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TOPICS IN HARMONIC ANALYSIS ON SOLVABLE
ALGEBRAIC GROUPS

RoGgeEr E. Howe

This paper consists of two parts, and in the first of
these we develop the representation theory of solvable
algebraic groups over a local field of characteristic zero in
analogy with the work of Auslander and Kostant for solvable
Lie groups. We show how all the representations arise and
show that the Kirillov method of orbits applies to this situa-
tion. We find that the theory carries over completely and
we discuss traces, CCR representations and we give a version
of the Kostant independence of polarization theorem.

In the second part we take up the problems of decom-
posing the space of square integrable functions on a solvable
Lie group modulo a discrete cocompact subgroup. We show
how to reduce this problem to the special case when the
nilradical of the solvable group is Heisenberg. These two
sections represent the initial part of a comprehensive program
in this direction to be completed later.

Introduction. The theory of harmonic analysis on nilpotent Lie
groups was established essentially in one blow by A. A. Kirillov
[21] in the early 1960’s, after some initial researches by Dixmier.
Subsequently, other authors ([16], [17], [24], [29], [37]) explored
further topics, such as character theory, extension of these results
to unipotent p-adic groups and more general nilpotent groups, and
the spectral decomposition of arithmetic and adelic quotient spaces of
unipotent groups. The methods initiated by Kirillov have been
extraordinarily supple, and while harmonic analysis on nilpotent groups
is hardly complete, I feel it may rightly be considered a mature
subject.

Meanwhile, an effort was made to extend Kirillov’s analysis to
solvable Lie groups. Although the same philosophy eventually suc-
ceeded, considerably more sophisticated concepts were required. Several
major attacks ([5], [6], [10]) yielded partial progress, but the essence
of the problem was not exposed until 1968 with the announcement
of Auslander-Kostant [3], and their results, with proofs, have only
been published very recently [4]. The Auslander-Kostant results
provide a complete description of the representations of a connected,
simply connected type I solvable Lie group, and characterize which
connected, simply connected solvable Lie groups are type I. More
recently, L. Pukanszky [30] has very successfully attacked the problem
of doing harmonic analysis on a general, nontype I, solvable Lie
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group. Thus it may be safely said that the basic phenomena of
harmonic analysis on solvable Lie groups are understood, and the
foundational era of this subject is over. However, very few of the
more baroque developments, such as described above for nilpotent
groups, have been considered. The present paper attempts a partial
remedy for this grievous lack.

The paper consists of two parts, the first two of a projected
five. The focus of the full project is harmonic analysis on algebraic
solvable groups over algebraic number fields. The fifth part would
consist of miscellany concerning the harmonic analysis of the rational
points of such a group, or of arithmetic subgroups, considered as
abstract discrete groups. The first four parts are coordinated and
culminate in part four, which would treat adele groups. Thus the
first three parts are in some sense preliminary to part four. Part
one treats representations of p-adic algebraic groups. Parts two
and three consider the problem of describing the spectrum of L*(.s#/I")
where & is a solvable Lie group, and I" a discrete subgroup such
that &7/’ is compact. As seemingly always in this subject, the
crucial case is that when the nilradical of .&” is a Heisenberg group.
Part 2, presented here, is concerned with reduction to this case and
is probably quite tedious. Part 3 would look at the multiplicity
theory of abelian extensions of Heisenberg groups. This part of the
theory is in my opinion very pretty, and provides relief after part
2. The situation is very concrete, and the results connect with the
Weil representation [36] on one hand, with the conjecture of Langlands
[22] on another, and with the recgnt announcement of Auslander-
Brezin [1] on another.

We will now describe in more detail the content of parts one
and two.

In the first part, we develop the representation theory of charac-
teristic zero p-adic solvable algebraic groups in analogy with the
work of Auslander-Kostant [4] on real groups. We show how all
the representations arise, and show that the method of orbits (“Kirillov
theory”) applies completely to an open normal subgroup containing
the unipotent radical _#~ of an arbitrary p-adic solvable algebraic
group .. We show that any irreducible unitary representation of
& can be induced from a finite dimensional representation of some
subgroup. We show that the Mackey obstruction for extending a
representation from _#~ to its isotropy group in .&” always vanishes.
We show that the restriction of any representation of & to ¢ is
multiplicity free, and that if any two representations of .5 have
the same restriction to .#; then one is the tensor product of a linear
character of . with the other. We discuss traces, and characterize
the CCR representations. All the above results are valid whether
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or not .7 is split. In addition, we give what we feel deserves to
be considered a canonical parameterization for the entire dual of &
for &7 split, by proving an analogue of Kostant’s “independence of
polarization” theorem.

We obtain our results with much less effort than Auslander-Kostant
expend for theirs. There are two main reasons for this, I feel. First,
we restrict our attention to algebraic groups. Besides being struc-
turally simpler than general solvable groups, algebraic groups are
all type I, so no questions of type enter. Secondly, p-adic solvable
groups have very large open compact subgroups to which Kirillov
theory applies perfectly. This, in particular, allows one to induce
from nonalgebraic subgroups, providing a much simpler analogue of
Kostant’s scheme of complex polarizations. Together, these simplifi-
cations facilitate the analysis tremendously. However, we must work
harder to parametrize the representations, and for less complete
results. It is difficult to say at this point whether this limitation is
fundamental or due to lack of insight. It is possible, though, that
it is in the nature of things. The Auslander-Kostant analysis, as
beautiful as it is, may be special to real groups, since only over the
reals can an exponential map be globally defined, permitting a blurring
of the distinction between R and R®. Thus, in our retreat from a
complete “orbit picture” we have accepted the additive and multipli-
cative groups, the unipotent and semisimple, as co-equal and funda-
mental, and have constructed the full theory using both of them.
Thus solvable groups provide, as they should, a transition from
unipotent groups, where Kirillov theory and additive principles do-
minate, to semisimple groups, where Kirillov theory is much less
powerful, and multiplicative features prevail; and they lend thereby
a coherence and unity to the whole theory of representations of
algebraic groups.

In §2, we take up the problem of decomposing L*.$”/I"), where
& is solvable Lie group and I" is a discrete subgroup, such that
&|I" is compact. This problem was solved in [16] and [34] for the
case of & nilpotent. The section begins with an elementary discussion
on the general features of the problem, and tries to show how the
methods involved in the solution of the problem for nilpotent Lie
groups generalize partially, and to pinpoint the special structural
features of nilpotent Lie groups that permit the methods to work
completely. It is pointed out that an arbitrary locally compact
separable metabelian group is susceptible to the same methods.

We then focus on solvable Lie groups. Let & and I" be as
above and let .#~ be the nilradical of the connected component of
&~ We assume .&”/_4" is abelian. The main result is a reduction
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of the problem to the case when .+ is Heisenberg and .&¥ = .7~ X
4" (semidirect product) where .7~ is abelian, acts effectively on ¢~
but trivially on the center of 4" and .77/ NI is compact. This
reduction is based on the known solution for nilpotent groups and
is given in several steps. After several preliminary reductions, it
is shown (Theorem 2.1) how to compute the multiplicity in L*(S”/I")
of a representation o of & induced from a representation z of a
certain type of subgroup < of .&% in terms of the multiplicity of
zin LX(#|# NI). Then a structural result (Propositions 2.3 and
2.4) shows that the problem for .2 is essentially the problem for
& of the stated special form.

Theorem 2.1 is a clear analogue of a theorem on finite groups,
and is developed in the spirit of analogy. At a critical point (Lemma
2.4) in the proof, we use the structure of _#~ as an unipotent
algebraic group defined over @ to prove our construction provides
enough representations to fill up L*.$”/I"). It is precisely this step
which allows us to remedy the deficiency noted in the preliminary
discussion at the beginning of the section and obtain the full desired
result for our case.

I. The local story. In this section F will denote a p-adic
field of characteristic zero — that is, a finite extension of Q,, the
p-adic numbers. For the purposes of argument in this section, we
will assume p is odd, in order not to have the extra complications
that arise when p = 2. The results all remain valid with perhaps
slight changes for » = 2. The modifications necessary in the
arguments are technical and time-consuming, and will not be
given.

< will denote a connected affine solvable algebraic group defined
over F. &% will denote the F-rational points of .&#. We may
write . = 7 X A4~ (semidirect product), where .7_ is a maximal
torus of &2 defined over F, and .4 is the unipotent radical of ..
Then also % = .7, Xs-#% See [8].

Note. We will commit reasonably often the barbarism of re-
ferring to the F-rational points of an algebraic group over F simply
as an algebraic group.

We suppose .&2 < Gl, for some n. Then &% < Gl,(F') as a (Zariski)
closed subgroup, so .5% inherits a locally compact topology. Let S, T,
and N be the Lie algebras of &, 7, and 4. Then S;, T, and N,
may be regarded as subspaces of M,(F), the n X » matrices with
entries in F. M,(F) may, of course, be regarded as the Lie algebra
of GL,(F). We have S; = T @ N, (direct sum). For any group G
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mentioned above, let Ad G denote the adjoint action of G on its Lie
algebra.

As is well-known, one may define on a suitably small neighborhood
U of the origin in M,(F'), the exponential map exp: U— Gl, (F) by
the usual formula. The map exp will be a homeomorphism onto its
image, which will be a neighborhood of the identity in Gl,(F). The
inverse mapping, from expU to U, will be denoted log. Haar measure
on U is sent to Haar measure on expU by exp. U may be chosen
to be invariant under Ad Gl,(F). Then U will contain all nilpotent
elements in M,(F'), and in particular N, S U.

Let R be the ring of integers in F, and let = be a prime element
of R. Let V = S; be an open compact R-module in S;. Set [V, V] =
3% [vi, w;], vy w; € V}, where [, ] denotes the Lie bracket operation
on S;. We recall from [18], that V is called e.e. if [V, V] < ##V,
where S is a suitable power of ©7. We refer to [18] for the precise
definition of B. If V is e.e., and V Z U, then C =exp V will be a
compact open subgroup of .&%. C is also said to be e.e. We have
the following simple lemma.

LEMMA 1.1. There is a compact open R-submodule W of Ty, and
a sequence of open compact R-submodules {Y,}2, of Ny, such that
Y. SY., and V, =W @Y, is e.e. and contained in U, and U,Y; =
N;. Then C; = exp (V) are open compact e.e. subgroups of S, and
iof C,=exp W, then C,<=C,,,, and C, = U, C;, = C, Xs 4% 18 an open
normal subgroup of .

Proof. Let ad, be the adjoint operation of T on S;. Let Z (N )
be the groups of the ascending central series of N,. Then ad, acts
semi-simply on N, and preserves each Z%(N;). Let N,=@",B;
be a decomposition of N into irreducible subspaces under ad, such
that for each ¢, there is m, < m such that 2"(N,) = @7, B;. Then
if we choose a sufficiently small neighborhood W of zero in T, for
any te W, ad, (¢) will have eigenvalues so small that we may choose
open compact R-modules Z; & B;, such that ad, (¢)(Z;) & 7*Z;. We
may as well assume W is also an R-module. Since [N, 2N, <
Z"Y(N,), and since if X & N, is compact, then [X, X] is compact,
we see that given any integer [,, we may inductively, starting with
m and going down, choose {l;};-, such that [;_, > [;, and such that
if Y=3>",7n"%B; then T + Y is e.e. Then inductively choosing a
sequence of [,’s larger and larger, we get a sequence {Y,}, of open
compact R-submodules of N such that Y, ZY,,,, V. =W @Y, is e.e.,
and U.Y, = N;.
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If we have chosen W small enough, then W S U. Since U is open
and invariant by AdGl, (F'), whether or not ye M,(F) is in U is
determined by the eigenvalues of y. Butif t€ T ne N, thent + n
and ¢ have the same eigenvalues, since the action of S; on F'™ may
be triangularized over some extension of F', by Lie’s theorem. Hence
W @Y, S U for all 4, and the lemma is proved.

Using Lemma 1.1, we may apply the result of [18] to C,.7#7.
For a locally compact group G, let G denote the primitive ideal space
of G. G is understood to have its standard hull-kernel topology
(see [13]). For a type I group G may be regarded as the set of
(equivalence classes of) irreducible unitary representations of G,
suitably topologized. For such groups we will consider either a
primitive ideal or a unitary representation as being a point of G.
For G abelian, G is the familiar Pontryagin dual group.

Now U,V,= WBN,="V.isopenin S;, and exp:V,.—C, X5 #7=C.
is a homeomorphism and sends Haar measure to Haar measure.
Ad &% acting on S, preserves V., and we denote by Ad C,, the action
of C, on V, by Ad. Since AdC, is an action by automorphisms,
by dualizing it we get an action Ad* C.. of C.. on V., the Pontryagin
dual of V... We denote the space of orbits for this action by Vw/Ad* C
We give this space the quotient topology.

For a totally disconnected locally compact group G, let C3(G) be
the Schwartz-Bruhat space of locally constant complex-valued functions
of compact support. If G is abelian, and G is also totally disconnected,
then Fourier transform defines an isomorphism between C?(G) and
C2(B). If CeC(@), let 7 denote its Fourier transform. A linear
functional on CP(G) is called a distribution on G. The spaces of
distributions on G and G are also isomorphic by Fourier transform.
C*(@) is, of course, an algebra under convolution. We define an
involution, *, of C2(G) by f*(g9) = f(g™), for gc G, where ~ denotes
complex conjugate. Also fxh is the convolution of f and h. A
distribution ¢ on G is positive-definite if 6(f*f)=0 for all f € C2(G).

All three groups, C., V.., and V., are totally disconnected. The
exponential map defines an isomorphism from C2(C.) to C2(V.).
Also, for e V., we may regard 4 as a function on C,, by composing
4 with log.

It follows by simple arguments (see [31]) that all Ad* _#7; orbits
in N, are closed. Since C./#; is compact, it is very easy to see
further that all Ad*C. orbits in V, are closed. Now by using
Theorem 1.1 of [18] and taking an inductive limit over the C,’s,
one arrives at the following result. (To be absolutely certain of the
applicability of Theorem 1.1, we may assume we have actually con-
structed V; so that [V, V] & #f+'V,.)



TOPICS IN HARMONIC ANALYSIS ON SOLVABLE ALGEBRAIC GROUPS 389

PRrOPOSITION 1.1. Notations as above.

(i) There is natural homeomorphism B:V./Ad* C., — C..

(ii) C. is C.C.R. (see [5]). Any trreducible representation o
of C., sends C7(C.) to finite rank operators (o is “admissible”). In
particular the distribution 6,: f — trace (o(f)) 4s defined. 6, is a
positive-definite distribution, called the character of p.

(i) If & SV. is an Ad* C.. orbit, then & carries a unique
imvariant measure, do, up to scalar multiples. Let p = B(c?). Then
if do is properly normalized, 0,(f) = g 7. do, where fi=foexpe
C(V.). | 7

(iv) (Bochner theorem) Any positive-definite tnvariant distri-
bution on C, 18 the image under exp of a distribution on V., which
18 tiw Fourier transform of a positive Ad* C.-invariant measure
on V..

(v) (Plancherel theorem) The od-distribution (6(f) = fQ),1=
identity of C..) is the Fourier transform of Haar measure on V..

Notice that the above statement, in contrast to others of its ilk,
says nothing about the concrete realization of representations. We
now attend to this matter. We establish two results, one for C.,
the other for all of .&%. The first one is analogous to Pukansky’s
condition ([32]) for polarizations on exponentiable solvable Lie groups
to give an irreducible representation.

If H< C,, is any subgroup, we say H is e.e. if log H is an R-
module and [log H, log H] < 7 log H. Note that Proposition 1.1 will
also apply to H. If € V., and HZC., is an e.e. subgroup, we
will say H is subordinate to + if the restriction of +rolog to H is
a linear character of H.

PROPOSITION 1.2. Take e V., and HZ C.. an e.e. subgroup
subordinate to . Suppose H contains the isotropy group of 4 under
Ad*C.. Let «y’eﬁ be the restriction of +rolog to H. Let indf’
denote the representation of C. induced from ' on H. Then
o mecessary and sufficient condition that ind%’ be irreducible
and hence equal to B(AA* C..(v))) is that Ad* H(yy) = 4 + (log H)*,
where (log H)* is the subgroup of V.. consisting of characters trivial
on log H — that is, the annikilator in V. of log H.

