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TAMELY RAMIFIED SUPERCUSPIDAL
REPRESENTATIONS OF Gln

ROGER E. HOWE

Let F be a non-Archimedean local field of residual char-
acteristic p; then conjecturally the supercuspidal representa-
tions of Gln(F) are parameterized by admissible characters
of extensions of F of degree n provided that n is prime to
p. In this paper we establish the existence of the necessary
representations if the conjecture is to be true. They will
be realized as induced representations from certain subgroups,
compact modulo the center. The more difficult question of
whether all supercuspidal representations arise by this con-
struction will not be treated. We will also leave aside the
problem of computing the characters of these representations.

Let F be a locally compact non-Archimedean field of residual
characteristic p. To simplify certain parts of the discussion, we
take p to be odd. Let R be a maximal order, π a prime element.
Let Fx, Rx be the multiplicative groups of F and R, and [ 7 = 1 +
πRQRx. Let Fr be an extension field of finite degree. We define R',
π\ F'x, i2'x, U' in obvious analogy with F. Let N(F'/F): F'x-+Fx

be the norm map.
If ψ is a character of Frx, and A £ F'x is a subgroup, we will

say ψ is nondegenerate on A if there is no proper subextension F",
F<^F" s F', such that ker N(F'/F") Π A c ker ψ n A.

Now suppose F' is tamely ramified over F. We will say a
character ψ of Frχ is admissible if

(a) f is nondegenerate on F'x, and
(b) if on U'f ψ = φ"o N(F'IF")y where ψ" is nondegenerate on

U" C F"x, then Fr is unramified over F".
In particular, ψ is admissible if it is nondegenerate on U'.
Given extensions F[f F'2 of F, and characters ψt of Flx, we say

ψ1 and ψ2 are equivalent if there is an .F-linear field isomorphism of
F1 onto F2 which sends ψ2 to φt.

There are reasons for believing the following conjecture is true.

Conjecture: Suppose n is prime to p. Then the supercuspidal
representations of Gln(F) are parametrized by admissible characters
of extensions of F of degree n. That is, given F' of degree n over
F, and ψ an admissible character of F'x, then one may attach to
ψ a supercuspidal representation V(ψ) of Gln(F). Two characters
correspond to the same representation if and only if they are equiva-
lent. Finally, all supercuspidal representations of Gln(F) arise in
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this manner.
The evidence for this conjecture comes from the following sources:
(1) analogy with real groups,
( 2 ) extension from GZ2,
(3) expected connections with division algebras of degree n

over F,
(4) Kirillov theory.
Here we will establish the existence of the correspondence in-

dicated in the conjecture, and in particular, of the necessary repre-
sentations. They will be realized as induced representations from
certain subgroups, compact modulo the center. The more difficult
question of whether all supercuspidal representations arise in this
way, will not be treated. We will also leave aside the problem of
computing the characters of these representations.

From now on F' will be a tamely ramified extension of F. In
F, let B denote the multiplicative group of roots of unity, of order
prime to p, and C the group generated by B and π. Similarly Br

stands for the roots of unity of F' of order prime to p. Let e be
the ramified degree of Ff over F, and / the unramified degree, so
m = ef is the total degree. It is well known ([6]) that the prime
π' of Ff may be chosen so that π'e = πV, with bf e j?'. In this case,
πf is determined by π up to an βth root of unity, and the multi-
plicative group C generated by Bf and π' is totally determined by
π. Moreover, we note C^C and N(F'/F)(C) £ C. Also, if F £
F" Q F', then C" £ C", and if F' is galois, C" is invariant under
the galois action.

Let I \F be the natural ultrametric norm on F, so that if F =
R/πR is the residue class field, with q elements, and ord^ is the
valuation attached to R, then | # | F — q~0TdF^\ Define similarly | \F,9

Fr, qf, ord^/. Note that, on F, ord^, = e ordF, and qf = qf, so that
\x\F, = \x\ϊ for xeFQF'.

We have F = C-U, and F' = C TJ'. Hence, given any x e Ff,
there is a unique c e C, such that c~γx 6 U. Put another way, there
is a unique c e C such that \c — x\F, < \x\F>. We call c the standard
representative of x, and write c = s.r. (x). From the above, and
since the galois action fixes C, we see for any g e Gal (F'/F), either
g(c) = c, o r \g(c) - c\F, = \c\F,.

Now consider Mn(F). In Mn(F), Mn(R)=A is a maximal compact
subring unique up to conjugacy, and Gln(R) = K is a maximal com-
pact subgroup, again the only one up to conjugacy. Mn(R) is the
set of matrices preserving the lattices πkRn, and these are the only
lattices preserved by all of Mn(R). Similarly K is the group of
matrices g such that g(πkRn) = πkRn.

Now take Fr of degree n. A choice of basis of R' over R
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defines an injection a: Ff —> Gln(F) by the regular action. Clearly
a(R') £ Mn{R). We will identify F' and αCF'). Under this identi-
fication, R' preserves precisely the lattices π'ιRn. We associate to
Ff the order A! — Γ\xeFfχAx~λ = Π S π'ιAπ'~ι, which is characterized
as the set of all matrices preserving the lattices π'ιRn. We also
associate to Ff the group K' = Γ\xeF> xKx'1 = A' Π Gln(F). Then
clearly R'XQK', and F ' normalizes JΓ, so F'x Kf is an open
subgroup of Gln(F), compact modulo the center. A! may also be
described as the intersection of all maximal orders of Mn(F) con-
taining R', and K' as the intersection of all maximal compact sub-
groups containing Rrx.

This first lemma guarantees that this and succeeding construc-
tions have the necessary invariance properties.

LEMMA 1. Suppose F" — gF'g"1 is a subfield of MJJΓ) conjugate
to F'. Then if R" = gR'g~ι Q A, gπn e K for some I. If R" Q A',
then gπneK'.

Proof. The invariant lattices of Rf are, as we have said, the
lattices π'ιRn. Also, g takes iϋ'-invariant lattices to i?"-invariant
lattices. If R" g i , Rn = g(π'ιRn) for some I, so gπn e K. If R" Q
A\ then π'mRn = g(π'Hm)Rn). Since π'm+1Rn is characterized as the
largest proper A'-invariant sublattice of π'mRn, we see l(m + 1) =
l(m) + 1. Hence gπn = gπ'l{0) is in K'.

Now we choose particular coordinates to get a very explicit
description of A\ Let F'u Q F' be the maximal unramified subex-
tension, and let {δj(=i be a basis of R\ over R. We may assume
bi e Bf if we wish. Now define a basis {zk}ΐ=i of Rτ over R by
Zfj+i — π'jbi for 0 ^ j < e. With respect to this basis, we see that
if m = ke + i, then π'mj?% = {l1^^ = (alf , αΛ): ord^ (αj ^ &, and
ordj, (dί) ^ & + 1 if i<, fl}. Thus a basis for 7z;'mi2* is {πk+%}ίU U
{ ή | = / 1 + 1 . Hence, we see that, in this basis A'={T=(tii): ord^ (ί4 i)^0,
and ordF (tti) ^ 1 if [(i - 1)//] > [(i - 1)//]}. (Here [ ] denotes
greatest integer.)

Now let tr (Mn(F)/F) denote the usual trace on Mn(F). Then
(S9 T) = tτ(Mn(F)/F)(ST) is a nondegenerate symmetric bilinear
form on Mn{F). If V £ Mn(F) is a subspace, VL will denote its
orthogonal complement with respect to <, >. If L £ MJJΓ) is a
lattice, (e.g., a compact open iϋ-module) then L* = {ϊ e Mn(F), <Z, !/>£#}
is also a lattice. L* is naturally isomorphic with Homβ (L, JB). It
is very easy to see that Mn(R)* — MJJR). Moreover, the descrip-
tion of A!, and the action of π' given above make it a simple
calculation to verify this lemma.

LEMMA 2. A'* = πn~eA'.
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Now let F" £ Fr be any subextension of F.
By virtue of the action of F" on Fn, we may identify F% and

F"\ where n — Ik and k is the degree of F" over F. In this identi-
fication, Rn becomes R"1 and the commuting algebra of F" is just
Mι{F"). We note that A, = Mι{R") £ ΛΓ.(JB).

Of course we have F' £ M^F"), and from the definition of A',
it is clear that A[ = A'n Mι(F") = Γ U f ^A^"1.

In this next lemma, 0 denotes direct sum.

LEMMA 3. A! = A\ 0 (Af^F")1 n A'). Iw particular, A! = R' 0
(F' 1 p A').

