φ is a uniquely defined j£[iϊ]-isomorphism
from VΊ to V2. Prom this the properties of φf follow.

Consider the action of S on Vγ given by z*v = φ~xzφv for zeS
and v 6 VΊ. This *-action is isomorphic to the action of S on V2

but not on V\. Up to isomorphism, there are two extensions of
V1\H to S: one represented by Fx and the other represented by the
•-action of Lemma (8.2) with L = S and Vx = Wx. In particular,
the --and *-actions are isomorphic. Since they are identical for H,
there is a μBΈamK[H-\{V19 Vx) such that z*μv = μ{z v). By Lemma
(8.2), j M e H o m ^ F ! , VΊ) so that μ(z v) = z (μv) for all 2JeS and
i;e Vγ. We conclude that 2J*v = Z V for all 2ieS and v e F l β Ap-
plying this with 2 = a? gives φ~*xφv — — xv or aĵ v — — φxv for all
v eV1 proving (1).

Since xUί— U2, since given ue U2 there are unique vlf v2e V1

such that u — vx + φv2J and since x(v + ^v) = a?v 4- (xφx^Xxv) = (a v) —
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φ(xv) 6 Z72, we have u — v — φv for a unique v e Vx. From this the
properties of φ" follow.

Since y stabilizes U19 if veV1 then for some unique v' e Vlf

v' + φV

f = y(v + Φv) = yφv + yv .

Equating components in Vi9 i — 1, 2, gives

yφv = i;' and yv = ^i;' ,

from which we obtain

for all v 6 Vlf proving (2) and the lemma.

(8.4) LEMMA. Assume that (8.1) holds, and that φ is as in
Lemma (8.3). Define φeGL(V, K) by setting φv = φv ifve Vλ or
— φ~γv if veV2 and extending linearly to V. Then

( 1 ) ft= - 1 ,
( 2 ) φ G Homjq ̂ ί F , F ) ^feere JfΓ = {H, xy),
( 3 ) xφ — — φx,
( 4 ) φ is a K[H]-isomorphism which interchanges V1 and V2,

and also Uι and U2, and
( 5 ) φ fixes g.

Using Lemma (8.3) we have

0 = g(u + φu, v + φv) = #(w, ^v) + ^ ( ^ , v)

for all %, v 6 7i so that

g(u, φv) = - 0(0u, v) .

If u, v, n\ v' 6 F x then

g(φ(u + ^v), 0(u' + φv')) = g(-v + φu, - V + ^ ' )

= - fKv, ̂ ' ) - ί/(^> v9) = flr(^ι;, %') + 0(w, ̂ ' )

= βr(^ + φv, uf + ̂ v')

proving (5).
If veVΊ then α ^ = xφv = — ̂ αjv = — ̂ αw, and xφ(φv) — — xv —

φ~1xφv= —φx(φv) proving (3). Again if v e Vlf yφv — yφv — φ'^yv— —φyv,
and yφ(φv) = — yv — — φy{φv) = — φy(φv) proving that yφ == — ̂ y.
Since φ is clearly a jfiΓ[JΪ]-isomorphism, and xyφ = φxy we conclude
that (2) holds. It is obvious that φ interchanges V1 and V2. Since
φ(v + φv) = — (v — φv), Lemma (8.3) implies that φ interchanges U1

and U2, proving (4). Finally, if v e Vt we have φ2v = — v and
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φ\φv) = — φv proving (1) and the lemma.

(8.5) PROPOSITION. Assume that (8.1) holds. Recall the notation
K - <£Γ, xy) where x e S\T and y e T\S. Set K = HomT O ](7, 7) .

(1) —1 is a square in K if and only if V\κ is reducible.
( 2 ) // ieK and i2 = - 1

then

W,^= {v + iφv\ve FJ

and

W2 = {v - ^

are complementary nonisomorphic irreducible K[K]-modules.
(3) Assume that —1 is a square in K. Then W1 and W2 are

nonsingular and orthogonal if and only if there is unitary K-form
f on V fixed by G and φ and an element μeK such that g = τμf
where τ:K—>K is the trace, and K= GF(p2t) where p = 3 (mod 4)
and t ί> 1 is odd.
(In all other cases W1 and W2 are totally isotropic.)