REMARK. If we specialize the above lemma to the case when
& is actually unipotent (in which case the proof simplifies drastically),
we see that the result then transfers to the context of [17], giving
a complement to Proposition 12 and preceding remarks. Also note
that H is not required to be an algebraic subgroup. Thus we allow

for instance for inducing a representation of a Heisenberg group
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over a local field from an open subgroup which is compact modulo
the center (of the Heisenberg group). See Lemma 1.2.

Proof. We begin by investigating the structure of H. Put J =
log H<SV, = Sz. Let J° be the linear subspace of S; spanned by J.
Then it is easy to see that J° is a Lie subalgebra of S, and that
J S J° is open. Let J' = ,er2J. Then J'ZJ° is a linear subspace,
and may be described as the largest linear subspace of J° contained
in J. Since J is open in J° and is closed under [, ], J* is actually
an ideal in J°. J/J' is compact.

Let M be the isotropy group of 4 under Ad* C.. Let A=log M.
Then as in [18], it follows that A = {a € V.: (e, V.]) =1}, and 4
is an e.e. R-submodule of V... By our assumptions A & J. Put A°=
span of 4 in S;, and A' = largest linear subspace of S, contained
in A. Then, just as above, A' and A° are subalgebras of S, A
is an ideal in A° A/A' is compact, and A is open in A°. Also
A C J° and A'C J* S N;j.

Put B° = {b€ Sy, ¥v(b, Nr]) = 1}. Then B° is a linear subspace of
Sy, and by the Jacobi identity, since N, is an ideal in S,, B° is a
subalgebra. If beB°NV,, then expb exists, and a term by term
development of Adexpb(n), for n € N;, shows Ad* expb(y) v, = Vixpe
Here Jy, indicates the restriction of 4 to Ny. Conversely if ceC.,
and Ad* ¢(y) v, = ¥y, then the inverse formula

o

[log ¢, n] = X (—1)"7'57*(Ad(c) — 1)i(n)

=1
for n € N, shows that logce B°N V.. Hence putting
M°=exp(B'NV.),

we conclude that M° is the isotropy group under Ad*C. of the
restriction of 4+ to Np.

On the other hand, the kernel of the restriction map from V.,
to N, is discrete, since V../Ny is compact. Therefore, M, the isotropy
group of + under Ad* C.. must contain an open neighborhood of the
identity in M°. Hence A contains a neighborhood of zero in B°.
Since clearly M < M°, we have A’ = B° so B° < J° Thus, if H® =
exp(J°NV,), M*°< H.

Now we will show ind$ey’ is irreducible. We begin by showing
©° = indZ’ is irreducible. Put H' = expJ'. Then H is open in H°,
and H' is normal in H°, and H/H' is compact. By reasoning very
similar to that of Lemma 1.1, we can find e.e. subgroups {H,}, such
that H=H,C H, S H,,,C H°, H* = U, H;, and with H, normal in
H,,. Let p, =ind%'y'. Assuming p, is irreducible, we will show
0:4, is irreducible. Then in the limit p° will be irreducible.
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Let us recall the basic facts about inducing from and restric-
ting to normal subgroups. If G is a separable locally compact
group, and a is an automorphism of G, then a acts on the repre-
sentations of G as follows. If o is a representation of G, then
a(o)(g) = o(a *(g)). This action may then be transferred to G, the
primitive ideal space of G. The resulting transformation is a
homeomorphism of G. Now if G < G is a closed normal subgroup
for some separable locally compact group G’, then conjugation in G’
results in an action of G’ on G by automorphisms, and thereby in
an action of ¢’ on G. We write this action as Ad* G’. Of course,
under Ad* G/, G acts trivially. If G is a type I group, and p is an
irreducible representation of G (or if G is not type I, but p is C.C.R.),
then ind§'p is irreducible if and only if the orbit under Ad* G'/G of
the point in G corresponding to o is a principal G'/G orbit; in other
words, if and only if ¢’ € G’, and Ad* ¢’(0) = p implies ¢’ € G. Whether
or not ind%'p is irreducible the restriction of any subrepresentation
of it to G consists of a direct integral over all Ad* G'(p). See [5],
[23] for details.

Returning now to our solvable group, note that p,,, = indji+: o,
by transitivity of induction. Suppose Ad* h(o,) = p, for some
heH,.. Let J, =log H, Since H, is e.e., Proposition 1.1 applies
to it also. Let ¢ < J, be the Ad* H, orbit corresponding to p,.
Then since p; is induced from +, Proposition 1.3 of [18] shows &
contains the restriction +; of « to J,. Now the naturality of the
correspondence between J:-/Ad* H, and H, implies Ad* h(Z) = &
(This compatibility justifies the ubiquitous use of the Ad, Ad* nota-
tion.) Since & = Ad* H,(4,) we may assume, after altering & by
an element of H, if necessary, that Ad* i(y,) = 4. This in turn
implies that Ad* h(y) €4 + Jf S 4 + Ji. Hence, modifying % again,
this time by an element of H,= H, we will have Ad* h(y) =+. But
then he H < H;, by our assumption that H contains the isotropy
group of 4. Hence p,, is irreducible, and so ' induced up to H°
is irreducible.

Now H°( .+; is a connected algebraic subgroup of _#;. The-
refore let us now consider the following situation. Suppose H, and
H, are two subgroups of C., such that H° £ H, & H,. Suppose also
that H, N .#; = G, is a connected algebraic subgroup of _#7, for
1 =1, 2, that H, = H’-G,, and that G, normalizes G,. Let o, = indZiy’
for ¢ =1,2. We will show that if p, is irreducible, then p, is irre-
ducible. In this way, we may conclude after a finite number of steps
that

indg" ry’

is irreducible. But since H° 47 is normal in C., the same analysis
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as used above to show ind%’ ' irreducible will show ind% ' irreducible,
and we will have shown the sufficiency of the condition of the pro-
position.

Let <~ be the Ad*H, orbit in J, (where J, = log H,) corresponding
to 0,. Then, as before, < contains the restriction of + to J.
Consider the restriction o, of p, to G,. If Z’ is the set of restrictions
of elements of <~ to log G,, then since log G, is preserved by Ad H,,
' is just the Ad* H, orbit of the restriction 4, of 4 tologG,. &’
is a union of Ad* G, orbits, permuted transitively by Ad* H,/G,. We
see o0, decomposes into a direct integral of representations corres-
ponding to these orbits.

Since G, is normal in H, Ad* H, acts on log G,. Suppose for all
heH,— H, Ad* ()N &’ is empty. Then o, and Ad* h(o,) are
disjoint — that is, contain no common irreducible components, since
Ad*h(o,) will be a direct integral over the representations corresponding
to Ad* G, orbits in Ad* h(<”'), by the naturality of the correspondence
of Proposition 1.1. Then it follows (see [23]) that p, is irreducible.
Thus we must consider the possibility that <’ and Ad* k(') are
not disjoint. Then if pe 2’ N Ad* k(') we have @ = Ad* z(y),
with x € H,, and ¢ = Ad* h(¢’) for some ¢’ € &', and ¢’ = Ad* y(y)
for some y € H,. Thus Ad*z 'hy(+yr,) = 4,. In particular Ad* z hy(yr,)
agrees with 4» on JN\ Ny. Since Ad* H(y)=v+J*, Ad* H(yy,) consists
of all elements in N, which agree with ++ on JN Ny. Therefore, we
can find z € H such that Ad* 27 hy(yy,) =vy,- Then zz~'hy e M°CH".
Hence h e H,. Thus always Ad* k(") N &' is empty if he H, — H,,
so the first half of the lemma is complete. Now we prove necessity.
We assume o = ind% ¢ is irreducible, and want to show Ad* H(y) =
¥ + J*. As in [17], remark preceding Proposition 12, we must have
W'+ J* S Ad* C.(y) = &, or else p would contain other representations
besides the one corresponding to <. So we may assume + + J* S 7,
and then o is a factor representation, equivalent to some multiple of
the representation corresponding to Z.

With this observation, the procedure becomes similar to that
followed just above. Suppose ceC, — H is such that Ad* ¢(y) e
4 + J*. Then it is not hard to see that we may find subgroups G,
and G, of C., such that HS G, S G,, G, is e.e. and normal in G, and
G,/G, is finite (so G, is also open in &,), and c€ G, — G,. For if ce
H®, consider the sequence {H.}>, of subgroups of H° constructed
above, and let j be the smallest integer such that ce H;. Then put
G,=H;,G,=H;_,. If c¢e H’, then let H°C H'C H}--- C H? = C,,
be a sequence of groups such that HY N _#7 is normal in H,,. Suppose
ce HY),, — H}. Let G, be generated by H;, ¢, and a small neighbor-
hood of the origin in HY.,. Then G, is compact modulo H?, and it is
clear that one may choose G, S G, satisfying the stated conditions.
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We will show p, = ind? ¢ is reducible. We may as well assume
o, = ind3 ¢’ is irreducible, or we are done. Then, as observed above,
if «, is the restriction of ¢ to log G,, then Ad* G,(y,) must contain
all ¢ €log G, which agree with v (i.e., ¥) on J=log H. Since Ad* ¢(y) €
o + J*, we have Ad* ¢(y,) € Ad* Gy(y,), which means Ad* ¢(Ad* G,(v)) =
Ad* G(4,). Since Ad* G,(y,) corresponds to o, ¢ is in the isotropy
group of o, under Ad* G,/G,. Hence p, = indZzp, cannot be irreducible.
So finally o = ind4z0, is reducible and Proposition 1;2 is finished.

An e.e. subgroup H of C, subordinate to € V,, which satisfies
the equivalent conditions of Proposition 1.2 will be said to polarize .

The next proposition will allow us not only to find groups from
which to induce representations of C., but of .&% as well. It will
have several important consequences for the representation theory
of &%. Before proving it, we record an elementary result.

Let 27, denote the nth order Heisenberg group over F. That
is 2%, is a two-step nilpotent connected unipotent group, of dimension
2n + 1, and with one-dimensional center 2. The Heisenberg groups
are basic to Kirillov theory for nilpotent and solvable groups, and
are important in other connections too. Thus for future reference,
we spell out explicitly some details of its representation theory. These
are consequences of Propositions 1.1 and 1.2, but have essentially
been known at least since [24]. We leave the proof as an exercise.

LEMMA 1.2. Let p be an irreducible representation of SZ,r.
Then if o is trivial on 2%, p s one-dimensional. If p 18 nontrivial
on Z5, then o restricted to 2% s a multiple of some linear character
@p.  In turn, @, determines p. If P is any subgroup of 5Z,z, such
that 25 S P and if 0 1s a representation of P and restriction of
o to %7 1s a multiple of ¢,, then inducing o up to &, gives a
multiple of p. It is possible to induce p from a one-dimensional
character of P if and only if P/ker ¢, is @ mazimal abelian subgroup
of &Z,s/ker @,. If P is an algebraic subgroup of 5#,r, then this s
equivelent to saying P is maximal abelian in SZ,,. In this case,
dimP=mn+ 1. Any P such that Plker ¢ is abelian is contained in
o maximal group of this type.

Now consider the action Ad* .5 of &% on Ny. As is well-known,
this action is algebraic. This may be seen as follows. Take any
character ¥ of F. Then using ), one may define a homomorphism
a: N;‘;-——»NF, where N* is the vector space dual of N. The formula
defining « is a(n*)(n) = y(n*(n)), where ne N, and n* € NF. It may
be verified (see [37]) that « is in fact an isomorphism of topological
groups. Moreover, if Ad*.& denotes the action of .~ on N* dual
to Ad.~ on N (the co-adjoint action) then the diagram
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N3 _a_} NF
Ad*S’FJ JAd*S/F
Nz — -ZVF

commutes. This shows the action Ad* % on N, is indeed algebraic
and further justifies the continuing ubiquitous use of Ad* to denote
these actions.

Now consider a point a}rel\A/'F. Let &% be the isotropy group of
4 under Ad*.%%. From the above, we see &% is in fact the group
of F-rational points of an algebraic group .& defined over F. Of
course, &% is not necessarily connected.

PROPOSITION 1.8. Take 4 € N,. Then there are algebraic sub-
groups L' LS ¥, all normalized by &y, and having the follow-
ing properties. Sy N A" .F2. Both £ and Z* are normal in L2,
and L)L is a Heisenberg group with F£* L' as its one-dimen-
stonal center. The restriction of o log to &ZF is a nontrivial linear
character @, trivial on 5. Thus, if P S F° is an algebraic
subgroup, with & 2 £*, then if P|ZL* is abelian, then Fp s
subordinate to 4. If P/ is maximal abelian in £, then
G, polarizes . Thus, any subgroup G of 3, containing 7,
and such that Glker ¢ is maximal abelian in Filker ¢, polarizes
o and induces the irreducible representation corresponding to
Ad* A5().

Furthermore, one may choose groups G, ¢ =1, 2,3, as follows.
First, GGG . Second, G? polarizes +, and G* and G°
are normalized by S%. Third, G* has finite index in G°. Finally,
G is normalized by a subgroup of %, of finite index prime to p.

If & is split (or simply if the action Ad* .54 splits over F'),
then one may take &£* = £, in which case &5 itself is subordinate
to and polarizes .

REMARK. Thus in the p-adic case too the relative complexity of
the nonsplit case is evident. The comparison to the real case is quite
direct and is the more interesting in the light of known ways to
realize discrete series representations of semisimple groups over real
and p-adic fields. There is also a parallel result for algebraic solvable
groups over finite fields (see, for example, [19]) which may be compared
with the classically known facts ([12]) that given a finite group G,
for every representation of G to be monomial, it is necessary that
G be solvable and sufficient that G be supersolvable.

Proof. The first paragraph of the proposition follows more or
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less immediately from Proposition 1A of [19] and the facts about
the Heisenberg group recorded in Lemma 1.2. We will not go into
details. We should perhaps mention that the definition of polarizing,
given here on the basis of Proposition 1.2, is the same as that given
in [19] for the case of an algebraic subgroup of a unipotent group.
For if L. 4" is an algebraic subgroup, with dim & =1/2(dim & =
dim (&% N.A")), and G is subordinate to «, then Ad* F(y) is open
and (Zariskil) closed in + + (log Z%)*. (One uses on N the structure
of variety over F' defined via the map « given above.)

The third paragraph of the proposition follows easily by inspection
of the proof of Proposition 1A of [19].

We will prove the second paragraph of the proposition. Since
N N7 C FE Sy acts (by conjugation) completely reducibly on
< (which we may regard as a vector space over F, since it is
abelian). Write &7/.<% = M = @}., M,, where the M, are irreducible
subspaces under the action of .&4. Let us once again denote this
action by Ad.%%.

As is well-known (see [19]), if in the Heisenberg group 57, if
one identifies 27 with the additive group of F, then taking com-
mutators induces a nondegenerate, antisymmetric (i.e., symplectic)
form on 5#,/%. Hence in our situation we have a symplectic form
{,> on M, and since Ad .%% is an action derived from automorphisms
of &7 or, more to the point, of &7/ <7}, this sympl‘ectic form is
preserved by Ad.%%. Thus in each M, the radical of the restriction
of {,) is invariant by Ad %%, and consequently either <, ) remains
nondegenerate when restricted to a given M,;, or M, is completely
isotropic with respect to {, ). Suppose some M, is isotropic. Then
for some j, (M,, M;> + {0}. Since the annihilator with respect to (, >
of M, in M; is invariant, it is zero, since M; is irreducible. Reversing
% and j and repeating the argument, we see dim M, = dim M;, and
that {, > puts M, and M; in duality. Now

M = {meM, {m, M; + M;) = 0}

is invariant by Ad .$%, so we may as well assume that M’ = @{‘#,Ml.
Now let &7 be the inverse image in & of M’ @ M, and let <2 be the
inverse image of M,. Then it is clear that 2 is still subordinate
to 4. Let & be the largest algebraic subgroup of <2 on which
9 o log is trivial. Then we see that ,g%‘, 99}}, and ,,g%é are the F-
rational points of algebraic subgroups which also satisfy the conditions
of the first paragraph of the proposition. Hence we may restrict
our attention to the case when M = @}, M,, and {, > is nondegenerate
on each M,.