REMARK. Whereas Lemmas 1 and 2 hold also for wildly ramified
fields, Lemma 3 does not, and the resultant bad geometry makes
analysis more difficult for that case.

Proof. This is a relation between various trace maps, a: A'* —>
KomB(A[, R), defined by a(x)(b) = (x, &> has as kernel Mι(F"Y(λ A'*.
Hence, if we can show a(Mt(Fff) Π A'*) = HomΛ(ii;, R), then A'* =
(MάF") Π A'*) 0 (ikf^F")1 Π A'*), and dualizing gives the decomposi-
tion of A'. By Lemma 2, A'* = π'^A'. Since π' preserves Mt(F")
and MAJF'Ύ, A'* n M^ί7") - πn~eA[.

Let e' be the degree of ramification of F' over F" and let β"
be the degree of ramification of F" over F. Then e — e'e". Rea-
soning with F" instead of F, we see that πn~~βΆ[ = Hom /̂/ (AJ, i2").
Now on AfiCF"), we have tτ(Mn(F)/F) = tτ(F"/F)otτ(Mι(F")/F").
Since î 7" is tamely ramified over ί7, the different of ί7" over F is
e"- l , so that πm-e"R"=ΐlomR(R", R). It follows that πm-e'\πn~efA[) =
Hom^CA;, R). But now πm- "(π1- 'A[) = π"'{1- ")+1- 'A[ = πn~eA[f and
the lemma is proved.

We now establish some facts about the geometry of the adjoint
action of Gln on ΛfΛ. This study is suggested by Kirillov theory
and has important implications for the representation theory of Gln.

For T, SeMn(F), write adΓ (S) = [Γ, S] - TS - ST. If T and
W commute, then (W,[T,S]) = tr(WTS)-tγ(WST) = ([W,T],S} = 0,
so adΓ has image in the orthogonal complement of ker adΓ, the
commuting algebra of T. By dimension counting imadΓ = (ker ad^)1.
If < , > is nonsingular on ker adΓ, then adΓ will be nonsingular on
im adr.

Now suppose Γ ^ c e C ' S ί 7 ' , and write c = π'mb, b eBr. Let
F" be the subfield of Ff generated over F by c. Clearly adc (A') £
π'mA'. Since also adc {Mι{Fn)L) QMι(F")1, we conclude that if X =
A! n MIF'Ύ, then adc (X) £ π'mX.
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LEMMA 4. In fact adc (X) = π'mX.

Proof. We see adc (#) = cy — yc = (eye'1 — y)c. Since cX = π'mX,
the lemma is equivalent to the statement that the map: β: y —• eye'1 — y
maps X onto itself. But since β(X) £ X, it suffices to show that
β has as determinant an element in Rx. But now the eigenvalues
of β are all of the form c~ιc — 1, where c is a conjugate to c by
the galois group of F and not equal to c. From the properties of
C" noted above, it follows that c~ιc — 1 has norm in Rx, so also the
determinant of β is in Rx.

Lemma 4 has as a consequence one of the basic facts we will
need. Before stating it, we need one more observation. We filter
the group K' by a sequence of subgroups K' — K'Q 2 K[ 2 K[ ,
where K\ — 1 + π'\A' for i ^ 1. For i ^ 1, K[ is a pro-p group.

F" is still the subfield of F' generated by c e C.

LEMMA 5. If ke K[, then & = (1 + α)(l + 6), wΛerβ 1 + a e K Π
Mt(F") and beMι{F")\ (Then also 1 + beK'i9 and aeπnA[.)

Proof. By definition of K'u k = 1 + z, with «e π'̂ A'. But by
Lemma 3, z = y + x, with y e π'*A[ and x e πHX {X as in Lemma 4). But
now put a = #, 6 = (1 + T/)"1^. Then since multiplication by elements
from Mι(F") preserves Mt(F")L, this is the desired decomposition.

Let Ad denote the standard adjoint action of Gln on Mn. That
is, Ad(S)(T) = STS'1. Then we have the following result on the
geometry of this action.

LEMMA 6. Take c = π'mbeC, and SeMn(F). Suppose Sec +
π'jA', with j > m. Then there is ke K'^m9 and T 6 Mt(F") such that
S = Aά(k)(T). In other words, c + π'5A' = Ad K)-m(c + π'jA\).

Proof. We may write S = c + y + x, with y e π'jA[, x e π'5X.
By Lemma 4, x = adc (z) = [c, z] with « e π '^ m X Then Ad (1 + z)(S) ==
S + [«, S] + [z, S]z(l + ^ )"1 = c + y + a? + [z, c] + [s, y] + [z, ^] +
[z, S K l + ^ Γ = c + y + [z, y] + [z, x] + [z, S]z(l + z)"1 = c + y + x
where ίcGπ'2i"wA'. Thus Ad(l + z)(S) is closer to c + π'Ά[ than S
is. Continuing in this fashion, by a HenseΓs lemma argument, the
result follows.

We now begin to discuss representation theory. We will start
by constructing certain representations of Kf, or more precisely of
F'x - K', the normalizer of Kf.

We notice that the commutator subgroup of K\ and K'ά is con-
tained in K'i+j. In particular, K\-^K\ is in the center of K[jKu

and if 2i > j , K'i/K'j is abelian. In that case also, the mapping
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v\ πriA'lπ'jA' —> K'i/Kj defined by via) = 1 + a is an isomorphism of
groups, and commutes with the action of Kr by Ad on the two
quotient groups.

Now suppose χ is a character of the additive group of F. Then

as is well known χ defines an isomorphism θ: Mn(F)~+Mn(F), where
^ denotes Pontryagin dual, by the formula Θ(S)(T) = χ«S, Γ » .
The natural action of Gln on Mn is denoted Ad*, and is given ex-
plicitly by Ad* S(ψ)(T) = ψ(Ad S~\T)). We see that θ is equivariant
with respect to the actions Ad and Ad*. That is, θ(Ad S(T)) =
Aά* S(Θ(T)). This property will be retained, insofar as it makes
sense, by the various maps obtained below from θ.

We will suppose for simplicity that the largest lattice in F on
which χ is trivial (the conductor of χ) is R itself. Then for any
lattice L £ Mn(F), I / , the annihilator of L in Mn, is identified to
L* via θ; and for a subspace V, the orthogonal complement V1 is
identified to the annihilator, also to be written V1. Thus, if Lγ Q L2

are two lattices, L2ILι = L?/L*. In particular, if we write A\j) =

π'jA', and X(j) = — i — β + 1, then we have, if i < j , A'(i)/A'(j) =
A'(λ(j))/A'(X(i)). As mentioned above, these identifications commute
with the obvious (sub-quotient) actions, Ad and Ad*, of K'.

Combining θ with v9 we get a map μ: K'JK'j -+ A'(\(j))/A'(X(i))
when 2Λ ^ j . If y + A'(λ(i)) = μ(ψ) for some character f of JBLI/JBΓJ,

we will say y represents ψ. Again μ commutes with the obvious
actions of K'.

Now take j > 1, and let ψ be a nontrivial character of Kj-JK'j.
Suppose ψ has a representative y e F'. Then we see there is a
unique ceC which represents ψ. We will call c the standard repre-
sentative of ψ. In this situation, we let F" be the field generated
by c over F, and retain the relevant previous notation. In particular
Mt(F") is the commuting algebra of F". For i :> 0, put ^ = if; n
Λfjίί1"). Then for i ^ 1, Ht = 1 + π'*ii;.

ψ is invariant under Ad* K[. Suppose 2ί ^ i and φ is a char-
acter on K'ijK'j which agrees with ψ on K]-γ. We will say φ lies
over ψ.

LEMMA 7. Notations as above.
(a) <p is conjugate by Ad* JK"Ί έo 9?f, which has a representative

TeMι{F").
(b) If φ has a representative TeMt{Ffr), then the isotropy

group of φ under Ad* Kf is contained in HQ Kj-i.

Proof, (a) Since c is the standard representative for ψ, and ψ
is nontrivial on Kf

3_u we see c e A'(X(j)) — A'(X(j — 1)), soc = πnU)b\
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with b'eB'. If S is a representative for φ, then since φ lies over
ψ, Sec + A'(MJ — 1)) Now it follows from Lemma 6 that S =
Adfc(T), with fteJS:;, and TeM"z(F"). Then also, by the equivariance
of μ, Ad* k~\φ) = 9' is represented by T.