(4) φ centralizes K.

Assume first that V\κ is irreducible. Set Kγ = Ή.omKιK](V, V).
By Lemma (8.4), φ e Kγ. Since xφ — — φx, φ £ K ^ Kx. By Schur's
lemma and Wedderburn's theorem on finite division algebras, Kγ is
a field. Since φ and — φ are the square roots to —1 in Kt and since
φ &K, we conclude that — 1 is not a square in K, proving part of (1).

Assume that V\κ is reducible. Since V is irreducible and
[G: K] = 2 we must have V\κ — W1 + W2 where Wt is irreducible.
Since x$K, there is no loss in assuming that W2=xW1. Redefine Kγ —
Hom ĵfjίWi, Tί̂ O. We prove that —1 is a square in K. Suppose
W1 £ W2 as Jί[UL]-modules. Since φ induces a lf[iiΓ]-isomorphism of
V, φ stabilizes W19 and therefore, φ\Wl is a square root of —1 in
Kx. By Lemma (8.2) Kλ ~ K so that —1 is a square in K. Assume
next that WΊ = W2. If ae^ and wt e Wi then we set a!(w1 + w2) =
α^i + xax~ιw2. In this way we obtain a field if[ — {a!\ a e ϋΓJ iso-
morphic to jfiΓlβ Since K is normal in G, since α TFi = PΓ2, and since
jfiΓi centralizes if on Wlf it is straightforward to prove that K cen-
tralizes K[ on F. But xa\wγ + w2) = ^aa;"^^^!) + x2ax~ιw2 = α(a? 2̂) +
a αα 'Xα tϋ!) = α'a ί^i + w2) since x2 eK proving that K[ <; K. By
Frobenius Reciprocity as in (1.4) we obtain if-isomorphisms:

K = Homκ[G](F, F) -

since WJ0 = F and V\κ= W, + W2 = WX@W19 so that by dimension
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count, [K: K[] = 2. By Lemma (8.2) we have K = GF(pzt) for an
odd prime p and an integer t ^ 1. We have proven that — 1 is a
square in If when V\κ is reducible, completing the proof of (1).

Assume that i e K where i2 = — 1. Since 0 is a K[Jϊ]-isomor-
phism of F, and since H stabilizes Vlf W1 and W2 are ϋΓ[2ϊ]-modules.
But xy(v + iφv) = ί̂ α?2/v + a^v = iφxyv—φ(φxyv) = i((φxyv) + iφ(φxyv)) e Ŵ
because Fj is a Jί-module and because ^gyv e F l β We conclude that
Wx is a Jί[UL]-module. A similar argument proves that W2 is also.

Clearly W1 and W2 are ^-modules since V, and F 2 are. We
show that TFi Π W2 + (0). Suppose that v + ί^t; = u — iφu for u, t; 6 Vx.
Then ^(v + u) = v — u e F t Π F2 = (0) so that v — u = 0 — v + u and
v = ^ - 0. Thus TΓx ΓΊ TΓ2 = (0). Since [G: ίΓ] - 2, F | * = W,+ W2

where Wt is an irreducible K[K]-module. By Frobenius Reciprocity
as in (1.4), we have the following ϋΓ-vector space isomorphisms.

K = KomκίG}(V, V) = H o m ^ ί ^ , W, + W2)

Since K leaves W1 invariant and centralizes the action of K on
Wlf K <> Homκiκi(W19 Wx). Dimension considerations then give
RomK[KiWu W2) = (0) proving that Wί £ Wt.

By Lemma (8.4) ^ G H o m T O ( 7 , V). By Lemma (8.2), K =
Romκm(Wi9 W<). Since Wλ ¥ W2, K, = HomκM(F, V) - Hom^](Wi +
W2, W, + W2) = Ή.omKίκΊ(Wίf Wd 0 Hom ϊ [ Λ(W ί f T72) = K®K. Since
^ and K lie in the commutative ring Klf φ centralizes K, proving
(4).