Now /(S N A7) is abelian, so Ad*.&% acting on M, is an
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action of an abelian group. Thus we may apply the lemma of [19]
to conclude there is a field extension F; of F, and a quadratic ex-
tension F; of F,;,, and a homomorphism h;: % — F*, with image
in the kernel of the norm map from F'; to F;, and an isomorphism
s M, — F';, such that

ML F
Ad* 5’3&1 lh(yqﬁ)
M, -2 F

commutes. (The action on the right is by multiplication in F7.)
Moreover, there is an element ¢ ¢ ker tr (F/F,) such that

i), 17 (y)y = tr (Fy/F)(c(z(x)y — =(¥))) ,

where tr denotes trace and ¢ is the Galois automorphism of F'; over
Now to obtain {,)>, we have identified &2/ <7;, the center of
2| <22, with F. In this identification, we may suppose that R is
identified to the largest R-module in the kernel of 4o log factored
to &2/ <. For any R-module Z S M, put Z* = {me M, {m, Z) < R}.
Then since {, ) is derived from taking commutators, we see that
the inverse image of Z in 7% is abelian modulo ker «clog if and only
if Z< Z*, and maximal abelian if and only if Z = Z*. Suppose
Z = @t Z,, where Z, = Z N M,. Then also Z* = @}, Z}, with Z} =
Z* N M,.

Now suppose p(Z;) = wi*R;, where «; is a prime of F}, and R;
is the ring of integers of F';. Then a calculation using the explicit
form of {, ) o ;' shows that g,(Z}) is also an R;-module, and hence
1(Z¥) = n?R;. Moreover, it is easy to see that as a varies, the sum
o + b = d remains constant. If d is even, we may then choose Z,
so that @ = b, and then Z, = Z*. If d is odd, then we can arrange
o =>b-+1, so that p,(Z,) = mwip(Z}). In either case, if s€.S% is
such that h,(s)el + w;R;, then Ads leaves invariant any Z; such
that Z, S Z; & Z¥. But the kernel of the norm map from F’to F,
is in particular a subgroup of R;*, the units of R;, and 1 + 7 R; is
a subgroup of R;* of finite index prime to p.

Now we see that if we choose Z'= @}, Z;,, where the Z, are
chosen as just above, and then put Z° = Z“, and let Z* satisfy Z' <
Z* < Z® and Z* = Z*, then if G%, ¢ =1, 2, 8, is the inverse image of
Z' in &7, the G° satisfy the requirements of the proposition, and
we are done.

Now we spell out some consequences of the above proposition.
Again choose 'gh‘GNF. Since &% is algebraic, we may by [8], write
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S = Ty N9 Where A5 = P N A%, and T4 is the group of F-
rational points of a reductive group defined over F. 77 is abelian,
since 7y = A/ N% S Fp/ N5 If 4 were connected, then .77
would be a maximal torus of .&%.

Since &% is a semidirect product we may apply to &5 the
Mackey theory for representations of a semidirect product. References
for the general theorems, whose specializations to the present case
we will now relate, are [5] and [23]. We note here at the beginning
that the preconditions for application of the theory, e.g., that _#5
be type I, and that the action Ad* &% of _#; be smooth, in the sense
of Mackey, (which is much less smooth than most people demand) are
easily checked to be true. Also, we remark that we could, by special
arguments, avoid the use of Mackey’s theory, since we already have
complete control over the open normal subgroup C., of .&4. However,
since the general theory is available, it would seem egregious to
ignore it.

If o is an irreducible representation of .&4, then according to
Mackey’s theory, the restriction of o to 7% breaks up into a direct
integral over representations all belonging to a given Ad* &% orbit
& in ./I}F We say that p lies above 2. This terminology gains
context from the fact that by associating ¢ to p we get a continuous
map r:%——»//}F/Ad* . The set » (), consisting of (primitive
ideals attached to) representations lying above ¢, is called the fiber
over 7.

Mackey’s theory permits us to describe » %(¢”). First, let us
identify %/Ad*%. By Proposition 1.1, we have the homeomorphism
B: NyJAd* #; — 4. Since B is natural, it follows that we also
have a homeomorphism 7: N;/Ad* &% — _#./Ad* 4. Thus B(2)
is an Ad*.%% orbit in N,. Call it ¢ Pick e, and let &, =
Ad* 43(4). Then B(2) = o is an irreducible representation of _#7,
and is a point in <. For Mackey’s theory, we must identify the
isotropy group .&% of ¢ under Ad* 4. By the naturality of B, this
is the subgroup of .%% of elements s such that Ad* s(&) = &, This
in turn is the group of s such that Ad* s(«/r)e&. Thus if s€.&,
there is n € 47 such that Ad* ns(yr) = 4. Therefore &4 = & 45 =
T Xe N 5e

We will show shortly on the basis of Proposition 1.8 that ¢ can
be extended to a representation ¢’ of .&%4. That is, there is an irre-
ducible representation ¢’ of .54 such that the restriction of ¢ to
A% is exactly o (and not a multiple of ¢). This is the essential
point. Then Mackey’s theory shows that every representation of
% lying above 7 is uniquely of the form indZr ¢ ® o', where p
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is an irreducible representation of .54, trivial on _#;. Thus g is
essentially a representation of .77, and since .77 is abelian, g is
one dimensional. Moreover, we note that g is the restriction to
& of a linear character v of .$4/.#;, and a simple check shows
ind2rp Qo' =vR0 =vindZre’. Thus, we see that we may
parametrize r"Y(¢”) by elements from %, or more canonically, by
elements of .f}/ﬁl, where 774" ;% is the subgroup of characters
of 7, annihilating .7%. Of course, the parametrization depends
on the choice of base-point, that is, on the choice of ¢'. For if ¢’
extends g, then so does ¢ ® g’ for any yeﬁ. We will consider
later on the problem of choosing the “correct” extension of o.

For any locally compact group G, let G, be the group of linear
characters of G. Then G, acts as a transformation group on G via
tensor product. Thus if ¢ is an irreducible representation of G, and
@ is a linear character, we define ¢ “o translated by @” to be go® 0. In
particular, for cur 5%, we have ﬂc(%)n SO ﬁ} acts on % By
what we have seen just above, we may describe the sets r~*(¢”) for
& an Ad* &% orbit in /f/tp, as being precisely the orbits for this
action of . 7;. Also, the isotropy group of any point in 7 *(¢”) under
this action is, as we have noted, .73*. This completes our description
of » ().

Now let us show that ¢ may be extended to a representation
of .&. Recall that + is a point in ﬁA; = B7Y0), and . = Ty Xy N5
Let G, i =1, 2, 8, be the groups described in the second paragraph of
Proposition 1.3. We then see from Proposition 1.2 that ¢ is induced
from the restriction of + olog to G®. Let o, = ind% (o log). Then
clearly o is induced from ¢,. But G? is normalized by .%% and .%%.-G,=
T X, G. Moreover, o, is obviously invariant under Ad* &%-G..
Suppose we can extend o, to a representation ¢; of 5%:G,. Then
clearly the representation of .&2 induced from o, extends o. There-
fore we are reduced to extending o, from G, to 73 X,G,. This is
a classical problem, which in the context of locally compact groups
has been considered by Mackey. Again we refer to [5] and [23]
for details. The obstruction to extending o, (the “Mackey obstruction”)
is a certain element of H* 7, T), the second cohomology of .7
with coefficients in the circle group. This element has finite order
dividing the degree of ¢,, which in this case is a power of p (p being
the residual characteristic of F'). We will show that it also has
order prime to p, and hence is trivial.

Let &% & 9 be the normalizer of G* in .93. By Proposition
1.4, 7/ <2 is finite of order prime to p. Now since Ad* 77 leaves
a]rGNF fixed, Ad* <2 leaves + o log e G® fixed.

Let us briefly recall how the Mackey obstruction arises. Since
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Ad* 77, leaves o, fixed, there is for each ¢€.7 a unitary operator
U(t) on the space of ¢, which satisfies o,(t'gt) = U(t) o (g)U(t) for
g€G®. The operator U(t) is determined up to scalar multiples. Thus
if we select for each te.75 some U(t) having the above property,
then for each pair ¢, ¢,€ .7 there is a constant c(¢, t,) such that
Uit)U,) = c(t, t,)U(tt,). The function ¢(t, t,) is a cocycle defining
the Mackey obstruction. (In the present context, where o, is finite
dimensional, ¢(¢, t,) can be chosen to be locally constant.)

Now since Ad* < leaves +rolog on G* invariant, it follows from
the definition of ¢, that for t € <Z and g€ G® o,(t7'gt) = 0,(g). Thus
we may choose U(t), as defined above, to be identically one on 2.
This extends o, to “Z X,G®. Since the extended representation is
trivial on <Z, we see we are actually reduced to the problem of
extending ¢, factored to G/kero, to (74/F) X, (G/ker ). The
obstruction to doing this is in H¥( 74/<%, T). As is well-known, the
cohomology groups of a finite group have exponent dividing the order
of the group. Thus our Mackey obstruction has order dividing the
order 7,/<%, which is prime to p, as we claimed. This completes
the demonstration that the representation o of _#; can be extended
to .&.

Having described the irreducible representations of .4, we draw
some conclusions about harmonic analysis on .&%. Again let & C
//@ be an Ad* .54 orbit, and choose ¢ € &7, and let .&% be the isotropy
group of ¢ under Ad* &%,. Then we have shown any representation
o €r~Y(”), where 7r: %——»//}F/Ad* %, is the map described above,
is induced from an extension of ¢ to .&4. It follows that the restriction
of o to _#; is the direct integral over .&%/<% of the representations
Ad* s(a), for se€ $%/S%. By definition of .54, all these representations
are distinct, so each occurs only once in the integration. This means
the restriction of o to _#% is multiplicity free. (In this situation,
this means that the algebra of operators on the space of p which
commute with po(n) for all » € _#3 is abelian.)

We can make this more precise. We may take o', and induce it
first from .&; to .&4-C..,, obtaining a representation p], which will be
an extension to .&4-C. of an irreducible representation p, of C..
We may then take o; and induce it all the way up to & to get p.
Since C., is open in .%%, the restriction to C. of p will contain o,
discretely, and since p is already multiplicity-free on .77, it follows
that the restriction to C. of p is a discrete direct sum of representa-
tions Ad* s(p,), each occurring once.

Since C, is C.C.R., it follows immediately that there are compact
operators in the range of o(CY(<4%)). From [5] it follows that .5
must be type I, as was only to be expected.
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We may also extend this analysis to derive criteria for o to be
C.C.R., and for %% to be C.C.R. See [24]. As noted there p is
C.C.R if and only if o(Cy(%)) consists of finite rank operators, and
this is so if and only if p(Cy(C,)) consists of finite rank operators,
for any fixed C; as in Lemma 1.1, since C?(.%%) is spanned by trans-
lates in &% of functions supported in C;. This just means p restricted
to C. is C.C.R. But now, applying Fell’s criterion [13], this is so
if and onmly if AAd*%(pl) is closed in C.. From the fact that
B:V..JAd* C.. — C.. of Proposition 1.1 is a homeomorphism and natural
with respect to Ad* .94, we see that if o, = ,6’(5’1), and @, € &, then
p is C.C.R. if and only if Ad* S(p) S V. is closed.

Now &% is by definition C.C.R. if and only if all pe% are
C.C.R. This by the above means Ad* .&%(p,) is closed for any ¢, €
V.. Since the kernel of the restriction map from S, to V. is
compact (recall Sy is the Lie algebra of .&%), this is the same as to
say Ad* (o) is closed for any gz>e§F.

Now by [9], if .7~ is a maximal torus of .&° defined over F,

then we may write 9~ = .7,- 7, where .7, is the “anisotropic part”
of 7, and 7, is the “split part” of .Z. .7, is characterized as
having no characters (in the sense of algebraic groups) defined over
F, while the characters of .Z_ defined over F restrict to a subgroup
of finite index the characters of .7,. Both .7, and .7, are defined
over F, and .7, N .7, is finite.

I claim that &4 is C.C.R. if and only if .7, is central in &
For suppose .7, is not central. Then the action Ad* 7,, on S, is
nontrivial, and it is diagonalizable over F. Thus the eigenvectors
for Ad* 7., span S,. Let @ be one such eigenvector. Then Ad* F(p)
contains the origin in its closure, and so is not closed. On the other
hand, suppose .7, is central. Then the maximal tori of the adjoint
group of & are anisotropic over F. This implies Ad.% is a compact
extension of Ad .47 (see [9]). Since all Ad* _#5 orbits in S are
closed, so will all Ad* .&% orbits be closed. This establishes the stated
criterion that .4 be C.C.R. Again, one has the complete analogue
of the real situation. See [5].

We now summarize the the results established in the discussion
since Proposition 1.8 in the following portmanteau theorem.

THEOREM 1.1. Letr: &, — AF/Ad* % and m%-—»éw/Ad* Ko
be the maps derived from restriction of representations. Let p¢€ %,
pleéw, oe/f/;. Write r(0) = &, r(0) = &,. Suppose p,€ 7. Let
Q.= V.. be the Ad* % orbit corresponding to r(0). Let % be the
180tropy group of o under Ad* .

(i) % s type L.
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(ii) % 1s C.C.R. if and only if the split part of a maximal
torus over F of & is central in &

(iii) The Mackey obstruction to extending o from 4% to
vanishes.

(iv) All representations p of 5 are induced from finite dim-
enstonal representations of suitable subgroups. All representations
0. of C,, are induced from one-dimensional representations of suitable
subgroups.

(v) The restriction of p to A% is multiplicity-free. The
restriction of p to C. is discretely decomposable and multiplicity-
free. It is the direct sum of the representations Ad* s(p,), s€ .9,
each appearing once.

(vi) p is C.C.R. if and only if Q, is closed in V..

(vii) Any representation o' €r~(7) is of the form v Q p wnere
T s @ character of [ N5 Moreover, T @ 0 is equivalent to o if
and only if ¢ is trivial on Fy/ A p. Thus r () = j}/ﬂ;l = 7,
where T = 5l N3y T o = SFof N

REMARKS. As a complement to (vi), we note that it follows from
(v) and Proposition 1.1, that if o is C.C.R. and f € C(C..), then tro(f)
is given by the integral of the Fourier transform of f over ﬁw’l We
can say more. Even if o is not C.C.R., o(f) will be of trace class
if (and only if) the intersection of &, with the support of f is closed.
In this case the trace of f is again by the orbital integral. It is
interesting in this connection that if »,(0) = 7,(0’) for two different
representations o and o', then evidently the traces of o(f) and o'(f)
will be the same, for feC?(C.). Pukanszky [33] has observed a
similar fact for real algebraic groups. Here, however, there is a
simple explanation since p and p’ look so much alike. We observe
also that the existence of many functions which are mapped into
trace class operators, and the expected formula for their traces,
even for nonC.C.R. representations, has recently been pointed out
by C.C. Moore [25], Pukanszky [30] and others.

As the final point to our analysis, we try to fix a good “base
point” for r(¢”) when & is split. We will also comment on the
problem when & is not split. For now, however, assume .& is
split.

Pick an Ad* _#; orbit &> < N, and pick e 7. Let .5 be the
isotropy group of +» under Ad* .&%. By Proposition 1.3, for .& split,
we can find on algebraic subgroup & < _#; such that &% polarizes
¢ and is normalized by &%. Let 4’ be the linear character of &
obtained by restricting +rolog to . Put o =indZ7+y’. We want
to extend o to a representation ¢’ of &% = % -_#7 in a well-defined
way. We do this as follows. Write & = 9 X, 4%, with .77 the
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F-rational points of a maximal reductive subgroup over of .%%, and
Ny =N A7 Then &= 93 X, 5. Also S P = T3 Xy Fre
Clearly Ad* .77, leaves 4 on F,-invariant. Thus we may extend
4’ to a linear character ¢ on 77 X, Z% by letting ¢ be trivial on
7. Then we will call the representation ¢’ of .77 X, #; induced
from @ the standard extension of ¢. The main point about o’ is
that it does not depend on the various choices we have made. As
we said, this is an analogue of Kostant’s independence of polarization
theorem.

PROPOSITION 1.4. ¢ 1s independent of the choice of the reductive
component 7 of H. The representation o' is independent of the
choice of Z subject to the conditions that P polarizes + and is
normalized by %, and is independent of the choice of e .

Proof. If 75 is another maximal reductive subgroup of .54,
then we know by [14] that .77 and .75 are conjugate in &%. If
Ty = n Tyn for some n e _+7, then ¢ = Ad* n(p), where ¢ and
@' are the extensions of v defined by using .77 and .77 respectively.
But since ¢ is a linear character of 7, X, % and ne 45 S T,
we see ¢ = .