(b) If TeM^F") represents φ, then we have, as above, Te
c + A'(λ(i - 1)). If k e K[, and Ad* k(φ) = φ, then we have Adfe(T) e
Γ + A'(λ(i)). Write fc - 1 + z. Then Adλ (T) - (1 + z)T(l + z)~ι =
T + [s, Γ](l + z)~\ Hence Adfe(Γ) e Γ + A\X(i)) if and only if
[z, T]eA'(X(i)). But now write z = y + x with yeM^F"), xe
Mι(F")λ. Then clearly keH^K'^ if and only if xeπ'.^X, where
X is defined as in Lemma 4. Write X(α) = π'αX, analogously to
A'{a).- Now calculate [z, T] = [i/ + a?, c + Γ - c] = [«, c] + [a?, Γ - c] +
[yf:T] Lemma 4 shows that if xeX(a) — X(α + 1), then j>, c] 6
JSL(«-4- λ(i)) — X(α + λ(i) + 1), whereas it is immediate that [x, T-c]e
X(a + X(j) + 1). Since [y, ΓJeJIί/ί7"), it is now clear from Lemma
3 that [z,Γ]ei'(λ(i)) if and only if xeX(j-i). Following back
through the argument, (b) is proved for k e K[.

Now take any k 6 K'. Then if Ad* k fixes φ, it must also fix
f on K)_λ. But this means Ad k(c) e c + A'(X(j — 1)). Then by
Lemma 6, Adfc(c) = Adfc1(Γ) for some keK[, and Γ6(c + A'(λ(i-l)))n
M^F"). From the next lemma it follows that kk^eMJJF"), or
keH0 K[. By reduction to the previous case, then, the whole of (b)
is proved.

LEMMA 8. Suppose 2\ and T2 belong to (c + A'(X(j.-
α^ώ suppose for some g eGln(F)f Ad g(T,) = T2. Then
that is, Ad 0(0) = c.

Proo/. By assumption, S, = c"1 Γ.c eίΓJ. Hence S Γ ^ l a s m ^ o o ,
Since c and Γ̂  commute Sΐ = c~αT .̂ Since C modulo the subgroup
generated by % is ^-regular, there exists a sequence mα soing to
infinity, such that c~pma = <ΓV«. Then (Γ,)α - ^ « Γ Γ β ^ c as a~> 00.
Since Ad5r((Γ1)αr) = (Γ2)α, we get in the limit Ad g(c) = c.

REMARK. Lemma 8 provides an explicit proof of a fact that
was implicit earlier and is worth noting: namely, if as 6 F'9 then the
field generated over F by x contains s.r. (x), so that any subfield
of F' is generated by its intersection with C".

Take φeKi/Kj, and suppose φ lies over ψ and is represented
by TeM^F"). We want to make explicit the relation between φ
and its restriction to HJHj.

We still have 2i}£ j . Let E(i, j) be the set of elements of the
form 1 + y + x, where y e A'(j) and x e X(ϊ). Then in fact E(i, j)



444 ROGER E. HOWE

is a group. Obviously, K) Q E(i, j). Moreover, Lemma 3 shows
K't = Ht E(i, j). In fact E(i, j) is normal in K'tf and K\\K\ =
(HJHj) (E(i, j)/Kj) (direct product); furthermore, E(i, j) is nor-
malized by Ho, and Ho K'JK'j = (HJHj) (E(i, j)/K's) (semidirect
product). As a corollary to this, and for future reference, we re-
mark that any representation of H0/Hj may be extended to Ho K\
by letting it be trivial on E(i, j).

In fact, ψ arises in just this manner. For, since φ is represented
by TeM^F"), it is trivial on E(i, j), and therefore comes, by ex-
tension, from a character φ" of HJHj. <p" may be described as
follows.

On Mt{Frf) we have the i^'-bilinear form <, >", given by

<S, Γ>" = tr{Mι{F")IF")(ST). If χ"eF", then θ": Mι{F")^lUFfr)
may be defined by Θ"(S)(T) = χ"«S, Γ>"). On the other hand, if
τ: Mn(F) —• Mι(F") is the natural projection, τ°# is also an isomor-
phism between M^F") and its dual. Since on Mι{F"), <S, T) =
tτ(F")/F)((S, Γ>"), we see that if χ" = χotr (F"/F), then ^" = τoθ.
Therefore, with this choice of χ", we may identify HJHj with
A[(X(j))/A[(X(ί)), where λ(j) = — j — e + 1, and we have written
A[(a) — π'αA;, in analogy with A'(a) and X(α). (Note that the an-
nihilator of A[ is identified via θ" with A[( — e + 1), and not with
A[( — e' + 1), where e' is the degree of ramification of Fr over F"f

because the conductor of χ" is not R" but π"ι~e"R", e" being the
ramified degree of F" over F.) Finally, we see that in the above
identification T becomes a representative for φ" on Hi/H3.

Now c itself represents some φQeK'i/K'jf and £>0 clearly lies
above ψ. Also, the isotropy group under Ad* K' of φQ is clearly
HQ l̂ ί-i', and if φ" is the restriction of φ0 to HJHh then ^ ' is
again represented by c and is Ad* HQ~invariant.

LEMMA 9. If 2ί ^ j + e' — 1, έftβw <̂ ό' ŝ ί/̂ β restriction to Hi
of a linear character of Glι(F"). Moreover, j ^ ef + 1, so this always
holds for i = j — 1.

Proo/. It suffices to show that Slt(F") Π #* C ker φ". ^ ' is
given on Ht by ^0(l + Γ) = χ"(c tr {Mι{Fn)IFn){T)). Here Γ6ii;(i)
and ordF/ c = λ(i) = — i — e + 1, and c e F"9 and the conductor of
χ" is πm-e"R" = πfe'-βR". Thus, writing tr {Mι{Fn)IFtf) - tr for this
proof, we will have 1 + Γ e ker ^ ' if ord^, (c) + ord^, (tr T)^e' — e.
Thus, we must show that, if det (1 + T) = 1, then ordF, (tr T) ^
ef + j — 1. But since c e F", ord^/ (c) is divisible by β', and there-
fore so is j — 1; and since i > 1, certainly j ^ e' + 1. Also, we are
reduced to showing ordF,, (tr T) ^ (i — 1/e') + 1.
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Now TeA[(i) = πnA[, so Tef e A[(ie') Q^M^R"). Let F be an
extension field of F" containing the characteristic roots plf , pt

of T. Let ordF,, denote the extension of ord^, to F. Then π'^T9' e
Mt{R") implies ord^,, (pa) ^ i/e'.

The condition det (1 + T) = 1 means ΣJ=i σβ(Pu '' •> Pi) = 0, where
^ is the /Sth basic symmetric polynomial in the <oα's. In particular
&i{Pit " Ί Pi) — ΣUi i°* — tr ϊ7- Thus, the above relation implies
tr T = - Σ£=2 0><>i, , A) Hence, ordF,, (tr T) ^ 2i/ef. Thus, we
require 2i/e' ^ (i — 1/e') + 1 or 2i ^ i — 1 + β', as was to be proved.

We come now to a key result for this construction. The result
actually holds in a wider context than that of Gln(F). It is at least
true for all central simple algebras over F, and probably has an
analogue in any semisimple group where no wild ramification occurs.
For division algebras, it yields an inductive method for the complete
determination of the representations (when the degree is prime to p).

ψ" is the character of Ή.ά_γ gotten by restricting ψ from K'^.
A representation of Ho will be said to lie above ψ" if its restriction
to Hj^ is a multiple of ψ". Similarly, if O(ψ) is the Ad* Kf orbit

of ψ in JKJ_I, a representation of K' will be said to lie over O(ψ) if
its restriction to K'^ contains precisely the characters in O(ψ).

THEOREM 1. There exists a one-to-one correspondence between
the representations of Ho lying over ψ and the representations of
Kf lying over O(ψ).

REMARK. The correspondence which is described below is very
simple and functional, and would seem to deserve to be called ca-
nonical, though in what sense is at present unclear. One sense
involves the characters of corresponding representations. This will
be gone into elsewhere.

Proof. We divide the theorem into two cases, j even and j odd.
The case of even j is very simple. Let If be a representation of
J5Γ' lying above O(ψ), and let W" be the corresponding representa-
tion of Ho. We describe how to get W from W". Since j is even,
i = j/2 is an integer. Take W" and extend it to W" on Ho K'if by
letting it be trivial on E(i, j), as described above. The induced
representation of Kr is then W.

We must show that each W lying over O(ψ) arises uniquely in
this fashion. This is easily done, using standard representation
theory for finite groups. We briefly recall this.