Let G* be the linear group on V generated by φ and G. By
Lemma (8.4) G* fixes g. Now K^Ή.omK[G*](V, V) ^ K so that ^ =
Hom£:[G*](F, F). By Theorem (6.7) there is a classical J^-form / fixed
by G* and a μeK such that # = τμf where τ:K—>K is the trace
mapping. Let v be the automorphism of K associated with / if /
is unitary, or v — 1 otherwise. By Proposition (6.8) £7* and Vy are
totally isotropic for / if i, j = 1, 2.

Thus if W,VG VΊ then

a) z= f(u + iφu, v + i^v) = f(u, iφv) + f(iφu, v)

= iuf(uf φv) + i/(^%, v)

= (ϊ ~ ί)f(φu, v)

because φ fixes /. If iv — i then ω — 0 so that W1 is totally iso-
tropic for / hence also g. Given u e V19 we may find v e Vx so that
#(^w, v) 9̂  0 since F 2 is totally isotropic and g is nonsingular. Thus
f(φu, v) Φ 0. By choosing a scalar multiple of v we may take
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f(φu, v) to be equal to any preassigned value in K. If iu Φ i then
we may choose f(φu, v) so that

g(u + iφu, v + iφv) = τμf{φu, v) Φ 0 ,

proving that W1 is not totally isotropic. If Wλ is not totally iso-
tropic then Wx is nonsingular, because it is irreducible.

From this we conclude that TΓi is nonsingular for g if and only
if iv Φ i, that is, / is unitary, and K = GF(p2t) where p == 3 (mod 4)
and t ^ 1 is odd, since i is a fourth root of unity.

Since Wx £ W2 and Wt is a jfiL[ίΓ]-module, if W1 is nonsingular
then Wt = W2. If WΊ is totally isotropic then W2 is also, com-
pleting the proof of the proposition.

We may now prove a uniqueness result for the subgroup H.

(8.6) PROPOSITION. Assume that (8.1) holds; —1 is a square in
K = Hom*[σ](F, F); am? V is a minimal module. If N is normal
in G, V\N — Xx + X2 where Xt is a homogeneous component, and
R = stab (G, X,) then R ̂  H.

Assume that R^ H so that RH = G. Applying Theorem (7.9)
and the fact that V is a minimal module to the pairs (S, T), (R, S)
we find that V\H and F^ns each is the sum of two isomorphic
irreducible modules. In particular, V1\H ~ V2\H and Vι\Bo8^V2\Bns-
Choose xeRf] S\Rf]Sf] T, weSf] T\RnSf] T, yeRnT\RnSnT,
and set L = (R Π S Π T, xw). By Proposition (1.8) applied to S,
VΔL^v2\L.

Set K, = <i2 Π Γ, aw>. Applying Theorem (7.9), and the fact
that 7 is a minimal module to the pair (R, T) proves that (8.1)
holds for that pair. In applying Proposition (8.5) to the pair (R, T)
we find that V\Kι = Wt + W2 where the Wi are homogeneous com-
ponents. Note now that Kx Π S = L. Since 7 is a minimal module,
applying Theorem (7.9) to the pair (Klf S) we find that V\L is the
sum of two isomorphic irreducible modules against the fact that
V1\L & V2\L. We conclude that R^ H, completing the proof.

As a corollary, we obtain the following classification of minimal
modules when —1 is a square in K.

(8.7) THEOREM. Assume that (7.1) holds, V is a minimal module,
and — 1 is a square in K = ΈLomKιG-ϊ(V, V). Precisely one of the
following occurs.