If 4, = Ad* n(y), for ne_47, is another point in ¢7, then the
isotropy group of 4 is 7' S%mn, which has split component ™' 7 yn.
If &7 polarizes « and is normalized by .&%, then n ' Zmn polarizes
Ad* n(y) and is normalized by n~'S%n. If ¢ is the extension of '
to Ty X P defined above, then o,(x) = p(nXn™) for

reN (T p X Frn

is the corresponding extension of (4, = 4, o log restricted to n ' Fpn)
to n( Ty X Fp)n. Obviously ¢ and ¢, induce the same representation
o' of &.

So we come to the main point, that ¢’ is independent of the
choice of <. This is proved in the classic manner, by induction on
the dimension of .&4. The group .#73 obviously contains 2°(_#7), the
center of _#7. Let 57 Dbe the largest algebraic subgroup of 2" (_#53)
contained in the kernel of +rclog on _#3. Then S# is obviously
contained in the kernel of o, so by dividing out by it, if necessary,
we may assume that 57 is trivial. Then 2°(_#7) is one-dimensional,
and +rolog is nontrivial on it.

Now let . be a two-dimensional normal subgroup of .&4, such
that 2(437) & F & 47 and F/2Z(+;) is central in 43/Z(A47).
Such a subgroup ¥ exists because &2 is split. Let _#;' be the
centralizer of _# in _#5;. Then a simple calculation shows dim _#3' =
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dim .#7 — 1, and taking commutators defines a nondegenerate pairing
from 7|2 (AN%5) X A7 AF to 2 (_47). By our construction, since
Jrolog is nontrivial on 2°(_s3), #7 will contain _s¢7. Let +' be the
restriction of +» to Ni, where N} = log 47 <S.#7. Let o, be the re-
presentation of _#7' corresponding to Ad* _#7'(+4'). Let o, be the
standard extension of o, to % 47 = T4 X, S5

Let &% be any algebraic subgroup of _#7;' which polarizes
and is normalized by .%4. Then necessarily ¥ < &' since .7 is
central in _#7'. It follows then that &%, polarizes . Thus as o,
is obtained from inducing +'olog on % up to 3%, and o is obtained
from inducing «rolog on & up to _+%, it follows that o, on 4%
induced to _#; gives ¢. Precisely the same chain of reasoning shows
that ¢’ on &4 is induced from o, on .%%-_47. By hypothesis o] and
hence ¢’ is independent of the choice of 7 & _y7.

Now suppose 7 is a polarizing group for + not contained in
473, and normalized by .&%. Then necessarily .~ N & = Z(4%),
and F} = (F N 47)- 7 also polarizes ¥, and is normalized by .%.
Let @ be the extension of 4rolog from &% to 73 X, % which is
trivial on .75 and let ¢' be the extension, trivial on .77, of rolog
from & to T4 X, 7. Let & = -4 Then F < &, and
S« To show ¢ and ¢' induce the same representation of .57,
it is enough to show they induce the same representation of &

Let «7* be the largest algebraic subgroup of &2, N &7 contained
in the kernel of 4rolog. Then &' is normalized by .77 and is normal
in & The group &’ = &/&* is a three-dimensional Heisenberg
group. The characters ¢ and ¢, factor to 73 X, F%/&* and
T X T & respectively. Similarly the representations of 77 X, &
induced from ¢ and ¢* both factor to representations of .7, X, &/&*.
Furthermore, if &Z S .7 is the kernel of the adjoint action of .7
on &/&t, then & is likewise in the kernel of the representations
of 73 X, & induced from both @ and ¢'. Thus to prove the pro-
position, it is enough to consider the case when ._s; is the three-
dimensional Heisenberg group and .7, acts effectively on _s7.
Moreover, it is completely clear that we need only worry when .77
is nontrivial. We now concentrate on this case.

Let us change notation slightly. Let 52 denote the three-
dimensional Heisenberg group. Let its Lie algebra be H. Let 2’
be the one-dimensional center of 54, and let + be a character on 2~
Let F¢, the multiplicative group of F, act on 5~ by an action Ad,
as follows. Write H=V,PV,Plog 2, where V, and V, are one-
dimensional subspaces. Take ze F?. For ve V,, put Adx(v) = xv;
for ve V,, put Ad (z)(v) = 27'». For zeclog 2, put Ad x(z) = 2. Then
Ad is in fact an action by automorphisms, and using exp and log,
we may transfer Ad to an action of F* on 52 by automorphisms.
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Form the corresponding semidirect product G = F* X, 54 Then it
is easy to see that G is in fact a split algebraic solvable group over
F, and that the action of F* on 57 fixes « and hence fixes the
representation of 5# corresponding to 4 by Lemma 1.2. It is not
hard to see also that G is maximal with respect to these properties
in the following sense. With the notation of the previous paragraph,
if 7, acts effectively on & /&', then there is an injective homo-
morphism .73 X, & /&' — G, such that the image of 75 is in F®,
Therefore, in proving our result, we need consider only G.

There are precisely two two-dimensional subgroups, 57" and 577,
of 57 which are normalized by F*. Each S#”¢ is the image under the
exponential map of V,Plog 2. Put G' = F* X, 5#°. On G' there
is a unique character ¢* which is trivial on F* and agrees with «
on 2. Observe @' must be trivial on expV, We must show the
representations of G induced from the ¢‘ on G* are equivalent, and
then we will be done.

Recall the explicit definition of ind§: ¢°. See [7] for details. Let
0; be the modular function on G*. That is, if d’¢g is a right Haar
measure on G¢, d'(g,9) = 0,(g9,)d’9 for any g,€ G:. Let Y* be the space
of locally constant functions f on G with compact support modulo
G, and such that for ge G y €@, fgy) = ' (9)0Y*(9)f(¥). G acts on
Y? to the right, by translation. There is an essentially unique G-
invariant inner product on Y* and the completion of Y* with respect
to this inner product yields an Hilbert space on which G acts unitarily.
This is the representation ind§: o°.

To show these representations are equivalent, it is enough to
define a G-invariant nontrivial Hermitian (linear in one variable,
conjugate linear in the other) pairing between them, and to do this
it is enough to define a nontrivial Hermitian pairing between the Y*.
See the discussion in [20], pp. 23-830. To define this pairing, take
f,e Y¢ and consider the product f,f, where ~ indicates complex con-
jugate. Since f; has compact support modulo G¥, f.f, has compact
support modulo G'N G* = F* x 2. Moreover, if g € G'N G? and
ye@G, then f.f,(gy) = 02(9)dY?(9)f.f«(y). Moreover, we note that
since G*' N G* is abelian, it is unimodular. Since G is unimodular also,
and G = G*-G?, we have 8,(9)0,(g) =1 for g€ G' NG Thus f.f; is a
function on X = G' N G*\G. Again, since G' N G* and G are unimodular,
there is a G-invariant measure dx on X, unique up to multiples ([36]).
Define {f,, f»y = Lflf_;dx. This is our pairing. It is easy to see
{,> is G-invariant, because dx is G-invariant. To show (,) is
nontrivial is also not hard. Choose a sufficiently small neighborhood
U of the identity and suppose f; vanishes outside G*U and is identically
one on U. We leave the details to the reader. This concludes Pro-
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position 1.4.

To establish the analogue of Proposition 1.4 for nonsplit groups,
one would use Proposition 1.3 plus the demonstration that the Mackey
obstruction vanishes. For brevity, we adopt the notation of that
demonstration. Our problem is to define a “canonical”’ extension of
the. representation o' of G® to .77 X,G®. Since the restriction of ¢*
to G* is a multiple of a linear character of G*, the problem essentially
reduces to a problem over the residue-class field of F. In this con-
text we have a candidate for a canonical extension, definable via the
Weil representation for finite fields. To see whether this candidate
was the right one, one would have to investigate it in detail, then
verify it has the proper independence properties. One should also
check for consistency with the above definition and with the orbital
parametrization for real groups.

II. Representations defined by solvmanifolds: Reduction of
the problem. In this section & will denote a solvable Lie group
and I' a discrete subgroup of . such that the quotient is compact.
Then & is unimodular and .$7/I” carries a unique probability measure
dp which is invariant under left translation by &~ Thus if L}($/I")
is the Hilbert space of square integrable functions on &#/I" with respect
to dy, then we have an action of .&” on L*(.$”/I") by unitary operators.
If this action is denoted by U, and f e L*(.$”/I"), we have the formula
U@is)f(x) = fi-u(x) = f(s7'x), for s€e S xe P/I". We will consider the
problem of decomposing LX.$”/I") into its irreducible constituents.
In the case .&” is actually nilpotent, this problem was solved in [16]
and [34]. We begin with an elementary general discussion in order
to put the results of [16] and [34] in perspective, to make clear in
what measure those results are general and in what measure they
require special properties of nilpotent groups.

First let us reformulate the multiplicity result of [16] and [34].
Let _#" be a nilpotent Lie group, and let I' & ¢~ still be a discrete
subgroup such that _#7/I" is compact. Let p be an irreducible unitary
representation of _#. Then o corresponds by Kirillov theory to a
certain orbit ¢ of the co-adjoint action of .#~ in the dual of the
Lie algebra of _7. In[16] and [34] the multiplicity of o in L*_#"/I")
is computed in terms of the number of I” orbits among certain “integral
points” in a homogeneous space associated to <7 The precise for-
mulation is directly tied into the Kirillov theory for _#~ and is slightly
complicated. I believe, however, that the connection of this result
with Kirillov theory is somewhat superficial and even, perhaps, in
some ways misleading (although of course for purposes of taking a
unified approach toward nilpotent groups, such a formulation is
desirable). As was rather elliptically noted in [16], the result may
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be restated more simply in the following way. Recall (see [24])
that I" gives rise to a @-structure on _#7(Q = rational numbers), so
that .#~ is the real points of a unipotent algebraic group over Q.
Let &7 be a rational algebraic subgroup of _#~ with respect to this
Q-structure, and let 4 be a character of 52 Suppose that p =
indZ 4. Then the multiplicity of p in L*(_#"/I") is equal to the number
of double cosets SZmlI", m € _¢; such that 2/ N mI'm™ is compact
and +r is trivial on 2 N mI'm™.

Compare this with the analogous statement for finite groups,
due to Mackey [23]. Suppose G is a finite group, and H, and H,
are two subgroups. Let o be an irreducible representation of G and
suppose o is induced from some linear character «» of H,. Then the
multiplicity of p in L*G/H,) is equal to the number of double cosets
H,gH, such that 4 is trivial on H, N gH,g™'. The resemblance between
the statements is evident. To go from the context of finite groups
to that of nilpotent Lie groups we must first restrict our attention
to cosets 57 mI" which are closed. (The condition that 52 N mI'm™
be compact is equivalent to asking that S#ZmI" be closed, by a standard
argument. See [28].) Let us call such cosets “good” double cosets.
Second, we must only consider rational subgroups 5# (or at most,
subgroups conjugate in .4~ to rational subgroups). This restriction
functions to insure the existence of sufficiently many good (5% I')
double cosets. That is, examples show if o is induced from + on
&7, then the number of good double cosets S#mlI" such that 4 is
trivial on 22 N mI'm™ tends to underestimate the multiplicity of p
in L _4"/I"). For instance, if 2% is not rational, but is normal,
then there are no good (5% I') double cosets, but o may appear with
positive multiplicity. This already happens in the Heisenberg group.
In the first few propositions, we look at the method of determining
multiplicity by counting double cosets. We give examples where it
works, and show how it tends to give lower bounds for multi-
plicity.

Let G be a locally compact separable unimodular group, and let
I' be a discrete subgroup such that G/I" is compact. Then G/I"
carries a unique G-invariant probability measure dxz, and we may
consider the representation of G on L*G/I') = LAG/TI', dx) derived
from the left action of G on G/I'. Of course, in terms of induced
representations, this representation is just ind? 1, where the 1 here
denotes the trivial representation of I". Let p be an irreducible
representation of G. We want to determine whether o occurs in
LXG/I") and if so, how often. We will suppose there is a closed
unimodular subgroup H S G such that H NI is compact, and that
there is a representation ¢ of H which induces p. Then this first
result is an example of what one can say.
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ProrosITION 2.1. (i) Suppose H is normal in G. Then all
(H, I') double cosets are good. For a given double coset Hgl', let m,
be the multiplicity of o im L H/HN gl'g™"). Then the number of
double cosets such that m, > 0 s finite, and the multiplicity of p
wn LXGIT) is exactly equal to >\, .pg/ir My,

(ii) Suppose H=H, S H, & --- & H, = G, where H/H,NI 1is
compact and H; is normal in H,.,. Then the multiplicity of p in
LAGII) is at least equal to the multiplicity of ¢ wn L*(H/HNI).

Proof. The proof is very simple. Part (i) is a translation of part
of Proposition 1 of [16], and part (ii) follows easily by induction on .

We recall the language necessary for translation of Proposition
1 of [16] to the present context. As described in part I, we have
an action Ad* G of G on H. We say that two Ad* G orbits O, and
0, in H are equivalent if their closures are equal. An equivalence
class of orbits is called a quasiorbit. We denote by H/Ad* G the
space of quasiorbits endowed with the quotient topology from H.
We call H/Ad* G the relative primitive ideal space of H in G.

We may define a continuous map 7:G— H/Ad*G. If p is an
irreducible representation of G corresponding to some point xe@,
the restriction of o to H will define a closed subset of H which
will be the closure of an Ad* G orbit and which therefore defines a
a point in H/Ad* G. This point is »(x). By abuse of notation, we
also write 7(0). Note that we have already encountered r, for the
special case of a solvable p-adic group and its unipotent radical, in
the context of Theorem 1.1 of part I.

Now if p = ind$ o, then 7(0) is the quasiorbit determined by o.
Consider IX(H/H N I'). The representations of H occurring here define
a discrete subset of H, and this subset fis clearly invariant under
Ad*I', and so is a union of Ad* I" orbits. Any two representations
of H which are in the same Ad*I" orbit clearly occur in L*(H/HN )
with the same multiplicity. By Proposition 1 of [16], o can occur
in L¥G/I") only if r(0) = Ad* G(¢) = Ad* G(o,) for some o, occurring
in LXH/HNTI). If this happens, then o does occur in L¥G/I") and
with multiplicity given by Xn,, where « runs over the Ad* I” orbits
in 7(0) and n, is the common multiplicity with which the representation
in @ occurs in LXG/I"). Of course #, is nonzero for only finitely
many <.

Now it is clear that ¢ occurs in L*(H/H N gl'g™") if and only if
Ad* g(o) oceurs in L*(H/H N I'), and with the same multiplicity. Since
the isotropy group of ¢ under Ad* G is precisely H (since ¢ induces
an irreducible representation of &), there is a one-to-one correspondence
between Ad*I" orbits in (o) and (N, I') double cosets, given by
associating NgI' and Ad* I'(Ad* g(¢)) = a(g). From our observation
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just above, we see that m, = n,,. This proves the first statement
of the proposition.

The second statement now follows from the first. Suppose H =
H,CcHC<---CH, =G, where H/H, N I’ is compact and H, is normal
in H;,,. Put p, =indfiio. Then for ¢+<j, p; = ind}i p;,. Since H =
H, is normal in H,, we see from the first part that the multiplicity
of p, in L*(H,/H,NT) is at least equal to the multiplicity of o, =0
in L H/H N I'). Similarly, the multiplicity of p, in L*(H,/H,NI) is
at least equal to the multiplicity of o, in LH,/H,NTI). Following
this reasoning on up the chain of H,’s, we obtain our result.

REMARKS. (a) Part (ii) of the proposition applies in particular
to nilpotent Lie groups and generalizes the positive part of the
occurrence criterion of [34]. It is perhaps a matter of some technical
interest that we obtain here and elsewhere lower bounds for mul-
tiplicities. Most estimates in the literature are upper bounds. See
[11], [23], and [24].

(b) Each of the two parts of the proposition is a partial general-
ization of the following comprehensive result on finite groups, due
to Mackey [23]. - If G is finite, then the multiplicity of p in L*G/I")
is Myemerm,. Thus when G is finite, there is no need to take H
normal as in part (i), and one may consider all (H, I") double cosets
simultaneously instead of considering only one double coset, as in
part (ii).