Let G be a finite group, N a normal subgroup. Let N be the
set of representations of N; G, those of G. Conjugation by G in-
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duces an action of G/N on N, denoted Ad* G/N or Ad* G. A repre-
sentation W of G restricted to N is a direct sum of a certain number
of copies of the representations in some Ad* G/N arbit 0. W is
said to lie above 0. To find all representations lying above O,
proceed as follows. Fix YeO, and let G1 be the isotropy group of
Y under Ad* G/N. If Z19 , Zm are all the representations of Gλ

lying above ψ then Zlf , Zm induce distinct irreducible representa-
tions of G, and all representations of G lying above 0 are obtained
in this way.

Applying this to our situation, we have seen in Lemma 7 that
every Ad* K' orbit in K\/K'5 (where now ϊi — j) which lies above
0(ψ) contains an element φ which lies over ψ and whose isotropy
group Iφ is contained in Ho K\. Furthermore, if Z is any repre-
sentation of Iφ lying over φ, then Z is trivial on E(i, j), and so
then will W", the representation of Ho E(i, j) induced from Iφ, be
trivial on E(i, j). Evidently, then, inducing further on up to Kr

yields an irreducible representation W of Kr. It is evident by this
that all representations W of K' lying above 0(ψ) arise in this
manner, and furthermore, that distinct Wms lying above the same

Ad* Ho orbit in HJHj yield distinct W'&. Finally, Lemma 8 guar-
antees that a subset of K\/K] which lies over ψ, has representatives
in Mι{F"), and belongs to a single Ad* Kf orbit actually belongs to
a single Ad* Ho orbit. Hence any two distinct W"'s yield distinct
W ŝ, and the theorem is established for j even.

When j is odd the procedure is more complicated. Let j = 2i + 1.
Our first goal will be to construct a certain representation on HQ'K[.
When this is done, we may proceed just as for even j .

Let φ" be a linear character of Gl^F") lying above ψ" on
H^JHj. By restricting to if0, then extending to Hι K'i+ι, we get
a character ψ on this group. Of course, by definition E(i + 1, j) £
ker φ. We see that HJker φ" is central in (1^ ίQ/ker φ = 3(f, and
that (H, IQ/tJffi ίΓ;+1) ^ ^ ^ / ^ (Si = center of JT7) is isomorphic
to (Z/pZ)2a for some α:. We also observe that AdU0 factors to an
action by automorphisms on £%f, again denoted by Ad. H1 of course
acts trivially. Since AάGl^F") preserves M^F'Ύ, we see that this
action has the following property: for xeH0, y^^f, k&%(y) — y if
and only if Ad x(y) = y mod %*.

Since the commutator group of K\ is contained in K'3_19 the func-
tion a(x, y) = ψixyx^y"1) is well defined on K\ x K\.

LEMMA 10. a(x9 y) factors to a nondegenerate antisymmetric
biadditive form a: (££?/%') x (<%?/%*) -+T, T being the unit circle.

Proof. If x = 1 + a, y = 1 + 6, then, modulo K) we have
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y-1 = 1 -f- [a, δ]. Therefore a{x, y) = ψ(l + [a, 6]) = χ« c , [α, δ]».
This immediately gives antisymmetry and biadditivity of a. If
either x oτ:yeK'i+1, then xyx~ιyxeK], so α(&, #) = 1. Also, if, say,
x e Hif then write 6 = δx + δ2, with δx e A[{i), δ2 e X(i). Then a(x, y) =
Z«β, [α, δj. + δj» = χ«c, [α, δj» χ«c, [α, &J». The first factor is 1
because φ" is a character on Hi9 and the second factor is 1 because
<A [α, δ2]> = 0, since [α, 62] eAΓ^ί7")1- Thus we see α: factors to a
form α on K'ijHi ifί+1 = Sίf\%'. It remains to show this factored
form is nondegenerate. But we have a(x, y) = χ«c, [a, δ]» =
χ(<[c, α], δ». If x does not represent zero in S^\^ then Lemma 4
shows [c, α] € A'(λ(i) + i) - A\X(j) + i + 1) = A'(λ(<) - 1) - A'(λ(ΐ)).
On the other hand, b is arbitrary in A'(ϊ). Since A'{if = A'(λ(i)),
we conclude that for some 3/, α7(ίc, y) Φ 0, so ά is indeed non-
degenerate.

REMARK. It is precisely here that our assumption of p odd
makes its impact. We are dealing with the representation theory
of a 2-step nilpotent p-group. The extra complications in this theory
that arise when p = 2 could be handled, but at the expense of a
long digression.

We want to find a representation of Ho K\ that lies over φ on
H, K'i+1. Let <ar be the image in 2ίf of E{i, j - 1), and JT =
& ΓΊ ̂  Then it is not hard to see that ^ / i f = J^ 7 /^. Also, it
is easily verified that Ho if /ker φ is a homomorphic image of the
semidirect product HJHj Xs . ^ where the first factor acts on the
second by Ad. (Of course HJH, acts trivially.) ψ becomes a faithful
character ψ on 3£y which is isomorphic to ZjpZ.

A Heisenberg p-group is a 2-step nilpotent p-group P such that:
(1) the center ^Γ(P) is isomorphic to ZjpZ) (2) the center and the
commutator subgroup of P coincide; and (3) every element of P has
order p. A quick check shows that 3& is a Heisenberg p-group.
Here one uses Lemma 10.

A Heisenberg 2?-group is determined by its order, which is pr

for any odd 7 > 1. Owing to the celebrated Weil representation
([9]), the representation theory of Heisenberg groups is very well
known. We summarize what we need.

Besides one-dimensional representations, P has exactly p — 1
irreducible representations, each of dimension p^~1)/2 (where .pr is the
order of P), and each one determined by the character $ it defines
on.^Γ(P). Call such a representation Y{ψ). Y{ψ) is induced from
any character of any maximal abelian subgroup which agrees with
f on %{P).

The automorphism group of P which acts trivially on %*{P) is
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isomorphic to Sp (p, 7 — 1) XSP/JΓ(P) (semidirect product), where
the second factor is the inner automorphism group, and the first
factor is the group preserving a symplectic form on a Z/pZ-module
of dimension 7 — 1. It is known that for each (nontrivial) ψ, Y{ψ)
extends in a unique way to Sp (p, 7 — 1) X S P. An arbitrary group
G of automorphisms will belong to a conjugate of Sp (p, 7 — 1) in
Aut(P) if and only if (1) G acts trivially on %T(P); and (2) G com-
mutes with an automorphism of P trivial on ^Γ(P) and having no
fixed points modulo ^Γ(P).

Applying these facts to our situation, we see immediately that
there is a representation V(ψ) of HJHό X s <§έf, of dimension
(J^7JΓ)1/2 = pa lying above ψ on %. V(ψ) is completely determined
by requiring that its restriction to H0/H3 be the pullback of the
extension of Y(ψ) to Sp (p, 2a) via the homomorphism Ad: HJHj —*
Aut (β&). In particular V(ψ) will be trivial on HJHj. Now con-
sider the representation V(φ") = φ" (g) V(φ), where φ" here denotes
the character of H0/H3 Xs έ%f which is trivial on SZ? and factors to
φ" on HJHj. Tracing back through the above constructions shows
that V(φ") actually factors to a representation of HQ K'i/ker φ,
which then of course lifts to a representation of Ho- K\. We denote
this representation by V(φ") also.

Now we may describe the correspondence between W and W".
Given a representation W" of Ho lying over ψ, consider the repre-
sentations W" (x) φ""1. This is trivial on H^. Hence it may be
extended to a representation of Ho K[ (denoted by the same symbol).
Now form the representation V(φ") ® (W" ® φ""1) of Ho K'i9 and
induce up to Kf. The resulting representation is W.

The proof that this correspondence sends irreducible W" to irre-
ducible W and is bijective is similar in essence to the proof for j
even, but is again more complicated. It involves the same facts
about Heisenberg groups used in the construction of V(φ"). We
omit the rather tedious details.

With Theorem 1 proved, we can begin the construction of super-
cuspidal representations of GIJJF). Since these will be induced from
the groups Frx Kr, we first construct the representations of these
groups, from which we will be inducing.

Now let ψ be a character of Ffx. Recall that Uf = U[ = 1 +
π'R. For all i ^ 1, put TJ\ = 1 + %HR\ The conductor of ψ is the
largest of the UΊ contained in ker^.