(1) V\N is homogeneous for all N normal in G.
(2) There is a unique subgroup S of index 2 in G such that
( i ) V\s = V1 + V2 where Vt is a totally isotropic homogeneous
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component,
(ii) Vi\N is homogeneous for every normal subgroup N <^ S

of G, and
(iii) V\N is homogeneous for every normal subgroup N^S

of G.
(3) There is a unique normal subgroup H of G where G/H is

a four group such that
( i ) V\L is not homogeneous for any H < L < G, and
(ii) V\N is homogeneous for any normal subgroup N of such

that N ^ H or NH = G.

Assume that (1) does not hold. Then there is a normal sub-
group of K of G such that V\κ — V1 + V2 where the Vt are homo-
geneous totally isotropic components. Let S = stab (G, VΊ). By
Corollary (7.11), F J V is homogeneous for every normal subgroup
N ^ S of G. Therefore, if N^ S is normal in G and V\N is in-
homogeneous, then the homogeneous components are precisely V1

and V2. If (iii) of part (2) holds then S is obviously unique proving
(2). Assume that (iii) of (2) fails so that there is a normal subgroup
L S S of G such that V\L — U1 + U2 where the £7* are totally iso-
tropic homogeneous components. Set T = stab (G, Z7X) so that S Φ T.
By Theorem (7.9) Hypothesis (8.1) holds. By Proposition (8.5) con-
dition (i) of (3) holds with H = Sf]T. Part (ii) of (3) holds when
N <; H since V\H is homogeneous by Theorem (7.9), and since parts
(i) and (ii) of (2) hold for V\s, as we have already observed. Part
(ii) of (3) when NH = G and the uniqueness of H are implied by
Proposition (8.6) completing the proof of the theorem.

(8.8) DEFINITION. Let G be a group with normal subgroup H
where GjH is a four group. Suppose that K is a field of charac-
teristic p > 2 and ieK satisfies i2 = —1. Fix x,yeG such that
G — (H, x, y). Let U be a 2-dimensional If-space with basis {u19 u2}.
Define an action of G on U by setting:

xzux = iut yzuι — iu2 xyzux — u2 zux — uι

xzu2 = — iu2 yzu2 = iuγ xyzu2 = —uι zu2 = u2

where z 6 H. If a, a', β, β' e K then set

+ βu2, arut + β'u2) — aβ' — a'β .

(8.9) PROPOSITION. U of Definition (8.8) is an absolutely irre-
ducible protective K[G]-module with kernel H and factor set Ύ
inflated from G/H and tabulated below. The form gQ is nonsingular,
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symplectic, and fixed by the action of G.

xH yH xyH

xH - 1 1 - 1

yH - 1 - 1 1

xyH 1 - 1 - 1

REMARK. The proof is easy once one notes that the extension
of G/H by 7 is a quaternion group of order 8, and that U is an
irreducible module for this quaternion group.

(8.10) THEOREM. Assume that (8.1) holds and that — 1 is a
square in K— Hom*[ί?](F, V).

(1) There is a projective extension V* of VX\H to G such that
Γ: V* (x)& U—* V given by

(where vt 6 V*(= Fx), U is as in Definition (8.8), and φ is as in
Lemma (8.4)) is a K[G]-isomorphism, and the factor set 7 of V* is
inflated from G/H and is given by the table of (8.9).

(2) There is a classical K-form f on V* fixed by G and a
μeίt such that g = τμ(f(g)gQ) where τ:K—+K is the trace.

(3) IfK—K and V is a minimal module then V* \N is homo-
geneous for all N normal in G.

(4) If K = K, V is form primitive, and G* is the extension
of G afforded by 7 then V* is a form primitive ίt[G*]-module for /.

Define an action of G on V*(=VΊ) as follows:

xz*v = —ixzv , yz*v = —iyzφv , xyz*v — —xyzφv , z*v = zv

where veV1 and zeH. Since φ maps Vt to V2 and both yz and
xyz also map V1 to V2, the *-action of any w e G is a well-defined K-
linear transformation of V*. It is a straightforward calculation to
prove that Vt is a projective if[G]-module with factor set 7 tabu-
lated in (8.9).