(¢) The barrier to extending part (ii) to a statement about all
good (H, I') double cosets is the possibility that, even though HglI
is good double coset, H;gI" might not be good for some H,. A
nilpotent Lie group .#" has the property that whenever 5% < ¢+~
is a subgroup such that 2S£/ NI is compact, then also
SAISAN T is compact if 57 is the normalizer of 572 in .7 This
fact derives from the fact that such an _#~ containing discrete I
with compact quotient actually has the structure of an algebraic
group defined over @, the rational numbers. We may expect also
for compact arithmetically defined homogeneous spaces, and arithme-
tically defined solvmanifolds in particular, that an extension of part
(ii) of the proposition, involving all (H, I') double cosets, will hold,
In our present general context, we must be content with observing
that if the chain connecting H to G contains only one intermediate
group, that is, if H = H,CS H,C H, = G, with H,/I" compact and H,
normal in H,,,, then all (H,, I") double cosets are good, and we obtain
the following corollary.

COROLLARY 1. Suppose that in part (ii) of Proposition 2.1 we
have | = 2. For each good double coset Hgl', let m, denote the mul-



TOPICS IN HARMONIC ANALYSIS ON SOLVABLE ALGEBRAIC GROUPS 409

tiplicity of 0 in LXH/H N gl'g™). Then the multiplicity of p in
LXG/L) 1s at least equal to the sum of the m, over all good (H,I)
double cosets.

(d) It seems worthwhile to state explicitly the specialization of
the proposition when ¢ =+ is a one-dimensional charater of H, since
this situation is the easiest to deal with and occurs often in practice.
So suppose p=ind% . Notice that a linear character occurs in L*G/I")
if and only if it is trivial on I, and that then it occurs exactly once.

COROLLARY 2. (i) If H is nmormal, then the multiplicity of o
wn LXGII") is the number of double cosets Hgl' such that + ts trivial
on HNgl'g™.

(ii) f HES H S HC<C---C H, =G, where H;/H, N\ I' is compact
and H,; is normal in H,.,, and if  is triviel on HN I, then p
oceurs in LAG/I).

We would like to point out that this corollary, simple minded
as it is, already gives us enough information to decompose L*G/I")
when G is metabelian. This already includes some interesting ex-
amples, notably various ax 4+ b groups.

PROPOSITION 2.2. Retain the above motation. Suppose NG
is a normal subgroup such that N and G/N are abelian, and N/I’
s compact. Then every representation occurring in L*(G/T) 1is
induced from a linear character v, of @ group N,, such that N < N,,
and N,/ N N, 18 compact. (Note then that N, is normal.)

Proof. Since N is abelian, L}(N/NNTI) just decomposes into one-
dimensional spaces corresponding to the characters of NN NN I. For
any given character « on N/NN I, let H be the isotropy group of
<r under Ad* G acting on N. Since HD N, H is normal in G, and
since the Ad* I orbit of 4 in N is discrete, since it belongs to the
annihilator of NN I, HHN I will be compact, by a classical result
[28].

Now in LXH/H N I'), the space of functions transforming by N
according to + is invariant, and it is clearly naturally unitarily
equivalent to the representation ¢ of H induced from Y = (HNI)-N
by the linear character 4 which agrees with 4 on N and is trivial
on I'. This extension ¢ of ¢ from N to Y exists because Y/ker
is isomorphic to (N/ker ) x ((H N I')/ker 4) (direct product) since
I' N N Z ker 4.

Next we see that Y is normal in H. Let H’ be the isotropy
group of 4 under the action Ad*H on Y. Then clearly if ¢’=ind# o,
then ¢’ induced up to H yields o, by transitivity of induced repre-



410 ‘ ROGER E. HOWE

sentations. Now, however, we see that ¢’ will in fact be trivial on
X =(HNT)-ker+ because " is trivial on X, and the kernel of
is normal in H’ by definition of H’. Thus we may regard ¢’ as a
representation of the factor group H'/X. As such, it is the repre-
sentation induced from ' factored to Y/X. Since H/N is abelian,
and since Y/X is central in H'/X, again by definition of H’, we see
that H’/X must be a compact two-step nilpotent group. It follows
easily (see [17]) that all representations of H’/X are induced from
linear characters of open subgroups. Lifting this information to H’,
we see that ¢’ decomposes into a direct sum of representations induced
from linear characters of open subgroups of H'.

Now consider a representation o of G occurring in LX(G/I"). Then,
according to [16], o lies over Ad* G(v) & N for some character +
of NNNNTI'. If H is as above, the isotropy group of - under Ad* G,
then p will lie over a certain Ad* G orbit in H and this orbit must
contain representations occurring in L*H/H N I'). Moreover if o€ H
is such that ¢ occurs in L*(H/HNTI') and p lies over Ad* G(o), then
it follows from Mackey’s theory, as explained in part I, that p =
ind$ ¢. But since we have seen above that ¢ is induced from a
linear character of a subgroup of H containing (H N I')-N, the pro-
position is established.

Before ending this general discussion, we make two further
remarks. First, the normality restrictions in Proposition 2.1 essen-
tially serve to ensure that certain formally definable intertwining
operators make good sense. This has not been brought out explicitly
because, in fact, when dealing with normal subgroups, one can avoid
the problem of intertwining operators entirely. Second, aside from
the normality restrictions, I hope it has become clear that the main
obstacle to developing a general multiplicity result after the result
of [16] and [34] is the possible lack sufficiently many “good” double
cosets. Both these points will come up in our analysis for the case
of solvable Lie groups.

We now turn to this case. Let ¥ be our solvable Lie group,
and let I' £ .&” be a discrete subgroup such that .&7/I" is compact.
We do not assume that 5 is connected. Instead we assume that
if &° is the connected component of the identity of .&; and if _#~
is the nilradical of .&*°, then .&°° is open in &% (this may be taken
as part of the definition of Lie group) and .$°/_#" is abelian. We
also take _#~ to be simply connected. Then it follows that .&¥
may be embedded as a closed subgroup of a connected solvable Lie
group (see [26]). Also it is clear that any closed subgroup of &
containing .4~ is normal in .5, and satisfies the same conditions.
Also, if .&” is connected, it automatically satisfies our conditions.
Note, too that .&”°/.5”°NI" will be compact. Furthermore, it was shown
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in [27] that .#°I" is closed. That is, if 4= _4"NTI, then _47/4 is
compact.

Choose g€._4" which occurs in LM v|4). We will try to find
the components of LX(.S/I") which lie above Ad*.S”(0) S .47 Let
P S . be the isotropy group of ¢ under Ad*.&”, Then 4+ & &
and #Z|# NI is compact and the subspace of L#Z/<# N I') which
transforms under .4~ according to ¢ is invariant under <2 Thus,
if we can decompose this subspace, we can in principle use Proposition
2.1 to compute the components of L*.$”/I") lying above Ad* .&7(o),
since # is normal in .4 and by Mackey’s theory all such components
are induced from <Z. Thus we are essentially reduced to the case
P =%, so that Ad* &”(0) = 0, and we now assume we are in this

situation.
We would like to reduce still further, and be able to assert that

o actually extends to an irreducible representation of .~ We show
that by again restricting our attention to a suitable subgroup, we
can accomplish this also. We could give a special argument based
on explicit realizations of representions of .54 but at the moment a
more general argument is convenient.

Let #Z<.%” now denote a subgroup of &7 containing .4~ such that

(i) &2 is connected,

(ii) “#|<# NI is compact, and

(iii) the representation o extends to a representation p of %
in the sense that o restricted to .#~ is irreducible and equivalent

to o.
Suppose further that <2 is maximal with respect to the above

three properties. It is clear that maximal <2’s exist, since all in-
creasing sequences of connected subgroups of . are finite. Now let
' be the isotropy group of pe.Z under the action of Ad*. & I
claim that the identity component of <2’ is precisely <#. For, as
usual #'[#' NI is compact. Thus if &2 is not the whole identity
component of <Z’, then we may find a connected group #" < F#'
such that <2" /2" NI is compact, & = 2", and dim #" = dim &2 + 1.
Of course pcR will be invariant under Ad* £Z”. But in such a
situation, since 2" is generated by <2 and a single one parameter
subgroup, p may be extended to an irreducible representation of 2",
by [5]. This contradicts the maximality of .2, and so we conclude
that, indeed, .“# is the connected component of <Z'. Now simply
let <Z denote a maximal subgroup of 2’ containing <# such that
L0 extends to a representation p, of 2. Then &2, will be a closed sub-
group of ', hence of .&, and an argument like the above, shows that
the isotropy group of o, €. under Ad* & is precisely 2, itself.
Since o extends to o, on &, it follows by Mackey’s theory, as
explained in part I, that any representation of 2 lying above o
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on 4" is of the form p, ® ¢, where +r is a linear character of .,
trivial on _#. Now let = be a representation of .&” lying over o on
. Then the restriction of = to <2 is clearly a direct integral of
representations lying above o, so that it is a direct integral over
representations of the form p, Q+, where 4 varies in (ZZ/4")".
Since the commutator group of .&” is contained in _#; the isotropy
group under Ad* & of p, @+ must be <& for any . Therefore
ind%, o, ® ¥ is irreducible for any . Hence we conclude 7 =
ind%, 0, ® 4+ for suitable «». Moreover, since .&°/_#" is abelian any
character o of <2/_#" extends to a character ¢ of .&°/_#. Then, if
¢ is the extension of v to .”/_#; clearly indZ o, @ v = ¢ ® ind.7 p,.
Thus all irreducible representations of .&” lying over ¢ are induced
from <2, and if 7, and 7, are two such, then 7,=¢® 7, for a
suitable character ¢ of &”/_#. We conclude from all this that if
we can compute multiplicities in L*(<Z/<Z NIT') of representations
of & lying over ¢ on _#; then by an application of Proposition
2.1 we can compute the multiplicities in L*(S”/I'). Therefore, we
now take 2 = . and assume oeN actually extends to a re-
presentation o of S

REMARKS. Since we have made two reductions to get from the
general case to the case where o extends, it might appear that we
would have to apply Proposition 2.1 twice to recover the general
case from the special case. It is not hard to convince oneself that
in fact only one application of Proposition 2.1 will be necessary.

Let L*(<”/I', 0) denote the largest .S”-invariant subspace of
L¥(s#/I") on which _#~ acts by a multiple of 0. Before computing
multiplicities of particular representations, let us consider the general
appearance of LX.$”°/I", ). This discussion will be analogous to that
of [16], §1, but we can be more specific here. Let L*_#"/4, o) denote
the largest _# -invariant subspace of L*(_#"/4) on which .4~ acts
by a multiple of . Since 4#7/d= #°T'/l", 4T acts on LX._+"/4),
and by restriction .#°I" acts on L*_#"/4, ). Since ¢ extends to .
a fortiori it extends to .#°I'. Thus we see that, under the action
of 4T, L{(N"/4, 0) =3\, a;,0,, where the 0,7 =1, .-+, [, are various
distinct extensions of ¢ to .#°I", and 3., @, is the multiplicity of
o in LX.1+"/4, 6). Note too that we may write o, = 0, @ 4, where
the 4, are distinct linear characters of #°I'/_#. We will look at
the 4, more closely later on in this section and in part 3.

It is clear (see also [16]) that the representation of & on
L¥&#[T", o) is isomorphic to >, a,(ind%0;). Put V = ind% .0, and
let p, be some irreducible component of V. Then if ¢ is any linear
character of &/ 4T, clearly o, ® ¢ also occurs in V. (One simply
returns to the definition of induced representation and verifies that
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multiplication by ¢ preserves the appropriate transformation law.)
On the other hand, the characters of .&°/_#"I" span L*(.$”/.+I), and
we may conclude from this that V = >} o, ® ¢, the sum being taken
over all linear characters of .&#/_#"I". In other words, V is multiplic-
ity free and contains one copy of each possible extension of ¢, from
AT to &~ Hence if for 1 =1, --.,1, we let 4 be an extension
of 4, from 4" I'|_4" to S/ +; then we may write

INS|A:0) = 3 S ap. Q¥ ),

where ¢ again ranges over (&“/_#°I')". Computing multiplicities is
thus seen to amount to determining a particular p, (or ¢,) and the
a;’s and +’s.

To accomplish this, we proceed in the general spirit of the dis-
cussion of the beginning of this part of the paper. We take a
particular o in % lying above ¢ in /VA, and we imagine that o is
induced from a representation = of some subgroup 2 of .&. Then
if 7, is the representation of _#"-<Z induced from = on <2, transi-
tivity of induction shows 7, induced to .&” yields p. Since p restricted
to _#" is already irreducible and equal to o, we conclude that Z- ¢~ =
T, =p, and that if #Z =2 N_4; then 0 =ind7 vy, where v
is the restriction of 7 to .# Therefore v must be irreducible, so
7 is an extension of v from _#Z to <. But now, notice that
PN = . means that #| 2 and &/_+" are naturally isomorphic,
and so therefore are their Pontryagin duals. Let 0 be another
representation of & lying over ¢ on #7 Then 0 = p & ¢ for some
$€ (/). Identifying ¢ to a character, also denoted ¢, of Z/ . #Z
we see that if T =7 ¢, then 0 on &7 is induced from 7 on 2.
That is, all representations of .&” lying over ¢ on .#  are induced
from <# from extensions of v from Z to 2.

Now assume that .Z = .2 N _#" is connected, and that <Z/Z N I"
is compact. If this is so, then . Z /. #Z NI'= #Z|.# N4 will be
compact too, as may be seen by the following argument, which is
quite general. If _Z/.# N 4 is not compact, then .Z-(Z NTI) is
not closed in <2, and so (Z NTI)-#| # is not closed in P/ #
But #| . # = &/ y; and under this isomorphism (Z NTI)- & | #
is identified to a subset of I"_#"/_#. Since I'_#"/_+" is closed and
discrete in .&”/_#; any subset of it is closed. Hence .#Z-(ZNTI)
is indeed closed, and .#Z/.# N 4 is compact.

Given these circumstances, we want to establish a result like
Proposition 2.1, or the result in the nilpotent case. This will take
some work. To begin, we show how the existence of a good double
coset Asl” such that 7 occurs in LA(Z/Z N Ad s(I')) gives rise to
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a subspace of the type of p in L*(.$”/I"). Here we have put Ads(I") =
ss™t.

The basic idea is the same as in the case of a finite group: we
construct an intertwining map. This was done explicitly by Richard-
son [34] in his discussion of the nilpotent group case. Also, L.
Auslander [2] has explicitly pointed out the function of an intertwining
map in the context of Proposition 1 of [16], and the present discussion
benefits from his observation. As I mentioned above, my own dis-
cussion of multiplicities has so far, by a subterfuge, avoided inter-
twining questions entirely. However, they appear to be necessary
here.

Consider a good double coset #sI” such that 7 occurs in
LN #2|Z NAds(I")). Replacing #Z by Ads (<#) and 7 by the repre-
sentation Ad* s(z) of Ads™(<#), which is defined by the formula
Ad* s(z)(s7'rs) = 7(r) for re .&Z, we may suppose s is the identity.
Since 7 occurs in LX(#/# N TI), o occurs in LA(F|FZ NT). We try
to embed p in LX(.S”/I") by averaging over I'/ZNI. We can not do
this directly because of problems of convergence. We proceed, slightly
more cautiously, as follows. For a locally compact space X, let C,(X)
denote the continuous functions of compact support on X. We define
a map @: C (/| # N T)— C,(”/I") by the formula

A= 5 fs7) .

The series converges absolutely and uniformly to a function right
invariant by I (see [35]). It is clear that @ commutes with the
obvious actions of G on the spaces C(&/FZ NTI) and C,(&/I),
and so we refer to a@ as a formal intertwining map or averaging
map. We now attempt to obtain from « an actual intertwining map
between L*(#/#Z NT) and L*(SZ/I'). We have C,(&#/#ZNT) S
IN&|# NT) and C (/) S LA(.&”/I"). Thus the graph of « sits
inside LA /# NT) X LX(S?/I"), and is an invariant subspace for
& acting on this direct product. We consider the closure of
the graph of a. In general, this closure will have no properties
at all. For example, if & =R, &Z = {0}, and I' = Z, then the
closure of the graph of a is all of L*(R) X L*(R/Z). In our present
context, however, we do get something useful. Recall that v is the
restriction of 7 to _#Z Let L*(Z/Z NI, v) be the subspace of
LY #|# N I') which transforms under .# by v. Now of course
the representation of <2 on L <#/Z N I') is just indZ,;1, and the
representation of &” on LX(P/FZ NTI) is just ind%, 1. Thus the
representation of & which is induced from the representation of
P acting on L*(F/# NT,v) is just a subrepresentation of &~
acting on LA/ #Z NI'). We denote the subspace of this represen-
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tation by L*(&°/#Z NI, v). To give an alternate description,
IA(#|#Z N T, v) consists of those functions feL* s’/ Z NTI) such
that for almost all x€.%, the function r— f(xr) on &Z is in
A BB NT,v). Put

C(FLIBNT,Y)=C(L|ZBN)NIN(F|ZNT,V).