We can set up in a consistent way on Fr the same structures
we set up on MJJF) for passing from the multiplicative to the
additive situation. Thus when Fr is regarded as a subalgebra of
M%(F), tr (Mn(F)/F) coincides with tτ(F'/F). Thus there is no
ambiguity if we write (x, y} = tr (F'/F)(xy) for x,ye F'. Using χ,
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we get an isomorphism θr: F' —> F' given by θr(x)(y) = χ((x, y}). θ'

is just the composition of θ and the projection of Mn(F) onto F'.
Since the conductor of χ is R, it is a simple computation to show
Θ'-\R'L) = ET* = πn~eRf.

Put, as with A', A[, X, R'(i) = πriR', and retain the notation
χ(i) = — i — e + 1. If 2% ^ j , we again have the isomorphism i/:
R'(i)IRf(j)—*Ui/U'j. vr is just the restriction of v defined previously.

We also get μ'\ ff^^R\\{o))IR\\{i)). If i = i - 1, we can choose
a unique c e C to represent a nontrivial character φ^ of Uj_JUf

jf

and this c will be called the standard representative ψv_!

LEMMA 11. Lβέ Z7y δe the conductor of ψ, and let ψv_x be the
restriction of ψ to U^. Let c be the standard representative of
Ψv_i. Let F" be the field generated by c over F. Then

( i ) ψ = ψx. f2 where ψ2 = ψ" N(F'/F"), with ψ" e P , and
ψλ is trivial on Ό]^.

(ii) If ψ is of the form ψ = ψ'" o N{FrjFrn) for some subexten-
sion F'", then F" Q F"'.

(iii) ψ is admissible if and only if ψλ is admissible when Fr

is considered as an extension of F".

Proof. Clearly (i) and (ii) imply (iii). On the other hand, (i) is
a consequence of Lemma 9 because of the consistency of the identi-
fications v and v\ μ and μ\ θ and θ\ It remains to prove (ii).

Suppose ψ - ψ"ΌN(F'IFm). Let e'" be the degree of ramifica-
tion of F' over F"'. Then N(F'/F'") maps U'u», onto U'", and
maps i7{β///+1 into U"^. Thus if the conductor of ψ'" is Ό"\ the con-
ductor of ψ is Z7(i_1)β/,/fl, that is, j — 1 — (i — l)e"f. Now oxάF,(c)——j —
e + 1 = — e — (j — 1), so oxάF, (c) is a multiple of e"\

Let e" be the smallest integer such that e" oτάF, (c) is a multiple
of β, the ramified degree of Ff over F. Then ce" = πα6' for some
integer a and b' e B'. Hence we see e" is the ramified degree of
F" over î 7. If ef is the ramified degree of Ff over JP", then e = β'β".
Thus, from the previous paragraph we see that β'" divides e'.

Now let F ( 4 ) be the compositum of F" and J?7'". Define f ( 4 ) =
^ " o N(F{4)/F'"). Then f = f(4> o N(F'/FW). Thus it suffices to prove
(ii) when F{4) = F\ But by the previous paragraph, F{4) is un-
ramified over Frh'. So we may assume Fr is unramified over Fn\
Then F' is a cyclic galois extension of Fm, and ψ = ψ'" o N(F'/Fr")
if and only if ^ is invariant by Gal (F'/Fm) by Hubert's Theorem
90. In particular, fa^ on [ ^ must be invariant by Gal (F'/F"').
If σeGέl(F'IF'"), then since either cr(c) = c or |<7(c) — φ , = |c |^,
we see that c must be invariant by Gal {F'lF'"), since our mappings
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μ\ v\ θ' are all galois-equivariant for galois extensions. Thus we
see ceF'", and so F" C F"', since c generates F".

COROLLARY. Given ψeF'x, there is a well-defined sequence of
integers j \ > j2 > > j a , and sub fields jϋ^ci^c aFa, such that
ψ = ψ1. ψ2 . . . ψaf where the conductor of ψt is j \ = (lt — l)et + 1
where et is the degree of ramification of Fr over Fίf and ψ1*ψ2'"'Ψi —
<f{i) oN(F'JFi) and ψ{i) is nondegenerate on

Proof. We may induce on the conductor of ψ. Then (i) of
Lemma 11 gives ψ = ψ^ψΓ^Ψ), with ψι having the desired properties
(the relation between conductors being given in the proof of (ii)) and
ψ^ψ having conductor containing strictly the conductor of ψ. Then
(ii) allows us to continue the induction, with Fr now being regarded
as an extension of F" — Fx.

We now show how to obtain the representations of Kf from
which we will be inducing.

LEMMA 12. Let ψf he an admissible character of Frx, with con-
ductor Uj. Let c be the standard representative of ψr on Z7J_i. Let
ψ be the character of K'5_JK'3 represented by c. Then there is an
irreducible representation W(ψ') of K', with conductor K'3, and
lying over Ad* K\ψ) on K'5_u corresponding to ψ'. W(ψf) in fact
depends only on the restriction of ψ' to R'.

Proof. Let F" be the field generated over F by c. Let ψ' =
ψ[ f'2 be the decomposition given by (i) of Lemma 11. By induction,
and (iii) of Lemma 11, we may assume we have constructed W"(ψ[).
W"(ψ[) will then be trivial on Hj^. Now let φ" be the character
of Gl^F") defined by ψn{T) = fr\N{Mι{Ftf)IFn)T) (N in this case being
determinant). Then ψ" agrees with <f'2 on Fr, is trivial on H3, and
has standard representative c on if^. Now simply let W(ψ') be
the representation of K' corresponding to W"(ψ[) (x) ψ" by Theorem
1. W{ψ') clearly has the properties required of it.

Finally, we must deal with the case when ψ' is trivial on U'.
When this happens, if ψf is to be admissible, Ff must be unramified
over F9 and K' = K = Gln(R). Moreover, the image F" of R in
Gln(F) = K/Klf is the multiplicative group of the extension field of
F of degree n — in other words, is a "minisotropic" Cartan sub-
group of Gln(F). Also ψ factors to a nondegenerate character ψ
of Ff. Now it is known (see [1]) that to each nondegenerate char-
acter of F, there is associated a cuspidal representation W{ψ) of
Gln(F). We associate to ψ the lift of W(ψ) to Gln(R). This finishes
Lemma 12.
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To construct our representations, we need to recall some basic
facts ([7]) about induced representations. Let G be a separable
locally compact group, l £ G an open compact subgroup. Let V19 V2

be two finite dimensional representations of /, and write Vt —
ΣmiWa, where the m«'s are the multiplicities of the irreducible
representations Wa occurring in Vit, Then the intertwining number
of V1 and V29 which is the dimension of the space of intertwining
operators (or I-morphisms) from V1 to V2 is Y^am\m\.

Now let W1 and W2 be two irreducible representations of sub-
groups Il912. For g e G, put Ad (g)I2 = gl2g~\ and let Ad* g(W2) be
the representation on Ad (g)(I2) defined by Ad* g(W2)(x) = W%(g~1xg)9

for xe Ad (g)(I2). We say g intertwines W± and W2 i times if the
intertwining number of the restrictions of W1 and Ad*(#)(TF2) to
I1 Π Ad (g)I2 is i. If i > 0, we say g intertwines W1 and W2. The
number of times g intertwines Wλ and W2 depends only on the
(I19 I2) double coset of g and is symmetric in Wγ and W2. It is known
that if only a finite number of (I19 /J double cosets of G contain
elements which intertwine W1 with itself, then the representation
of G induced from W1 on I± decomposes into finitely many irreducible
components; and in particular, if only gelx intertwine W1 with
itself, then the induced representation is irreducible. It is also
known that if W1 and W2 both induce irreducible representations,
then these representations are inequivalent if and only if no g eG
intertwines WΊ and W2. All these remarks also apply if Iίf I2 are
compact modulo the center of G.

Now let Fr and Ff be two tamely ramified extensions of F of
degree n. Let K' and K' be the corresponding compact subgroups.
Let ψ, f be nontrivial characters of K'^JKj and KJ_JKJ which
have standard representatives c, c in F', F' respectively. Let F", F"
be the subfields of Fr, Ff generated by c and c over F. Take i, i
satisfying 2i ^ j , 2% ^ J. Let φ9 φ be characters of K'i\K\ and
KyKj, respectively, which have representatives T and f belonging
to M^F") and MΪ(F") respectively.

LEMMA 13. If g e Gln(F) intertwines φ and φ, then g belongs
to a double coset K'^gJCj-i with Ad go(c) = c. In particular, if g
intertwines φ with itself, then g e Kj-iGlι(F")Kj_i.