Obviously Γ defines a X[£Γ]-isomorphism of V* (x) U onto F.
Since V* (x) Z7 has factor set 72 = 1, Ff (g) Z7 is nonprojective. Thus
one only need prove that x and 2/ commute with Γ in order to com-
plete the proof of (1).

By Theorem (6.7), there is a classical K-ίoxm g on V fixed by
G and an element ωeίt such that g — τωg. If <; is unitary then
we let v be the associated automorphism of order 2, otherwise we



HALL-HIGMAN TYPE THEOREMS V 55

let v = 1. By Lemma (8.4), φ fixes g so that we may choose g
such that g is fixed by φ also.

If vlf v2 e F* then we set

where ε = — 1 if # is symplectic or 1 if otherwise, and rf = —77 ̂  0
if # is unitary or 1 otherwise. Since </ is bilinear, / is also. For
any v1 e V19 vx Φ 0, there is a v2 6 V\ such that /(v^ v2) = ̂ (Vi, ̂ v2) 9̂  0
because V is nonsingular for g, and because V̂  and V2 = φVx are
totally isotropic for g by Proposition (6.8). Consequently, / is non-
singular. Using 0 for unitary, + for symmetric, and — for
symplectic; we have the following type table for g and /.

9 0 + -
/ 0 - +

If vt e Vt for i = 1, 2, 3, 4 then

, ^1) + f(vί9 v4)g0{u2, u2)

(v29 vd)g0(u2, ux) + f(vi9 v^g^u^ u2)

= f(v19 v4) - f(v2, v3)

= V9(Vi + ^ 2 , ^3 +

Setting /̂  — ωη~ι we have βr = τμ(f ®. ̂ r0) proving (2). Using Theorem
(6.7) we may make the following table of possibilities.

REMARK. If K has an automorphism of order 2 then let v be
it, and choose η so that ηv = — 57 ̂  0. Denoting unitary by 0,
symmetric by +, and symplectic by — we have the following pos-
sibilities.

g 0 + + - -

/ 0 - 0 + 0

μ Ύ] 1 η 1 1

In order to prove (3), we first show that if N <\ G and NIK G
then V* \N is homogeneous. Let S, T> K — (H, xy) be the maximal
subgroups of G which contain H. Now
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ϋ\8 = kux + ku2,

U\τ = K{^ + u2) + k(u, - u2) , and

U\κ = k(u^ + m2) + k(uγ — iu2) .

That is, if L is one of S, T, or K then FU = V? \L (x) ( ^ + X2) where
U\L = X1 + X2 is the sum of 1-dimensional modules. Since we as-
sume that NH<G, we may take N^L. If Xλ is the dual of Xx then
Xx (x) Xx is the trivial module, so that Vt ® Xi Θ -Xi = Ff. Since
F f ^ ^ i U is homogeneous by Theorem (8.7), Ffl^ is homogeneous.

Now suppose that N < G, iViϊ = G, and F? U = Wx + + Wt

where the Wt are homogeneous components. Suppose that t ^ 1
and Wί is an irreducible JK"[iV]-constituent of Wt for i = 1, 2. By
our supposition on N, N± = S Π N, N2= T Π N, and Nz = Kf] N are
three distinct subgroups of index two in iSΓ. Since V?|^. is homo-
geneous for i = 1, 2, 3 we conclude that TΓΠ^ = TΓίl^, i = 1, 2, 3.
By Proposition (1.8) we have W[ = ΐί̂ a contradicting the fact that
W, £ W2. The proof of (3) is complete.

Suppose that itf* is a subgroup of G*, W is a proper lf[Λf*]-
submodule of V* which form induces V*. There is no loss in as-
suming that M* is a maximal subgroup of G*. Under the natural
mapping of G* onto G, let M be the image of Jlί*. Certainly W is
a direct summand of V?\M*. If G > M > H then ί/]^* is the sum
of two modules so that V\M would have more than two components
contrary to (8.1). Consequently we must have MH — G. Thus
TF(x)Z7 is nonsingular for K[M] and form induces V. The proofs
of (4) and the theorem are complete.