We will use similar notation for other homogeneous spaces in
the course of the next few lemmas. For example, we have already
defined L*(.s”/I", 6) as the subspace of L*.$”/I") which transforms
under 4~ by o. Similarly C,(&/I', o) = C,(&#/I") N L*(&“|T", o).
Clearly a(C.(&|#Z NI, v) & C(&/T', 0). It is worth remarking
explicitly on the simple general principal behind these definitions,
for it will be very useful later, and helps clarify things. Namely,
suppose G, € G, S G, are 3 locally compact groups, each closed in
the next. Then if V S L*¥G,/G,) is a left invariant subspace under
the action of G,, then the subspace of L*G,/G,), consisting of functions
f such that for almost all g,, the function g, — f(g:9.) on G,/G, is in
V, is a well-defined subspace of L*G,/@,), invariant under the action
of G,. Of course, this is simply part of the theorem on induction
in stages.

LEMMA 2.1. C(&F/@ NT,v)is dense in LS| # NT,v). With
proper mnormalization of measures, the restriction of the formal
intertwining operator a to C(|H NI, V) extends to an isometric
injection of LA |# NT,v) into LA(#T).

Proof. By the alternate description of L*(.$”/<Z N I',v) given just
above, we see that those functions feL*(.$”/<Z NI,vy) which are
of compact support modulo & NI are dense in L*(&Z/Z NT,v).
For if U is an open relatively compact set of .&% and

fel(&|ZNT,Y),

then the function which agrees with f on U<Z and is zero outside
U< is also in L7/ N T, v) since it transforms correctly under
. Also it has compact support modulo <Z NI, since Z NI is
compact. Now let fe L’/ N I, v) have compact support modulo
#Z, and let £€C,(%). Then Bxf is in

&l nl,y),

still has compact support modulo .2, and is continuous. Now just
let B run through an approximate identity in L'($”), and Bxf will
approach f. This proves the first statement of the lemma.

We first prove the second part of the lemma in the special case



416 ROGER E. HOWE

when I' = (ZNI)-4 and _# is normal in _y. By our assumptions,
''ZNI =4/.# N4, so we may choose our <2 N I" coset represen-
tatives {7}, to lie in 4. The 7, will then normalize .# N 4.

Now if feC(&/ZNT), and heC,(S”/I"), then we have the
formula (see [15], [35]):

(1) Sylra(f)ﬁdy - L,m fhds .

In this formula dg is the standard probability measure on .&7/I,
and dx is an appropriately normalized invariant measure on
LI#Z NIT. We regard h alternately as a function of .&//I" or on
|#NT, and h is the complex conjugate of h. The formula
expresses the relationship between inner products in LX.$”/I") and
L(&|Z NT). We may ([15], [35]) rewrite the left hand side of (1):

(2) [, akdp = as(| atrenienis .

&|r |y S|4
Here ds and dfZ are the standard invariant probability measures on
| 4T and _4#7/4 respectively. Similarly, we may rewrite the
right hand side of (1) as:

(3) fhde = Sywpds(S/Mndf(sy)i—z(sy)d@ .

S?Iﬁ’ﬂ[’

Here ds is as in (2) and dy is a suitable invariant measure on
N4 A).

Now if f is a continuous function on .&% and se€.%, define f, on
W by fin) = f(sn). We have a map &: C.(V"[.#Z N 4)— C(4"/4)
defined by the formula &(h)(n) = >3, h(nY;). Again, the sum converges
absolutely and uniformly on compacta. Clearly for feC,(#/ZNI),
we have f, e C("|.# N 4), and the formula a(f),(n) = @&(f,)(n) holds.
Using this notation, and using (2) and (8), we see that (1) becomes

(4) fikdy .

SS
ZL|lyr A |2 N4

Ss’//rdsq/rmﬁ(f”)}_b‘dﬁ) - S

Suppose that » = a(h’) for some h'€C,(S”/#Z NI). Then the right-
hand side of (4) becomes:

gyl/f’l’ds SJ’I»//ﬂAde_(ﬁZ)—dy - Sylffds S./V‘Iv//ﬂdfx(y)(% E;(y71)>dy

=, as(=(  fwhkard).

Ti

(5)

The rearrangement is legal because in fact 4/.# N 4 acts properly
discontinuously on .#°/.# N 4, and in fact, for a fixed s, only finitely
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many of the products f,(y)h.(y7;) are nonzero. (We imagine that for
the outer integral in (5), we have picked representatives for se
| 4T, and are integrating over a nice fundamental domain for
AT in &) Thus we arrive at our final formula for f and A'e

C(&/(# NT)).

) | apad@an=\ (s rfwkeod).
eIr Ll T 7. JAzN4

Take f to be in C(&/# NT,v). This means that for each
se .’ and n € ._y; the function m — f,(nm), for me # is in
C(.AZ|.# N 4,v), the functions in C,(.#Z/ # N 4) which belong to
the y-isotypic component of L .#|.# N4). Then, since 7, normalizes
A4 and A N4, and Ad*7,(v) # v since vy induces the irreducible
representation ¢ of _#; we see that C,(.#Z | .# N 4, Ad* v, (v)) is
orthogonal to

C(A| A4 N 4,v).

But if feC(s¥/#Z NI, v), then m— f(nm?Y,) is in C(.#Z|.# N
4, Ad* v,(v)). Therefore, by integrating first over the .#Z/.# N 4
fibres, then over .47/ _«#, we see that if 7, does not represent the
identity,

S,r,/,mf;(y)ﬁi(y%)dy =0

for any f, W eC,(’/# NT,v). Hence for such f, n', formula (6)
reads

|, ana@y =\ asl  rakwa

| 4T A]..7N4

(7) !
- sz lﬁnrf(x)h,(x)dx :

Thus in the case we have been considering, namely .# normal in
A; and I' =(Z NTI)-4, the lemma is established. We defer the
proof in the general case in order to introduce another important
property of our intertwining operators.

So far we have been considering a single (<2 I') double coset,
which we have for convenience normalized to be the identity coset.
Suppose, however, that we have two good (<2 I') double cosets
s’ and APs,I” such that 7 occurs in L(#/# N Ad s, (I")) for i =
1,2. Put &Z = Ads;' &Z. Then by choosing coset representatives
for &2, NI in I', we can as above form averaging maps

a;:C(# B NT)—> C (T .
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LEMMA 2.2. There are only finitely many good double cosets
sl such that © occurs in LN(#|F N Ad s(I")). Suppose Fsl and
Rs,I" are two distinct good double cosets for which T does occur.
Then the images of a;: C(& [, N I, Ad* s,(v)) — C,(&7/T") are ortho-
gonal (with respect to the inner product C,(S”/I") inherits as a
subspace of L*(.&”/I)).

Proof. Since #-._4" = & any (<&, I') double coset has a repre-
sentative in 7 Let “#nl’,ne_4; be a good (<&, I') double coset.
Then Z/# N Adn(l") is compact. This as we saw before implies
M| A4 NAd n(d) is compact. Clearly 7 can occur in LX(#|Z N Adn(l"))
only if v occurs in L3 .#Z /. # N Adn(d)). But we know from the
nilpotent case that there are only finitely many good (_#; 4) double
cosets such that v occurs in L 2/ # N Ad n(4)) with positive mul-
tiplicity. This proves the first statement of the lemma.

To prove the second statement, we again begin by taking .#Z
to be normal in _#7 The argument follows the same lines as in
Lemma 2.1. We run through it somewhat faster. " Let {7v;};=, be a
set of coset representatives for .#Z N4 in 4. Then {7v;} will also
be a set of coset representatives for Z NI'in(FZ NI)-4=1T,. As
I, is of finite index ! in I, we may choose a finite set {n,}i, of
coset representatives for I, in I'. Then {7,7;}3.i-, are a set of coset
representatives for <& NI in I'. Of course, precisely the same
set-up applies to I',, but we do not need to make this explicit in
our arguments.

Take f,eC(&/<Z, NT). For f,, we have the formula a,(f,)(x) =
i f@nY;). We compute

Sylral(fl)az(ﬁ)d# = Ss»mlnrflaz(f—;)dxl
- gy,wldsl(sJ,r,/,m,ﬁ(sy)az(ﬁ)(sy)d@
- Lwld&(&,,ﬁwﬁ(sy) %ﬂ(syﬂﬂj)dy)
- sz}wrldsl<z Sdr,/ndﬁ(sy)f}(syﬂm)dad .

Ik

(8)

In the above dp, dz, ds,, and dy all denote appropriately nor-
malized invariant measures on the relevant coset spaces. Consider
a typical term in the inner expression of the last member in (8).
We see

S 70N Aﬁ(sy)ﬁ(syﬂkvd)dy
(9)
=S d"( ﬁ<snm)ﬁ<snmm,-)dm).
AN N4
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Here again dn and dm are the obvious invariant measures. Now
the function m — f,(swm) belongs to C,(.#Z /. # N 4, Ad* n,(v)), while
m — fy(snmn,Y;) is in C(A& | A4 N 4, Ad* ,7;n,(v)). The fact that v
extends to ¢ on 2 but induces ¢ on _4; shows that the isotropy
group of vy under Ad* & acting on VAt precisely 2. Thus the
(&, I') double cosets correspond bijectively to Ad*I" orbits in
Ad* &#(v). Since n, and n, represent different (<2, I') double cosets,
Ad* n,(v) = Ad* ,7;n,(v) for any choice of 7, or 7;. Hence the inner
integral in the right hand side of (9) is always zero, and plugging
this fact in (8) yields the lemma in this case of _# normal in _¢7

Using the above, we now establish Lemma 2.1 completely. Then
we will return to Lemma 2.2. For the moment we still take .Z
normal in _¢; but allow the possibility that (Z N I)-4 - I'. Again
let {7;} be coset representatives for .Z N 4 in 4, and let {7,}i-, here
denote a set of coset representatives for I = (Z NI)-4in'. Then
we may express the averaging map a: C(<#/# NT)—C,(S/I) as a
composite of two maps a’: C(F/#ZNI)— C,(&/I°) and B: C,(&[I"") —
C(&”/I’). The maps a° and B are expressed by the expected formulas:
a'(f)(x) = 3; f(=7;) and B(f)(x) = k-, f(27,) for f in the domain of
a® or B. Since I™ is normal in I', ZZI' decomposes into ! distinct
(%, I'") cosets, namely Zn,[° k=1, ---, 1. If B, =Adn' (), then
FZ.NI"=Adp;(# NT"), and we may define a}(f)eC, (/") for
feC(#/2,NTI') by the same formula as for feC,(#/ZNI). (We
note that (&, N I')-4 = I"° independently of k&, again by the normality
of I in I'.)

Now if f e C(&?/# N I), thenif f,(x) = f(xN), [ € C.(F|F#.NT),
and moreover a’(f)(x) = a’(f)(@7:). Therefore a(f)= Ba’(f)) =
a"(B()) = S afr). So now if f, heC,(#]/# NT), then

Llra(f)a(ﬁ)dp = Lwoa%f)a(ﬁ)dp‘)
(10)
=s | ahamay .

&I

Take now f,heC,(S”/# NT,v). Then h, belongs to C,(/Z, N
r, Ad*7,(v)). The case of Lemma 2.2 which we have established
now guarantees that in the sum in the last member of (10), only
the k& for which 7, €™ gives a nonzero contribution, and Lemma 2.1
is now completely proven when .# is normal in _#7

When _#Z is not normal in _#; we can pull ourselves up in
stages. If #Z°=_# and _#Z** is the normalizer of _#Z*in _¢; then
the _#Z* have the following properties. . #Z' = _4" for some finite
l, and 7% is normalized by <. The quotients .Z%/_#Z°*N 4 are
compact. If H'=2._#Z*% then #* is a closed subgroup of
B, and FA NI is compact. Put v' = ind%'y. Then ¥ is
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irreducible and induces ¢ on .4~ and v**' on _Z*, For each
1, we can average over cosets of “Z'NI in Z*'NI and this
will produce maps & C,(F* | Z'NT)—C,(F ) NT) and
a:C(F|# NI —C(|#*+ NT). Of course the maps a and &*
are closely related. For a given se &7 feC,(&?/#*NTI), define
fi(r) = f(sr) for re . Then f,eC(F*|F*NTI). Similarly, if
heC(&|#*+ N T), h,(r) = h(sr) is in C(F*/F**NT), and we
have, for proper normalization of the various measures, the integral
formula

a () y)h(y)dy

Sylﬂiﬂnr

(11)

e @o(( o F O (Ir)
We know that &' restricted to C(#Z'*# N T,V is an isometric
injection of this space (with the pre-Hilbert norm it has as a subspace
of L (#* ' N TI)) into C,(#Z* N T, vitY). We conclude from
(11) that a’: C(FL|F'N T, V) — C(F | N T, vi+Y) is also an iso-
metric injection. Now composing the a®’s gives Lemma 2.1 completely.

Now we finish the proof of Lemma 2.2. The procedure is much
the same as the above, but a slightly different formulation is con-
venient.

Let #n0,1=1,2,n,€._4 be two good double cosets such that
7 occurs in LYF#|# N Adn,("). Let & = Adn;(<#). With the
A% as defined above, if _Z' = _y; then .#Z*'* is normal in _#" and
BNA S AV, Put F'=F - #"" and FH; = F,- #Z"'. By
picking a set of coset representatives for <Z, NI in &' NI, we get
averaging maps ai: C,(&/Z,NT)—C(|#Z’ NT) and

@: C(Z/|ZNT)— C(F/ |/ NT) .

Similarly, by picking coset representatives for <2’ NI in I', we get
averaging maps B;: C(S/ @' N TI')—C(S’/I"). It is clear that the
composites B;°a; = @, are just the averaging maps from C,(<7/<Z, N T)
to C,(&7/I") with which we are concerned.

There are two possibilities: either <Z'nI" and #'n,[" are the
same, or they are not. Suppose first that they are not. Then
@(C(Z#; |, N T, Ad* n,(V) S C(Z/|#/ N T, Ad* n,('™)), with »~
as above. Thus

a(C( |2 NT, Ad* n,) S C(| %/ N T, Ad* n (™) .

But since .#Z'' is normal in _y¢; the images under the B, of the
spaces C,(&¥/<#/ NI, Ad* n, (")) are orthogonal by the special case
of Lemma 2.2 which we have already established.
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So consider the other possibility, that “#'n.] = “#'n.]". Then
if we choose n, and %, correctly, n, = mn, with me _#Z*". Taking
this choice, we see that <&’ = <& and that <2 and &, are conjugate
in &2’. This being so, we may make the inductive assumption that
the images of &, and &; in C,(&'/<Z' NI, Ad* n, (V') are orthogonal.
Then integrating fibrewise, we see that the images of «; in C,(&¥/Z/ N
I, Ad* »,(v') are orthogonal. Now we apply Lemma 2.1, which
says B, is an isometric injection of C,($¥/<Z' NI, Ad* n, (V™)) into
C(&?I"). Since a; = B,°a;, the images of the «; in C,(<”/I") are
orthogonal, and Lemma 2.2 is established.

Having seen how to construct subspaces of L*(.$7/I, ¢) using
good (&, I') double cosets, we want to show this is not an empty
construction. Indeed, we will show that the spaces we construct in
this way exhaust L*$”/I',0). From this fact to the multiplicity
formula we are after is but a short step. We base the result on
Richardson’s parallel result ([34]) for the nilpotent case. The main
point in applying [34] is the next lemma, guaranteeing the existence
of enough good (< I') double cosets. It is this argument, which
uses strongly certain facts about algebraic groups, that seems the
hardest to transfer to less structured (e.g., more general) context.
I do not even know how to prove it for a solvable group .&7 if Ad*.&#
does not leave o fixed. That is the reason for preliminary reduction
to this case.

LeEMMA 2.3. Suppose #Znd is o good (.4 4) double coset in
A" such that v occurs in LN A | . # N Adn(d). Then ABnl is a
good (B, I') double coset.