Proof. For 1 + xeK'u we have φ(l + x) = χ«Γ, x)). Similarly,
for 1 + y e Kf

Ϊ9 we have φ(l + y) = χ«Γ, »». Also Ad (g)(l + ») =
1 + Adff(»). Recalling that K\ = 1 + il'(i) and ̂  = 1 + A\%)9 we
see φ and Ad* ̂ (φ) agree on K\ Π Ad gr^ if and only if Θ(T) and
θ(Aά(g)(T)) agree on A'(ΐ) n gλ\%)g~\ This means Γ - Ad^(Γ) is
in (A'(i) Π gΆ'(ϊ)g-γ = A'W* + gA'(i)*g-\ Thus, we can find Se
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A\i)*f Se Ά'tf)*, such that T + S = Adg(f + S).
Now, since φ lies over φ, Tec + A[(X(j) + 1), and c'TeH,.

Therefore ad c — ad T(X) £ π'X, and Lemmas 4 and 6 are true for T
as well as for c. That is, T + S = Aάk(T') for some T'eT +
A[(\(i)), and λ; e K'^. Similarly T + S = Ad £(T') for f e Γ + Ά[(X(Ϊ))
and fceXj _Γ. Thus we have T = Aάφ^gϊcXf'). Put g0 = k-'gk.
Since I" e c + ^(λ(i) + 1) and T e c + Aί(λ(J) + 1), a slight modifi-
cation of the reasoning in Lemma 8 shows Ad (go)(c) = c, and the
lemma is proved.

Now, notations as above, we again consider ψ on Kj-JKj, or
on Hj-JHj. Let W" be a representation of iϊ0 lying above ψ and
let IF be the representation of K' corresponding to it by Theorem 1.

If j is even, put i = j/2. If j is odd, put i = (j — l)/2. Then
we know W is induced from a representation, which we shall denote
by Y, of Ho ϋΓ . Moreover, recalling X(ϊ) = πriX, where X is as
in Lemma 4, we may see from Lemma 5 that the set 1 + X(i) is a
set of (right or left) coset representatives for Ho in H^K'i. Thus
Ho Kί = #o (1 + -3Γ(i)) = (1 + X(i)) ίί0. If 3 is even, then 1 + X(i)
is contained in the kernel of Y; however, for odd j this is (unfor-
tunately) not true.

LEMMA 14. ( i ) If g e Gln(F) intertwines W with itself, then
gzK'g»Kr with g.BGUF").

(ii) If j is even, then there is a one-to-one correspondence be-
tween intertwining operators for W and for W". Specifically, if
goeGlt(F") intertwines W" on HQ 7 times, then it intertwines W"
on Kr 7 times.

(iii) Let j be odd. Suppose g0 e Glt{Frr) is such that we may
write MtiF")1 = Sx 0 S2 0 S3 where St is an invariant subspace for
Ad g0, X(i) = (S, n X{i)) 0 (S2 n X(ϋ) 0 OS, Π X(i)), and Ad g^S, Π X(i)) £
X(i + 1), Ad 0O(S2nX{i)) = S2nX{i), and Ad go(S3n (X(i) - X(i + 1)))Π
X(i) = φ. (That is, Ad g0 shrinks Slf is isometric on S2, and stretches
Ss.) Tfcβ?ι if fir0 intertwines W" on HQ 7 times, it intertwines W
on Kr 7 times.

Proof. Statements (i) and (ii) are quite easy. We observe that
since W is induced from Y, in order to compute intertwining operators
for W, it suffices to compute them for Y. But since Y lies over
ψ on JSΓy-i, it is easily seen from Lemma 13 that if g intertwines
Y with itself, then g e (Ho K[)go{H, iQwhere goeGlt(Fn). State-
ment (i) follows a fortiori.

If j is even, Y is simply the extension of W" from Ho to
H0 K'i = Ho E(i, j) which is trivial on E(i, j). If £0 6 Glt(F"), and
z — hx, wi th heH0, xel + X(i), then it is easy to see c^o" 1 eH0-K'i
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if and only if gjhg? e Ho and gQxg^ e 1 + X{i). That is B = (fl"0 JSLJ) Π
<70(#0. K'Jgό1 = (Ho n g,H,g^) (1 + (X(i) Π g«X(ϊ)g«1)). Thus we see
that the representations Y and Ad* go(Y) of J5 are determined
completely by their restrictions to Ho Π goHQgo\ Thus #0 intertwines
Y with itself 7 times if and only if it intertwines W" with itself
T times. This establishes the first part of (ii). For the second part,
all we need verify is that if g0 e Gh(F"), then K'g0K

r Π Gl^F") =
HogoHo. This follows fairly easily from the work of Iwahori-
Matsumoto ([4]) Since the precise statement of (ii) is not needed
for the rest of this paper, we leave the indicated verification to the
reader.

Now we turn to (iii). Take g^G^F"), and let Sι®St®St =
Mι{FnY be the posited decomposition of Mι(F")L. Put Sj(i) = S3-f]
X(i), so X(ί) = Stf) φ S2(ί) 0 S2(i). I claim first that 1 + S^i) and
1 + S2(i) are isotropic with respect to the form a{,) of Lemma 10,
and that both are orthogonal to 1 + S2(i). For if sd e S3{i), then we
have, as calculated in Lemma 10, α(l + sjf 1 + sk) = χ«c, [sjf sk])) =
χ«Ad g^(c0), [sjf sk])) = χ«c, [Ad gfa), Ad flro(βfc)]». If now j = 1 and
fc ϋ= 1 or 2, then Ad gro(Si) € X(i + 1), so Ad (go)(l + s, ) e ifi+1, and
similarly Ad go(l + sfc) e Kt. Hence α(l + ŝ  , 1 + s*) = 1 by Lemma
10. Replacing g0 by go1 gives the result for j = 2, 3, & = 3. (We
note that by similar but more complicated arguments, we could
show Si and S3 are isotropic with respect to < , >, and are orthogonal
to S2. We do not need this, however.)

As noted before, we have B = (HQ K't) Π go(Ho ίΓO^o'1 = (£Γ0 Π
(/oiϊoί/o-1) (1+(X(ϋ Π goXiϋΰo1)), and X(ΐ) n gaXφgϊ1 = (^(ί) Π ^S(ΐ)^1) Θ
S.(i) Θ S8(i) £ JΓ(i + 1) + Sa(<) + S8(<). Moreover, g^S3(ί)g0 Q X(i + 1).
Recall that ^ is the Heisenberg group constructed in the proof of
Theorem 1 for j odd. Let I1913, be the images in Sίf of 1 + Sx(i)9

1 + S2(i), and let J2 be the inverse image in έ%f of the image of
1 + S2(i) in 3(fl3ϊ. Then Iί913 are abelian, and I2 n ^ = /3 Π ̂  =
{identity}, and ^Γ £ 72, and Ix and 73 centralize /2. Moreover, the
inverse image in Sίf of the image in Sίf^ of 1 + (X(i) Π g0X(i)g^)
is /2 73. It is also clear that the restriction to Iz of the represen-
tation Ad* go(Y) is a multiple of the identity representation, since
1 + g^Sjίfigo £ 1 + X(i + 1) £ ker Γ. Thus in computing the inter-
twining number between Y and Ad* go(Y) on B, it suffices to com-
pute the intertwining number between Ad* go( Y) and the subrepre-
sentation Yt of Y on which 1 + S8(i), or the inverse image of I3 in
J?(i, i — 1), acts trivially. Similarly, since 1 + Adflro(S1(i))Sker Y, we
need only compute the intertwining number between Y1 and the sub-
representation of Ad*^0(F) on which 1 + Kάg^S^i)) acts trivially.

Since B is a group, we see that Ho Π #o#o0oΛ acting on j%?9

normalizes 73 and 72 73. Also 72 is a Heisenberg group, with center
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% (unless it reduces to %').
We must now recall the precise structure of Y. Let φ" be an

extension of f to a linear character of Ho. Since W" lies over ψ,
Wn®φn~1 is a representation of Ho trivial on H^.. We extend it
to a representation, also denoted W" (x) φ"~ι, of HQ K , trivial on
E(i, i — 1). We then take the representation V(φ") of Ho- K'if lying
over ψ on Kά_x and constructed from the Weil representation, using
φ". Then Y=(W"®φ"-v)®V(φ"). The restriction of Γ to B is
thus the tensor product of the restrictions of W" (x) φ"~ι and V{φ"),
and similarly for Ad* go(Y).