We turn now to the case where —1 is not a square in K, and
set the following additional hypotheses.

(8.11) HYPOTHESIS. Assume that (8.1) holds, and that —1 is not a

square in k— Homκ[(?](F, V). Let K be the splitting field of X2 + 1

over K and K—K ®κ K. If W is a K-subspace of V then set

W= K®KW. Define

g(a 0 u, β (g) v) = aβg(u, v)

for a, β 6 K and u, v e V.

(8.12) LEMMA. ( 1 ) K == GFip*) where p = S (mod 4) and t is odd.

( 2 ) K is the splitting field of X2 + 1 over K.

(3) Let τ:K—>k be the trace. Then τ\k:K~+K is the trace.

(4) K acts upon V and R— Hoπiκ[G](F, F).

(5) g is not unitary, and there is a classical k-form g on V
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fixed by G of the same type as g such that g = τg*

( 6 ) If we set g*(a (g) u, β (g) v) = aβg(u, v) for a, βeK and
u, v eV then g* and g are well defined forms of the same type as
g and g = τg*.

(7) With respect to S, T, V, g, Vlf V2, Ulf and U2 the Hy-
pothesis (8.1) holds.

Part (1) follows from the fact that — 1 is not square in K.

Parts (2) and (3) are obvious. If a, a! eK, βeK, and veV then

(a (x) β)(a' (x) v) = {aa!) (x) (βv) defines an action of K on V which

commutes with G on V. Since V is an absolutely irreducible K[G]-

module [14, (29.3)], V is an absolutely irreducible ^[G]-module [14,

(29.21)] so that (4) follows [14, (29.3)], and in particular, V is an

irreducible if[G]-module. Part (5) follows from (1) and Theorem

(6.7) since neither K nor K has an automorphism of order two.

Part (6) follows by (3), (5) and the fact that neither g nor g is

unitary. Finally, (7) follows from Theorem (7.9) since F* Π Uό = (0)

for i, j — 1, 2, and since V is an irreducible if[G]-module.

REMARK. This lemma allows us to apply the reduction of (8.10)

to the module V in place of V whenever — 1 is not a square in K.

The difficulty with this approach is that if V is a minimal module,

then V may not be. Further, if K — K and V is a form primitive,

then V may not be.

(8.13) THEOREM. Assume that (8.1) holds and that — 1 is not a

square in K = RomKi(n(V, V). IfH=Sf)T and K = (H, xy) where

x e S\T and y e T\S then the following hold.

(1) φ of Lemma (8.4) has square —1 and lies in the field K —

Hom* m (F, V). Further [K: K] = 2.

(2) There is a nonsingular unitary K-form f on V fixed by

K such that g = τμf where τ: K—*K is the trace and where μ = 1

if g is symmetric or μ — φ if g is symplectic.

(3) 1/ 2*||p + 1 where char K — p and if ω is a primitive 2*

root of unity in K then there is a protective extension V*(=V) of

the K[H]-module V to a protective K[G]-module with factor set Ύ

inflated from G/H and tabulated below.

xH

yH

xH
ω

ω

yH
—ω

— ω

xyH
—1

i

xyH
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( 4 ) The action of G on F* fixes f.
Let <?* be the central extension of G afforded by Ύ.

( 5 ) If K— K and V is form primitive then F* is a form

primitive K[G*]-module for f.

By Schur's lemma and Wedderburn's theorem on finite division
rings, K is a field because V\κ is irreducible by Proposition (8.5).
The first part of (1) now follows from Lemma (8.4). The second part
follows from Proposition (1.7).

We may apply Theorem (6.7) to the K [ϋΓ]-module V. By Lemma
(8.13) g is not unitary. Since φ fixes g by Lemma (8.4), we may
choose / so that φ fixes /. If / is not unitary then

f(u, v) = f(φu, φv) = φ2f(u, v) = —f(u, v)

for u, v eV. We conclude that / is unitary. Since φ~ι = — φ, and

since the automorphism of order two of K inverts φ, μ of Theorem

(6.7) (ii) may be taken to be φ if g is symplectic or 1 otherwise,

completing the proof of (2).