Proof. Let 2°(.#") denote the center of _4; and write &% =
|2 (). If X< & is any subset, let X & .5 denote the image
of X under the natural projection of & onts &% Since o is induced
from v on _#, .# must contain 2°(_#"). Thus Znl" is the full
inverse image in .&¥ of Bnl < .%% Since FZnl’ is good means it
is closed, and likewise for Znl", we see that if we can show ZZnl’
is good, we will have proved the lemma.

As is well-known ([24], [26]), the subgroup 4 of _#" endows
" with the structure of unipotent algebraic group over @ such
that 4 is an arithmetic subgroup of _#. This means that if N is
the Lie algebra of _4#; then N has the structure of vector space
defined over Q. Let log 4 £ N be the inverse image of 4 under the
exponential map from N to _#. Let L be the additive subgroup of
N generated by log 4. Then L is a lattice in N. That is L spans
N (over R) and is discrete in N. The set of Q-rational points of N
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are those points x such that tx € L for some integer t. A basis over
Z for L is a basis over @ for the Q-rational points of N and is a
basis over R for N.

Consider the adjoint action of .2 on N. The identity component
of the kernel of Ad:.&” — Hom (N, N) is precisely 2(.#"), by the
definition of nilradical. Thus the identity component of .&¥ acts
faithfully on N.

To show ##nl is good, it will be enough to show that we can
choose the coset representative n so that Ad#(I°) NI is of finite
index in I'. For then &2 NI N Ad #(I") has finite index in Z NI,
so #|# N Ad () will be compact, another criterion of the goodness
of #nl.

Let I', be the subgroup of .57 consisting of elements ¥ such that
AdY(L) = L. By the construction of L, we have I' ZI',. On the
other hand, the automorphisms of L form a discrete group in
Hom (N, N). Since the connected component of &7 acts faithfully
on N, it follows that I, is discrete in .&%. Hence I is of finite index
in I',., A simple argument then shows that if we can choose the
double coset representative n so that Ad#(I",) N I', has finite index
in I",, the same is true for I'. But Ad#(l,) NI, will have finite
index in I, if Adn(L) N L has finite index in L; for then Ad #(",) N
I, will contain some congruence subgroup of I',. Next, we see
Adn(L)N L will be of finite index in L if ne_4" is a Q-rational
point. So we are reduced to showing we can choose # to be Q-
rational.

Since vy induces o, it follows that the set of pairs (Ad n(_#),
Ad* »n~(v)) is naturally isomorphic to the space .#°/_#Z. (See [16].)
Since #'|.# (N 4 is compact, .# is defined over @, and _#"/_# has
the structure of variety over Q. This statement that _Zn4 is good
and vy occurs in LX(_#Z'|_# N Ad n(4)) implies that (Ad n(_#), Ad* n~'(v))
is a Q-rational point of _#"/_#. It is however, well-known (see [14],
and [24] for the role this plays in harmonic analysis on the adeles
of a unipotent group) that the @-rational points of _#" act transitively
on the @-rational points of _#"/_#. Hence we may choose » rational,
and the lemma follows.

Now enumerate the good (<2, I') double cosets {F#n.[}i, such
that v oceurs with positive multiplicity in L*(.Z/.# N Ad n,(4)).
We saw in Lemma 2.2 that these cosets were finite in number. Put
B =Adn' () and A& = F N v, and let y, = Ad*n,(v). We
have shown that the averaging maps a;: C,(&*/Z, N T, v,)— C.(|T, o)
extend to isometric injections B;: LX(.?/ &, N I, v,) — L} <?/T", o), and
moreover the images of the B, are orthogonal spaces.
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LEMMA 2.4. The images of the B span L*(S7/I", d). That is, we
have a direct sum decomposition

LXFIT, 0) = 6191 BLX& | N T, vy)) .

Proof. For a given 4, put I'; = (&Z, N I")-4. Then I'; has finite
index I(4) in I'. Let {n,;}}¥] be a set of coset representatives for I';.
We suppose 7,; is the identity. By choosing coset representatives
for _# N 4 in 4, we get averaging maps a2 C,(&#/ &, N I')— C(<[T,),
and @: C,(4"| #; N 4) — C,(_+#"/4). The relations between these maps
and the a; above are as follows. If feC,(S°/<Z, NT), then a,(f)(x) =

M al(f)(xn;;). For se. s, if the function fi:m — f(sn) is in
C( AN 140 4), and &(f,) = ai(f),.

We recall that L*(.¢#/I", 0) is the subspace of functions which
transform by o under _#: Since ¢ is invariant by Ad*.%, we may
also describe L*(SZ/I", o) as the space consisting of & € L*(S”/I"), such
that for almost all s, the function n — h(sn) on _#7/I' is in L*(4"/T", o).
We want to divide L*(.$”/I", 0) into certain invariant subspaces. To
this end, let us consider those good (_# 4) doublecosets .Z nd such
that v occurs in LA .#| . # N Adn(4)). By Lemma 2.3, each such
A x4 is contained in some Hn,J,1 =1, --+, k. Clearly the (_/Z 4)
cosets in _#~ which are contained in Z#Zn.,I” are the left translates
by n, of the (_#, 4) cosets in ZI'. Let _#Zxd and _#Zx'4 be two
(A, 4) cosets in HZI'. Then x =1y and 2’ = v with r, v e FZ,
and v, Y el'. Suppose Zxd = _#x'd. Then v = mrvd with me
i, 0ed. Thus (mr)9' =707 =4, is in &, NI, and ' = mrd,
and 7' = §;v6. Conversely, if these relations hold, it is easy to see
that #Zuxd = #ua'4. In fact, if only ¥’ = 6;'v8, then if we define
7" = mrd, with m arbitrary in _#;, we get a representative 2’ = v’
for _#xd. Thus 7' may be arbitrary in ¥I';, and the (_#;, 4) double
cosets in AT N .+ are in one-to-one correspondence with the I,
cosets in ", and a set of double coset representatives is provided by
{r.19 with 2,; as before and r;; € &, such that »;;7,; € _#. Finally
we conclude that the good (_#; 4) cosets in 4~ such that v occurs
in L.#Z|.# N Ad n(d)) are the cosets {_Z x,;4}s);_,, where n,r.;7; =
Lije

Put . #; = Adaij #Z = Ad (rym:) (A) = Ad 9 (#;). Let
& C( A" | A;; N 4) — C(4"[4) be the standard averaging maps. Let
X,; be the closure in L*(#"/4) of &y C, (A" A#; N 4, Ad* 2;;(v))).
Richardson [34] has shown that L*(_#7/4, 0) = @, ; X;;. (Actually,
Richardson concerned himself only with the case when v is a linear
character on _#, and also makes some restrictions on _#Z However,
once the multiplicity formula is known for general .# (still with v
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one-dimensional), as it is from [16], then, using the fact that if dim
y>1, we can find _Z < ._# such that _# //ZN N 4 is compact, and
such that v is induced from a linear character of _Z it is seen that
very small modifications in Richardson’s arguments give the result
as stated.)

The X,; are _/ -invariant subspaces of L*(_#"/4). However,
when we make the identification _#°/4 = _#°I'/", the X,; are no
longer invariant under _#"I". Indeed, the transformation x — Y27 =
Adv(x) for e _#;vel preserves 4 cosets, and so factors to an
action of I' on _#7/4, and this action is the same as the standard
left action of I' on .#°I'/c under the identification of .#7/4 with
A4T'/'. On the other hand, it is immediate from the formulas
defining the averaging maps a2; that if Ad* I" denotes the action of
I on L¥(.#"/4) dual to the action AAIl" on .#"/4, then Ad*I" per-
mutes the X,; among themselves. The orbits consist of all X;; with
arbitrary j and fixed 7. The isotropy group of X; is simply I,.
Therefore X; = @!¥) X,; is Ad (I")-invariant, and so, looked on as
subspace of LA .4#"I'[l"), it is _# [-invariant. We thus get the
orthogonal decomposition L*_#"I'/l", 0) = @i, X;,. If then Y, is
the subspace of L*(S”/I", o) consisting of functions f such that for
almost all s, the function nv — f(swY) on #°I'/" is in X;, we see
that the Y,’s are .S“-invariant subspaces of L*(.$#/T", ¢), and we have
the orthogonal direct sum decomposition L¥( /I, 6) = @:.,Y,. This
is the decomposition we were after. We will now show that Y, =
BN, N T,v,)), and this will prove the lemma.

We proceed in two steps. First we note as a simple corollary
of the discussion of the last paragraph, that if X; is interpreted as
a space of functions on _#"I'",/I";, then it is _#"I';-invariant. Therefore
we may consider Z;; S L*.$7/I";), defined as the space of f € L,(S?/T",)
such that for almost all s€.%% the function nY— f(sn7) is in X;.
The space Z,;; is a well-defined .S“-invariant subspace of L*(.S7/I",).
Define the averaging map a,: L,(S7/I";) — L(<”/I") by the obvious
formula: e,(f)(s) = 3} f(sn;;). Then it is clear (again by checking
the formulas) that a,(Z;;) £ Y;. I claim that in fact a,(Z;;) =Y,.
This may be seen directly as follows. Verify easily that if feZ,;,
then the function s— f(s7,;) is in Z,,,, where I';%;9,;,=I9;n. Now pick
a fundamental domain U for I'/4 in &#/_#: That is, U is a reasonably
nice set (for example, a G;) which contains exactly one point from
each I'/4 coset in &7/ y- It is an easy thing to do to find U, since
&[4 is an abelian Lie group. Let U’ denote the inverse image of U
in &, and let U” be the projection of U into .°/4. Then it is quite
obvious that the projection of U” into .&7/I' is in fact a bijection.
Similarly, it is obvious that if U;; =%,;U"” =U"7,;(I" may act on .&/4
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on the right because /' normalizes 4), and if U;; is the projection of
U;; in &7/I";, then the projection of U;; to U], is a bijection, if j # m,
then U}’ and U, are disjoint and &#/I"; = YUY

The procedure is now clear, though slightly cumbersome (which
is typical of this whole construction). Take f in Y,. Pull f back to
a function f on U’/ by means of the bijection between U’ and I
Then we may write f = 3\ 7;, where f;¢ Z,;. Let h(x) = f(anid)
for xe &/I';. Then h;e Z,;, as one verifies immediately by checking
the formulas again. Also h; is zero off %;;*U;;’. Let h be the function
on .&/I"; which agrees with A; on ;;U;;’. Then it is easy to see that
the averaging map a, reverses the above process, and a,(h) = f.

For the second step, we consider the averaging map «a! defined
at the start of the lemma. By the relations stated there, ! restricted
to any coset of _#~ is just &. We know from the nilpotent case
that the maps from L* .4/ #Z NT,y,) to X, derived from & is
onto. Since L*( S| .#,NT,y,) consists of all feL? such that on
(almost) any coset of _; the restriction of fisin L¥(.4"/ . #Z NT,v,),
we conclude that the map from L*(&/ . #Z NI,y,) to Z, derived
from «, is likewise onto. This finishes the lemma.

Now we may combine the foregoing lemmas to obtain our sought-

for result on multiplicity.

THEOREM 2.1. Let &7 be a solvable Lie group, 4~ its nilradical.
Suppose [ A" is abelian. Let I' be a discrete subgroup of & such
that &I’ is compact. Let o be a representation of .4~ which is
invariant under Ad* &4, and which extends to a representation p
of & Let & < .&” be a subgroup such that Z|# NI is compact.
Let © be a representation of Z which induces po. Then there are
only a finite number of good (< I') double cosets Fnl" such thot
T oceurs wn LA R F N Ad n(l")) with positive multiplicity m,. The
multiplicity of p im LA(.S/I") is given by the sum Zm, over these
good double cosets.

Proof. With Lemmas 2.1 to 2.4 to work with, the proof is a
routine matter. We will therefore do something more, and use
this opportunity to reinterpret the spectrum of L*(.$”/I’, o) in the
terms of the discussion preceding Lemma 2.1. We reestablish our
notations.

Let #Z =2 N_y. We have seen .Z /. # NI is closed. Let
v be the restriction of = to _Z Let {<#n,}:, be the good (F, I')
double cosets such that vy occurs in LA .Z/.# N Adn (I')). Put &, =
Ad 7<), and #, = Adn;'(_#). Denote by vy, the representation
Ad* n,(v) of _#. Recall that L*(&¥/<Z NT,y,) is defined as the
subspace of functions feL*($”/<Z, NI) such that for almost all
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x €.%% the function m — f(xm) on _#Z transforms to the left under
_#; according to ;.

Let 7, be the representation Ad*n;(z) on <. Let H; =
(B NT). Let r, be the restriction of 7, to H,, We identify
M| ANT and H,/<Z, NI in the usual way. Suppose v oceurs in
LN _#;] #, N I") with multiplicity ¢;. Then according to the discussion
of IX(.&”|I", o) preceding Lemma 2.1, we have that under the action
of H, LN .#;] #4NT,y) breaks up into a sum >;b;;7; ® {i;, where
the (i; are characters of H,/_+;, and >);b;; = a,.

Again referring to the discussion preceding Lemma 2.1, where
the representation of &7 on LS/ 2, N T, v,) is just 3;b,;ind7, 7i ®
Ci; If we induce this in stages, going first up to 22, we get
Db indTi T @ Ly = 30 D 0:iT Q& @ 6. Here we have identified
H,|_+#; with a subgroup of <Z/_+ and {,; is any character of <2,/ _#;
whose restriction to H; is {j;. In the second summation ¢ runs
over all of (<Z/H,)". Now since “H#- .+ =.% we may identify
(#,/H,)~ with (| 4"H,)", and (/] _+#;)" with (&*/.#")". Doing so,
it follows immediately that upon passing from <2 to & we get

INZ |20 T, v) = 3. 316i50 @ Lt & Pi

where the {;;’s are now interpreted as characters of &/ _¢; and ¢}
runs over (/4 "H,)~ as « varies.

Now that we have written this down, we see that Lemmas 2.1
through 2.4 imply that

12) LT, 0) = 230 25 biip @ L & e -

By inspecting this formula, we will see the theorem is true. By
the discussion preceding Lemma 2.1, we see that 0 @ (,;; ® o is
equivalent to p if and only if {,;p is trivial. Moreover, it is completely
obvious that the multiplicity of = in L*#/<#Z N Adn,(I')) is the
same as the multiplicity of z, in L <2/ N I'). These three facts,
plus formula (12) establish Theorem 2.1.

Let us now go somewhat further, and compare (12) with the
decomposition of L*.S”/I", 0) given before Lemma 2.1. That decom-
position was LA/, 0) = > D a0, Q ¥: @ @) where p, was a fixed
representation which did occur in L*.$”/I’, 0), the 4 are characters
of &’[.#" whose restrictions to _#"I" are specified, and ¢ is arbitrary
in (&Z/°T")". For ease of comparison, put o, = p. In this decomposi-
tion, the +; were the most mysterious objects. We had no explanation
of what they would be or how they would arise. Our decomposition
(12) is more refined and provides a partial explanation of the origin
of the +. Indeed, in comparing the two, we see we must have
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equations 4, = C;; @ pi. Recall that {,; is a character of &/ #~
having specified behavior on I";/4 and % is trivial on I";. In particular,
we see that, in addition to +, every character of I" agreeing with
4, on I'; will occur among the +’s. In terms of the proof of Lemma
2.4, we see that the set of +’s agreeing with +, on I'; arise essen-
tially because I'; = (<Z, N I')-4 may be a proper subgroup of I, so
there may be several (_#; 4) cosets in (Fn, ") N _#; in which case
I'/I";, permutes transitively the invariant subspaces X;; of L*(_+#"/I", 0)
described in Lemma 2.4. Thus, we see that if we can predict the
£;;’s, we can also find the +’s from the (<2, I') and (_#, 4) double
coset structure. Thus, if &2 is a proper subgroup of .&/, we have
effected a reduction in the problem of determining the +’s. Indeed,
if it should happen that we can choose &Z so that 7 is one-dimensional,
then of course v will also be one-dimensional, and L*_#Z/ # N T)
will always be one-dimensional, and L¥<Z/<Z, N I, v) will obviously
consist of all extensions of v to <Z/<Z, N I". Any two such extensions
differ by a character of <2/ #,(<#Z NI). Hence, in this case the
{;;’s are completely determined in an obvious manner, and the complete
structure of L*(S7/I, 0) is quite clear.