Let FL be the restriction to B of the subrepresentation of V(φ")
on which the inverse image in J3 in E(if j — 1) acts trivially. Then
the subrepresentation Yx of Y defined above is just (W"®φ"~
(Here we restrict W" ® Φ"~γ to B.)

Now I2 73//3 ^ /2 is a Heisenberg group, on which Ho f]
acts, and %* is the center of I2, and the action preserves ψ on ^.
Also Fx is the lift of a representation from an extension to Ho f]
goIίog^XsIz (semidirect product), of the unique representation of J2

lying over ψ on %. Thus V1 is (essentially) simply the Weil repre-
sentation of B deriving from the action of Ho Π gΆg~ι on J2.

Now from our remarks above, it follows that the intertwining
number of Y and Ad* gQ(Y) on B is the same as the intertwining
number of (W" <g) φ"~ι) ® V19 and Ad* go( W" (x) φ"-1) (x) Vx. But now
it follows from standard theory (see for example, the discussion of
Proposition 2 of [3]) that this is the same as the intertwining num-
ber of W" (g) φ"~ι and Ad* glW" (x) φ"~γ) on Ho Π g,H^\ But since
φ" is simply the restriction to Ho of a character of Gl^F"), this is
the same as the intertwining number of W" and Ad*0oTF" on
Ho Π goHog^\ This concludes the important part of (iii). To com-
pletely finish (iii), we should verify the same facts about double
cosets as for (ii). But since we are here mainly interested in non-
existence of intertwining operators, and since for the double cosets
in which we are particularly interested, the verification is especially
simple, we again omit this point. Lemma 14 is now concluded.

The purpose of this next lemma is to provide an important class
of g0 which verify the conditions of (iii) in Lemma 14.

LEMMA 15. Let F" £ F' be a subfield, and let ,s*f" Q Glt(F")
be a Cartan subgroup, split over F", and such that JV", the maxi-
mal compact subgroup of J ^ " , is contained in Kr. Then A\i) =
φ j (A'(ϊ) Π Sj), where the Sj are irreducible subspaces for Ad j&"
acting on Mn(F).

Proof. We prove the result in stages. First we take F ' = F,
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then galois over F, then finally we reduce to the case of F" galois.
If F" = F, then ^f" = Ssf is just a split Cartan, which we may

assume, by an analogue of Lemma 1, valid for all Cartan subgroups
of GlH(F), that, up to conjugation by Kr, *Ss? is the diagonal matrices.
Then let Ejk be the one-dimensional subspaces of Mn(F) spanned by
the matrix units. It will certainly suffice to show A'(ϊ) =
φ i f c (A'(i) Π Ejh). If F is unramified over F, then A' = Mn(R), and
the desired conclusion is obvious. In general, A\i) = f\m π'm+iMn(R)π'~m.
We can find y eK' such that π'y = x normalizes J^f. Then A\i) —
ς\m xm+iMn(R)χ-m = Γ L %m+i(®j,k Mn(R) Π Ejk)χ-m. But now xm+iEjkx~m =

Ej,k,y for some j ' , k', since x normalizes J^Γ Now if z e A'(i), 2 =
xm+izmx~m for each m, with zm e MJfi). Also z — Σ βyΛ, with eifc e 2£iAί,
and for each m, zw = Σ β i Γ , with effi e Ejk Π MJJ$). Since each of
the above decompositions is unique, xm+iei

3'k
)x~m = βi/4,. Therefore

βy/fc/ e A\i), and we have established the lemma when F" = JP7.
Now take J7"' galois over F. Then we may choose a set {σ} £

Gln(F) of representatives for the galois group Gal (F"jF), such
that each σ is in K', and normalizes j y " . Then the σ are then
determined up to their j ^ " cosets, satisfy σaσ^a'1 e j&" for any

We have the decomposition MJJΓ) = (BσeGΆUF"/F)σMι(F"). Since
σMι{F") x τlίiCJP7") = στMι{F), we see &M&F") and ?lfz(F") are
orthogonal with respect to < , > unless στ = 1. Thus ikί^F")1 =
®σφισMι{F"). We know that A'(i) = {Mι{Frr) n A'(i)) 0 ( M ^ " ) 1 Π
A'(i)). Since σ eK, we see that multiplying this decomposition by
σ yields A'(i) - (σMt(Fff) n A'(i)) φ ((φΓ*σ fΛΓ^ί7")) Π il'(i)) for each
σ, which in turn implies A'(ϊ) = φ σ (σM^F") Π -A'(i)). Now each
σMx(F") is left invariant by Ad J^"', and so is a sum of irreducible
spaces for Ad *s>f". Moreover, if M^F") = φ i ) f c £/;4 is the decom-
position of MX{F") into matrix units, then, taking j y " to be the
diagonal matrices of Glt(F"), E"k is invariant by right and left
multiplication by jy"\ Therefore since σ normalizes ja^", σM^F") =
(§)jykdE"k is a decomposition of σM^F") into Adjy'-invariant, irre-
ducible subspaces. But now, again since σ e iΓ, we have σ{Mι{Fff) Π
A'(ί)) = σMι{F") n A'(i). Since, by reduction to the case F" = J?7,
we have A'(i) ΓΊ Λf^F") - φ i > f c (A\i) n ^4), we see A'(i) Π ffJίiίF") =
φ , fe (A'(ΐ) Π dE'ώ for all σ e Gal {F'ΊF), and so finally A'(i) =

Now we pass to the general case, when .F7" is any subextension
of F'. Since in any case F" is tamely ramified, its galois closure
Ff" is unramified over it. Therefore, for a suitable unramified
extension Fu of F, the algebra F" ® F Fw breaks up into a direct
sum of subalgebras isomorphic to Fnt.

We consider the matrix algebra Mn(Fu) = Mn(F) ® F Fw, and in
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it A'u(ϊ) — A\i) 0 Ru, where of course Ru denotes the integers of
Fu. Jzf" is just the multiplicative group of an abelian subalgebra
«" of rank n of Mn(F), and SI" is isomorphic of Fm. We let j * " "
be the multiplicative group of δΓ <&F Fu = 81'". Then Sf " is a direct
sum of a certain number of copies of F'".

It is clear that A'u = ΓL π'mMn(Ru)π'-m where π' = π ' φ 1 Q Mn(Fu).
Thus we may find a field i*7^ so that A!u is the order associated to
it by the discussion preceding Lemma 1. In fact, we may choose
F'u so that it contains i*7'". (Let F'u be any of the conjugate fields
which are the summands of Fr ® F Fu.) Suppose for a moment that
the maximal order of 8Γ" is contained in A'u. Then, since F"f is
galois Fu, we have A'u(i) = φ , (Ai(i) Π S"), where S* are isotypic
subspaces for Ad J ^ ' " . Now Gal (FJF) acts on Mn(F) 0 JPW and on
91'", and this action permutes the Sj. Let {Tk} be the collection of
subspaces which are direct sums of S/'s-invariant by Gal {FJF),
and minimal with respect to these properties. Then certainly
Au(i) = φ f c ( i i(i)nΓi). Moreover Sk = TknMn(F) will be an isotypic
component of Ad J ^ " acting on Mn(F). Now if zeA'(i) = A'^i) Γt
Mn(F), we have 2 = Σ tk. This decomposition is unique, and since
z is Gal (jPtt/JP)-invariant, and the Tk are, each tk must be, so tk e
S t Π -AUi), and so A\i) = 0 , (A'(i) n S*).

The above reasoning was carried out under the assumption that
the maximal order of 8t'" was contained in A'u. This will be a con-
sequence of the next lemma, which will then complete the proof of
Lemma 15.

LEMMA 16. If F1 is any extension of F, and Fu is an unrami-
fied extension of F, then the maximal order of F1 ® F Fu is the
image of Rt® Ru.

Proof. Let F2 £ F1 be the maximal unramified subfield over F.
Then we may write F,®F Fu = F,®F2 {F2®F Fu). Now F2®F Fu

will be a direct sum of unramified extensions of F2. Therefore, we
may reduce the lemma to the two extreme cases when F1 is either
unramified or totally ramified over F.

If F1 is totally ramified over F, then i*\ ® F Fu is still a field,
since F1 and Fu are linearly disjoint over F (see Serre [8]). We see
Rλ (g) Ru will contain all roots of unity of F1 (x) Fu of order prime
to p, and will contain a prime element of Fx 0 Fu. Hence it must
equal the entire maximal order.