By Lemma (8.12) (1), K = GF(p2s) where p = S (mod 4) and s is

odd. Therefore, the highest power of 2 in p28 — 1 is twice the

highest power of 2 in p + 1, i.e., 2 ί+1. Choose ξeK of order 2 ί+1

such that ζ2 = ω~\ Let v be the automorphism of order two of K.

Since φVx — V2, we may define a JK"-linear (iΓ-semilinear) action for

v o n 7 given by

= Vt - φV2 ,

where vt e F x . Since v fixes Vx and F2, the action of v clearly com-
mutes with the action of H on V. But for vl9 v2 e Vt we have

vx(vx + φv2) — v{xvt — φxv2) = xv1 + φxv2 = x{vι — φv2) — xv{vx + φv2) ,

and

vvkoi + $vj = v(yφv2 - Φiφyv,)) = yφv2 + φ(φyvt)

= v(-^i + φv2) = - » φ i + 0^)

proving that on V we have

(8.14) α v = vx and 2/v = — vy .

By Proposition (1.7),

(8.15) xξ = ί^ and yf = ίv2/ .

For elements of G we define the following action on V:

Θ(xz)v = î fα ̂ v , Θ(yz)v = vf^v , Θ{xyz) = —xyzv , 6>(2)v = ^ v
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where z e H and veV. From (8.14) and (8.15) it is straightforward
to verify that Θ(z) is ίί-linear on V for all zeG. Further, direct
calculation shows that Θ is a projective representation of G with
factor set 7 inflated from G/H and tabulated in (3).

REMARK. Let Gι be the group (u, v\u2 = v2t+1 = 1, uvu = v1+2<>
and equate v2 = ω, v2t = — 1. Idenifying #iϊ with v, s/iϊ with w
and α T/ίf with w allows one to consider G/H = GJ(v2) as having a
central extension by <t;2> with factor set 7. Keeping this in mind
simplifies factor set computations.

Since / is fixed by K, it is fixed by Θ(z), zeK. If u, v e V then

f{vξxu, vξxv) = f(ξvvxu9 ξuvxv) = ξuξf(vxu9 vxv)

= —f(vxu, vxv) = —f(xvu, xvv) .

By Lemma (8.12) (5) ^ = τou/ is a classical X-form of the same type
as g and fixed by G where τ0: K—* J^ is the trace. Applying Proposi-
tion (1.3) yields:

f(xvu, xvv) = (2μ)~1g(xvuf xvv) + (2μφ)~1g(φxvuf xvv)

= (2μ)-1g(vuf vv) - (2μφYιg{φvu, w) .

If % = ux + ^ 2 , v = ^ + ^ 2 where ui9 v3- e V1 then

f{xvu, xvv) = (2μ)~1g(vu, vv) — (2μφ)~1g(φvu9 vv)

= (2μ)~1g(u1 - 0^2, ^ - ^ 2 ) - (2μφ)-1g(u2

^ + ^u2, ^ + φv2)

- (2μφ)~1g(φ(u1 + φu2), vt +

Combining our calculations gives

f(vξxu, vξxv) = f(u, v) .

Now vζy = vί» #2/2 where 2 = y~ιx~2y, and both x fa? and xyz fix /
so that

f(vξyu, vξyv) = /(%, v) .

From this (4) follows.
Suppose that M* is a subgroup of G* and that U* is a non-

singular lf[ikf*]-submodule of F* which form induces V*. Since
<ω> ^ Jf and G* has a central element acting as α) on 7*, Jlί* con-
tains this central element acting as ω. Therefore, Hom£o*](i7*, Z7*) ^
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K. Now by Probenius Reciprocity as in Proposition (1.4) we have
the following lf~veetor space isomorphisms

K - H o m j ^ F * , F*) = Homi^ff*, V*) .