In the second case, Fγ 0 Fu is a direct sum of fields unramified
over F. Therefore, the maximal order of F1 0 Fu is its own dual
lattice with respect to the bilinear form induced by the trace on
Fx 0 Fu. On the other hand, this bilinear form is just the tensor
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product of the bilinear forms tτ(FJF)(xy) and tr(FJF)(xy) on F1

and Fu, and Rx and Ru are their own dual lattices with respect to
these forms. Therefore R1 (x) Ru £ Fx (x) Fu is its own dual lattice.
Since it is contained in the maximal order, it must be equal to it.
This finishes Lemma 16.

We want to make note of the following result, which is im-
mediate from Lemmas 14 and 15. Notations are as in those lemmas.

COROLLARY. Suppose F £ F" £ F"' £ F', and g0 e Glk(F"f) £
Glι(F") is in a split Cartan subgroup of Glk(F'"), whose compact
subgroup is contained in K'. Then gQ intertwines W" if and only
if gϋ intertwines Y (if and only if gQ intertwines W, providing
K'g0K' n Gh(F") = HogoHo).

Now we are ready to construct our supercuspidal representations.

THEOREM 2. For every admissible character ψf of Ffy , for every
tamely ramified extension F' of F of degree n, there exists a super-
cuspidal representation V(ψ') of Gln(F), induced from a representa-
tion of Ftx K', agreeing with W{f) on K'. V(ψ[) and V(ψ'2) are
equivalent if and only if ψ[ and ψ'2 are equivalent.

Proof. To begin, let us note that F'x HQ = Ho is actually the
semidirect product of Ho and the cyclic group generated by π'.
Similarly for F'x K' = ft'. Thus it is easy to see that Theorem 1
and Lemmas 12 and 14 apply equally well to these groups as to Ho

and K'. Therefore, we may assume we have defined representations
W(ψr) on K' in the manner of Lemma 12. Of course, the restriction
of W(ψ') to Kr is just W(ψ'). We will show the representations
V(ψf) induced from W(ψ') have the desired properties.

To prove the theorem, we merely examine which g can possibly
intertwine W{f') with itself, or W(ψ[) with W(f'2).

Put K'i = K[. Let U'ό be the conductor of ψ. We know W(f)
is induced from a representation, lying above ψ (ψ is the extension
to K^x of the restriction to U'^) of ψ' of the subgroup H0Έ

f

i9 where
2ΐ = j if j is even, or 2ί + 1 = j if j is odd. We call this inducing
representation Y(ψ').

It is clear from the constructions of Theorem 1 and Lemma 12
that the restriction of Y{ψf) to Hx is just a multiple of W"(ψ') re-
stricted to fli. Also, Y(ψf) lies above ψ on K'^x. Therefore, Lemma
13 shows that the only double cosets which can support nontrivial
intertwining operators for Y(ψ') are those of the form {H^K[)gQ{HQ*K[)
where goeGlt(F"). Moreover, since, as we mentioned Y(ψ') on JEΓX

is a multiple of W"(ψr) on Hlf gQ cannot intertwine Y(<ff) unless it
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intertwines W" on J5ΓX.
Now let F'" £ F' be the subfield of Ff, such that the restric-

tion of ψ' to U[ is of the form ψ"ΌN(F'/F'"), where <f"f is non-
degenerate on U[". Then F" £ I*7'", and JP7' is unramified over F'"
by the definition of admissibility. By induction, we may assume
that g0 cannot intertwine W"(ψ') on Ht with itself unless g0 is in a
double coset HγgJIγ, with g1 e Glk(F'"), the centralizer of F'". There-
fore, the only double cosets which can support intertwining operators
for Y(f) are of the form (Ho K^g^H^ K[) with g.eGl^F'").

Now since F' is unramified over F"', K' n Glk(F'") = Glk{R"r) is
a maximal compact subgroup of Glk(F"f). It is well known (see [4])
that in this case, one may choose, as a set of double coset repre-
sentatives for K' Π Glk{F'") in Glk(F'"), elements from an ^'"-split
Cartan subgroup Jzf'" in Glk(F'"), whose maximal compact subgroup
is contained in K'. Therefore, applying Lemma 15, (ii) or (iii) ac-
cording as Q is even or odd, we may conclude that α 6 J / ' " can
intertwine Y(ψ') with itself if and only if it intertwines W"{ψf) on
Ho with itself. Then by induction we may assume this can only
happen if a intertwines W"\ψ')9 the representation of K' Π Glk(F'")
associated to ψ\ with itself. Therefore, we are reduced to the case
when F' is unramified over F.

If F' is unramified over F, then K' = K = Fx Gln(R), and W(ψ')
is a character on Fx times the pullback to Gln(R) of a cuspidal
representation of Gln(F). A set of double coset representatives for
K consists of diagonal matrices with entries (1, π"2, π"3, , π"n) with
0 ^ az ^ az ^ <̂  an.

Let No be the intersection of Gln(R) with the group JV of upper
triangular unipotent matrices. Then, if g is one of the above double
coset representatives No £ K Π gKg~\ Moreover, if g Φ 1, then
there is some parabolic subgroup P, containing N, such that N0(P),
the intersection of the unipotent radical of P with No satisfies
g~1NQ(P)g Q Kx. Therefore, since W(f) is trivial on K^N*, N0(P) S
k e r A d ^ ϊ W ) ) . On the other hand, the fact that W(f) on Gln(R)
is the pullback of a cuspidal representation of Gln(F) means that the
restriction of W(ψ') to N0(P) for any P does not contain the trivial
representation. Therefore, if g Φ 1, g does not intertwine W(<f')
with itself. This shows V(ψ') is irreducible and completes the con-
struction of the V(ψ').

It remains to establish the facts on the equivalence and non-
equivalence of V(ψ'). Let Fni) and Fn2) be two fields, of degree n,
and tamely ramified over F. Let Kni) and K'{2) be the corresponding
compact groups. Let ψ'(1) and ψ'l2) be admissible characters of F'{1)x

and Fmx. Let U'}? be the conductors of the ψni), and let c(ί) be
the standard representatives for the <fni) on U7A- L e t
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subfields generated by the c(ί). Let H'k
{i) = K'k

{i) n Glh(Fmi)). Let
Y(ψni)) be the representations from which the W(ψni)) are induced.

By Lemma 13, if g0 intertwines the Y(ψni)), we can take g0 so
that Ad̂ oCc1) — c(2) Iί this is so, then by the same reasoning as in
the construction of the V{ψf), g0 must intertwine the restrictions of
the Y(ψ'{i)) to the H[{i\ From this, by induction, we conclude that
if g0 is to intertwine the V(ψ') then necessarily Ad go(F'"{1)) = F'm2),
where F'mi) is the subfield of Ff{i) such that, on U[{i), fni) =
ψ'"^oN(Fni)/F"ni)), and f'"(i) is nondegenerate on U["{i). But then
we see Fni) and .F'(2) must be conjugate, since they are determined
by F"ni) and F"n2) respectively. Also, we see we may as well take
Kni) = Kn2) = JK"', and then we can choose by Lemma 1, gx e Kf such
that Ad flrXF"^) = F'{i). Then we are reduced to showing that two
nonconjugate characters of F'{ί) = ί7' do not yield the same repre-
sentation, and this proceeds precisely as for the construction of the
V(ψ'). This finishes Theorem 2.

(Strictly speaking, we should verify that the V(ψ')9 which are
obviously representations with compactly supported matrix coeffi-
cients, are in fact cuspidal. This could be done. (In fact, the W(ψ')
are already cuspidal on K'.) However, we prefer to cite a result
of Jacquet ([5]), which says an irreducible representation of Gln with
compactly supported matrix coefficients is automatically cuspidal.
(This has been generalized by Harish-Chandra (see [2]) to general
p-adic groups.)

CONCLUDING REMARKS, (a) The case of the basic inductive step
of Theorem 2 when j is even contrasts sharply with the intricacy
of our arguments to accomplish the same step when j is odd. Thus
one may hope that Theorem 2 has a proof considerably simpler than
the one we give.

(b) It seems likely that much of the construction given here
for Gln can be carried over to other p-adic groups of classical or
Ghevalley type. This would require either a case-by-case analysis,
or some general structure theorems involving considerably more
detail then those now in the literature. The complete construction
for Gln, however, hinges on the knowledge of the cuspidal repre-
sentations of Gln over a finite field. Thus until the representation
theory of other finite algebraic groups is better known, the full
construction given here is limited to Gln.

(c) It follows from remarks of R.P. Langlands that Theorem 2
allows one to attach a supercuspidal representation of Gln to each
irreducible representation of degree n of the Weil group of F, (for
n prime to p). It should of course be checked that this correspond-
ence has the proper L-function theoretic properties.
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