But dim^Homi[Jf.](ί7*, F*) ^ άimkΈίomtlM*iU*f U*) ^ dim* JSΓ. Con-
sequently, as ^"-vector spaces

(8.16) RomkiM4U\ F*) s H o r n e t / * , U*) .

Since vV* = F*, vC7* is a if-submodule of F*. Since 17* is a
jf[ikf*]-module, v?7* is also. Further Γ(u) — vu defines a lΓ[ikf^-isomor-
phism of Ϊ7* onto vU* by Proposition (1.9). Since Jff=Hom^*](l7*, 17*),
Ϊ7* is an irreducible £[M*]-module. Thus vt7* = Ϊ7* or ?7* +^i7*
is a direct sum in F*. By (8.16) the latter cannot occur. There-
fore, vU* = Z7*. Since Ϊ7* is v- and ^-invariant, if M is the image
of M* in (T under the natural homomorphism of G* onto G then
C7* is Λf-invariant, as may be seen by checking the action of ele-
ments given by θ. Recall that g = τQμf where τQ:K-+K is the
trace. Since Ϊ7* is v- and l£-invariant, so are all the G*-translates.
Since the kernel of the natural homomorphism G* —* G has kernel
acting as a subgroup of K, a transversal of M* in G* maps onto
a transversal of M in G. Thus a G*-translate of U* is a G-translate
of Ϊ7*. Therefore, Z7* is a nonsingular J^[M]-module which form
induces V*(=V) for g(=g, since K — K). Therefore, M = G so
that ilf * = G* completing the proof of the theorem.

REMARK. This theorem is an analog to, but not as strong as,
Theorem (8.10). For example, if K = K and F is a minimal K[G]~
module for g then F* may fail to be a minimal UL[G*]-module for
/. Proposition (8.5) (3) describes a way in which this situation can
occur. Applying this theorem to F gives a module over a field in
which —1 is a square, and therefore, shifts consideration to modules
of previously considered type.

(8 17) COROLLARY. If K = K and V is form primitive in
Theorem (8.13), then with respect to f and as a K[G*]-module,
precisely one of the following occurs.

(1) V*\N* is homogeneous for every iV* normal in G*.
(2) There is a unique subgroup S* of index 2 in G* such that
( i ) F* |s* = F* + F* where Vt is a totally isotropic homo-

geneous component,
(ii) V*\N* is homogeneous for every normal subgroup iNΓ* ̂  S*

of G*, and
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(iii) V\N* is homogeneous for every normal subgroup iV* ^ S*
of G*.

The proof of (8.17) follows exactly that of Theorem (8.7). In
that proof, we discovered that if (1) and (2) fail then Hypothesis
(8.1) must hold. By Lemma (8.12) (1) and Theorem (8.13) (1), (2),
in applying Proposition (8.5) (3), the modules Wt are nonsingular
and F* is form induced. Therefore, Hypothesis (8.1) cannot hold,
completing the proof of the theorem.

We add one final proposition so that Theorem (8.10) (4) and
Theorem (8.13) (5) become more useful.

(8.18) PROPOSITION. In (7.1) if V is form primitive, if K —
Homtf[G](F, V) and if g is a classical it-form on V fixed by G such
that g — τμg for some μeK where τ:ίt—>K is the trace, then V
is form primitive for g.

Assume that U is a nonsingular If [S]-module of V for some sub-
group H of G which form induces V with respect to g. Since g is
nonsingular on U, g = τμg is nonsingular on U. Further, if xΐl
and yll are orthogonal for g, they are orthogonal for g. Thus U
form induces F a s a K[G]-module with respect to g.

REMARK. (1) Unfortunately, the converse of this proposition
is false.

(2) For form primitive modules, application of Theorems (8.13),
(8.10), and Proposition (8.18) reduces the structure of such K[G\-
modules with form g to the structure of absolutely irreducible form
primitive lϊΓ[(r*]-modules F* with form / where V*\N* is homogeneous
for all ΛΓ* normal in G*, and where K, G*, f respectively bear a
fixed relationship to K, G, g.
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