In view of the above discussion, and also to determine the
usefulness of Theorem 2.1, it is of interest to know from what sorts
of groups “# we may expect to induce p. Usually it is too much
to expect that we can choose < so that the inducing representation
T on 2 is one-dimensional. (Indeed, this is not even true when one
allows any 2, not just those # such that <Z/<Z NI is compact.)
However, this question does have a fairly satisfactory answer, obtain-
able by the now standard techniques of Kirillov theory. The result
we want is almost, but unfortunately not quite (due to the rather
arbitrary nature of our %) a consequence of Proposition 1A of
[19], and so we give a separate proof. The details of the proof
are the same as for Proposition 1A of [19], and it seems that a
scheme-theoretic version of Proposition 1A would include the present
result. In any case, we point out the obvious strong analogy of this
result with Proposition 1.3 of part I.

This is the set-up. We take & and _#;I and 4 as always.
We take any o ¢ _+" which occurs in L*(_1"/4). We do not necessarily
assume that o extends to .&4 or even that it is invariant under the
action Ad* &2 of .&“ on _y. Let &~ denote the isotropy group of
o under Ad* & Of course .+~ = &, and &4/.55 NI is compact.

In our present context, that of Lie groups, we will understand
a Heisenberg group to be a two-step nilpotent connected simply-
connected Lie group 5%, whose center and commutator subgroup
coincide, and are one-dimensional.
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ProrosiTION 2.3. We may find a subgroup F# < .5, and a
representation v of A = F N A" such that

(i) FlZNT and A | . # N4 are compact.

(ii) A=R -4

(iii) o = ind7 v.

(iv) ve._#Z is Ad* F-invariant.

(v) A s connected.

If #Z' < # 1is the connected component of the identity of the
kernel of v, #|.#" is o Heisenberg group, or isomorphic to R.
Also Z'|.7Z" N 4 is compact.

Proof. Let N be the Lie algebra of _#; and let N* be the vector
space dual of N. The original Kirillov theorem [21] asserts the
existence of a surjective map a: N *— _4" such that the inverse
image of a point in 4" is an Ad* _#" orbit in N*, and which commutes
with the actions Ad*.&” of .& on N* and _j/: Denote by < the
Ad* v~ orbit a™i(s) in N*. Clearly then .52 is the subgroup of
se€. % such that Ad* s(¢?) = ¢~ Let \ be a point of <7, and let &2,
be the isotropy group of \. Since _#" acts transitively on &7, we
have & = &#,- 47

As sketched during the proof of Lemma 2.3, the existence of
4 in .+~ endows _#~ with the structure of unipotent algebraic group
over Q. Also N has the structure of vector space over @, such that
log 4, the inverse image in N under the exponential map of 4, spans
the @-rational points of N. Thus N* has a rational structure, and
the rational points of N* are those whose values on log 4 are rational.
It is known ([24]) that with the usual normalization of «, that in
order for ¢ to occur in L*_4"/4), #~# must contain rational points.
Let e be rational. Then X is rational on log 4, so a multiple of
A\ is integral on log 4. The property of being integral on log 4 is
clearly invariant by Ad* I, and so Ad* I'(A) must be discrete. This
implies by the argument we have used so often that Z,/ NI is
compact.

To produce &%, we will produce _#Z < .4~ and a representation
ye _# such that _# is normalized by <2, v is fixed under Ad* =2,
A [|# N4 is compact, Z,N A" S # and _# and vy satisfy (i), (iii),
and (v) of the proposition. Then putting & = Z,-_#, we see this
# will satisfy the proposition.

We will suppose that we cannot find _#Z such that v is one-
dimensional and proceed to the general case. Suppose we can find
subalgebras M,;, ¢ =1, 2, 3, of N satisfying the following properties:

(a) the M, are Ad <Z-invariant,

(b) the M, are Q-rational (e.g., spanned by their @Q-rational
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elements);

(¢) M, contains “maximal subordinate” subalgebras to A, in the
sense of Kirillov [21];

(d) M, and M, are ideals in M,

(e) M,= M,nker N and M, = M,;

(f) M,/M, is a Heisenberg Lie algebra.

Then let .# be analytic subgroup of _#" corresponding to M,, _#"'
the subgroup corresponding to IM,, and v the representation of _#
corresponding to the Ad* _Z orbit of N\ restricted to M,. Then our
property (a) guarantees .# is normalized by .22, and our choice
of v will be Ad* “-invariant. Property (b) guarantees part of
(i) and part of (v) of the proposition. Property (¢) guarantees (iii)
of the proposition by Kirillov [21] and property (f) guarantees the
rest of (v) of the proposition. Thus finding such M,; will establish
the proposition.

We show the existence of the M, by induction on the dimension
of N, and there are two cases to consider. Let Z be the intersection
of the kernel of N with the center of N. The subspace Z is rational,
since ) is rational and the center of N is rational. Also, Z is Ad .<%;-
invariant. The first case occurs when Z +# {0}. Then we consider
N' = N/Z. Clearly the action of Ad.cZ factors to N’ and Z is
Ad “Z-invariant. Also ) factors to N’ since Z C ker A. Then if
M;, 1 =1, 2,8 are subalgebras of N’ satisfying properties (a) through
(f), it is easy to check that if M,, 7 = 1, 2,3 are the inverse images
in N of the M;, then the M, also satisfy properties (a) through (f).
Hence in this case, by the inductive hypothesis, we are done.

In the second case, Z = {0}. Then 2°(N), the center of N, is
one-dimensional, and X\ is nontrivial on 2 (N). Let Z*N) be the
second center of N - that is, the inverse image in N of 2 (N/Z (N)).
Then Z*N) is rational. Let N® here denote the centralizer of
ZO(N).

Clearly 2°*(N) and N® are invariant by Ad <Z,. Also Ad(<Z,N_4")
must act trivially on 27%(N), since it fixes A, so that the Lie algebra
of & N._¢ is contained in N®, Let N' = 2*(N)+ N®. Then
either N’ is a proper subalgebra of N, or N is already Heisenberg
(or one-dimensional, which case we have agreed to ignore). In either
case we can clearly find subalgebras M/, 7 = 1, 2, 3 of N’ which satisfy
properties (a) through (f) with respect to the restriction of » to N’.
But since it is easy to check that dim N—dim N'=dim 2°(2¥N))l— =
dim (2%(N)N N®) — 1, it follows that property (c), the only property
that might fail when the M; are considered as subalgebras of N
rather than N’, persists, so the M, work also for » and N. This
proves the proposition.

Proposition 2.3 shows how far things can be reduced in the
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general situation but it is of interest also to know conditions which
guarantee that we may choose v one-dimensional. Perhaps the most
satisfactory general class of groups for which we may always choose
y one-dimensional are those groups .5 which are the intersection of
the kernels of the rational characters (in the sense of algebraic groups)
of the real points of an algebraic group .&°’ over @, obtained by
reduction of scalars from a split group .&°” over some number field.
Such groups will come in for special attention in part four.

By Propositions 2.1 and 2.3, we may consider that we have
reduced the general multiplicity computation to the special case when
the nilradical .+~ of & is Heisenberg, and Ad.&” acts trivially on
2 ("), the center of _#: Indeed, with Theorem 2.1, we have done
slightly better than that. We will finish part two by making explicit
precisely how much better we have done. Keeping Theorem 2.1 in
mind, we will say &7 is minimal if

(a) 4" is Heisenberg;

(b) Ad.&” acts trivially on 2°(_");

(¢) given o€ L* _4"/4), nontrivial on 2°(_#"), then o extends
to .&7; and

(d) there is no proper connected subgroup .# of _#" such that
| A N 4 is compact, .Z is normal in &, and ¢ can be induced
from _/Z.

Clearly we have reduced to the case of minimal .2 Now let us
translate the conditions of minimality into conditions on the structure
of &4 independent of o.

Let & be minimal. Let 2°(N) be the center of the Lie algebra
Nor _#. Let V=N/2(N). The action Ad.&” of . on N factors
to an action Ad.$” on V, and .4~ acts trivially on V, so that Ad .&”
on V is actually the action of the abelian group .5/ _#: As is well-
known [19], the commutator on N factors to V and there defines a
symplectic form, which we will denote by {, ). Since Ad.%” acts
by automorphisms on N, and acts trivially on 2Z°(N), the action
Ad.&” on V preserves {,». The image in V of log 4 is a lattice
L, and V has the structure of vector space over @, with L span-
ning (over Q) the Q-rational points of V. The action of AdI on
V of course preserves L. ,

PROPOSITION 2.4. Let & be minimal. Then

(i) For any Ad S-invariant rational subspace U of V, the
restriction of {, ) to U is mondegenerate. Equivalently, there are
no Ad S -invariant rational subspaces of V which are isotropic with
respect to {, ).

(ii) Ad & acts semisimply on V.
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(iili) &7 is isomorphic to a semidirect product ¥’ = .7 Xs AN~
where 7 s abelian and 7 |7 NI ts compact, and &' = .S [kero.

We will prove (i), (ii), and (iii) in that order. Recall two simple
facts from the representation theory of the Heisenberg groups [24].
If . # < 4 then o can be induced from a representation of _# if
and only if 2( )< . # and dim 4" — dim # = dim 2(.#Z) —
dim 2(")(=dim 2 (_#) — 1). This is the same as saying .# is
the centralizer in _#~ of 2°(_#). From these facts, we conclude that
the condition (d) in the definition of minimality is equivalent to saying
there is contained in _#~ no normal abelian connected subgroup .#
of & such that _#Z/_# N 4 is compact.

Let .# & _#" contain 2°(_#"), and let U be the image of the
Lie algebra of M in V. The following statements are easily checked.
The condition that .#/_# N4 be compact is equivalent to the state-
ment that U/U N L be compact, that is, that U be rational. The
condition that .#Z be normal becomes the condition that U be Ad .&-
invariant. Finally, the condition that _./Z be abelian is equivalent
to the condition that U be isotropic with respect to the form (, ).
These conditions clearly imply the second statement of (i). To see
both statements of (i) are equivalent, let U SV be rational and
Ad S“-invariant and suppose ¢, > is degenerate on U. Then if U, is
the radical of (, ) on U, it is obvious that U, is rational, Ad .-
invariant and isotropic with respect to ¢, > and thus cannot exist.
This finishes (i).

Now we prove (ii). Let V, be the Q-rational points of V. Then
Ad I acts on V, preserving {,>. The group of all linear transfor-
mations of V, preserving ¢, > is obviously an algebraic group. By
a standard theorem in algebraic groups [8], given Yel, we may
write AdY = s-u where s is a semisimple and % is an unipotent
transformation of V,. Moreover s and w both preserve {, ) and have
the property that they commute with any transformation the com-
mutes with Ad~. If AdI does not act semisimply, then for some
¥, w is not the identity. For this 7, let Y, be the kernel of 1 — u
and let Y, be the image of 1 — u. Then Y, and Y, are proper non-
trivial subspaces of V, and they have nontrivial intersection Yy since
1 — u is nilpotent. Let Y” be the real span of Y. Then Y” is
clearly rational. It will also be Ad.%’-invariant, since Ad.&” will
commute with 1 — u. Moreover Y” will be isotropic with respect to
{,> Forif z,yeY”, thenz = (1 — u)x’ for 2’ € V. Hence

o, y) = KA — wa', yy = &', ¥y — (ulx’), vy
=&,y — <@, uT ) =<, A —-uNy) =0
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since u(y) = y. Therefore Y” cannot exist by (i). Hence Ad [ acts
semisimply on V,. Then, since .&°/I" is compact, Ad .5 acts semisimply
on V.

Statements (i) and (ii) of the proposition have essentially been
consequences of condition (d) of minimality. Statement (iii) depends
on condition (¢). Without worries about disconnectedness or rationality,
statement (iii) is a very standard result, essentially amounting to the
existence of a Cartan subalgebra. In our present situation, the basic
argument stays unchanged, except we use the structure of _7s; but
details must be followed more carefully.

First we will show that we can write .&¥ = 57._ 4" with 57
and .+’ € .+ having the following properties:

(@) A 4" N4dand S£/5# N T are compact;

(b) 47" is normal in &

(¢) if 4" =27 N_4; then Ad (I' N &) acts trivially on
NNZ(AN).

To do this, take veI'" and consider Ad~ acting on V. Write
V=V.@DV,, where Ad~ is the identity on V, and Adv—1 is nonsingular
on V,. This is possible since Ad 7 is semisimple. Since Yel', we
see V, and V, are rational subspaces of V. For ¢ = 1, 2, let .77 denote
the subgroups of /" corresponding to the inverse images of V, in
N. Both _#; are normal in &, Let 5# be the inverse image in
" of the centralizer of the image of v in $“/_¢;. Then 5% is a
closed subgroup of & and 24N .4 = _47 by construction. Also
27154, N T is compact by our usual argument, since veI'. I claim
& = SF - 54. In fact, if se.& then (s,7) =svs'vte_y; and
we may look at », the image of (s,7) in V. (We may identify V
with #7/2°(_#") by the exponential map, which in this situation is
a group isomorphism.) Write v = v, + v, with »,€ V,. Then se 27
if and only if v, =0. Let me_¢;, and let w be the image of % in
V. Then (ns, 7) = n(s, V)n"(n, ¥), and the image of (us,?7) in V is
v+ (1 — Ad7)u. Since (1 — Ad ") is invertible on V,, we may arrange
that (AdY — 1)u = v,, in which case ns = h€ 2#. Thuss = n"'h and
the claim is established.

If werename o7 = .& 47 = _4;and I' N 27 = I, we may repeat
the above reduction, until we arrive at a situation where Ad " acts
trivially on V. We note that minimality is preserved under this
reduction (that is £ must be minimal) so ._#7 and successive subgroups
selected by this process will all be Heisenberg groups, unless they
reduced to 2°(_#"), at which point we are done. Thus we have
accomplished the desired decompositions .&¥ = 57 - _#". If in this
decomposition 227 N 4+ = Z(4") or if Ad 27 is trivial on

(N A|Z(A7),
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then we are ready for the final step. Otherwise we must make
another reduction. So assume £#° N .4  is Heisenberg, and Ad 57
is nontrivial on (57 N .A#")/ 2 (_#"). Rename 5 =.%, and 4" NF =
A, and I'N&# =1. Then we see our new .5 is again minimal,
and in addition, AdI" acts trivially on 4"/ 2(") =V.

Let 22 now be the kernel of the action of Ad.%” on V. Then
57, is normal in &, and 4" S 54 and I’ S 573, so 54/ and &7/57]
are compact. We take note of another easily proved fact about the
Heisenberg groups: any automorphism of _#~ which acts trivially
on /% (") is inner. It follows that we may write 54 = +"-C,
where C denotes the centralizer of _#~ in £77. Of course CN._+" =
Z(4"). Moreover, since the centralizer of _#" is the same as the
centralizer of 4= _4" NI, we see that C is compact modulo its
intersection with I". It is clear also that C(_¢") is normal in .&

Now we repeat the first reduction, but with se€.% not in I
Consider Ads acting on V and write V=V, @V, where Ads is the
identity on V, and 1-Ad s is nonsingular on V,. The V; may not be
rational, but this need not concern us. Since they are composed of
distinct eigenspaces for Ads, they are orthogonal with respect to
{, >, so the restriction of (,) to each of them is nondegenerate.
Let _#; be the connected subgroups of .4~ corresponding to the
inverse images of the V, in N. Let 2 be the subgroup which is
the inverse image in .2 of the centralizer of the image of s in
[ _+;. Then by the same argument as above, .&¥=#-_¢;. Iclaim
CZ .. Indeed, C is normal so (¢, s) e C if ¢ce C. But always (¢,s) .+~
since &“/_#" is abelian. Hence (¢, s)eCN A" = Z(A4") so ¢ does
indeed centralize s modulo ._#;. By picking a succession of s, we see
we may arrive at a decomposition & = #'- 4" where ' and
A" < 4 are as follows. Both .+ and ¢ = .2 N4 are
Heisenberg or equal to 2°(_#"), and both are normal in .. Moreover
CC.#" and Ad.#’ acts trivially on _#"7/2°(_#"). The same reasoning
that produced C now shows that <2’ = C'-_#"' where C’ is the cen-
tralizer of _#"" in Z2’. Then it follows that & =C'-_s~and C'N_#" =
Z(A"). Of course CSC’. On the other hand, C'/C=C"'- 4+ [C- V"=
|57, is compact. Since S5#/I" is compact, we conclude C'/C'N T is
compact. Hence if .77’ =C(C’, then .77’ has the properties that .&¥ =
' y;and '/ NT is compact, and 7T 'N A4 = Z(AH).

To complete the proof of (iii) and finish the proposition we want
to find 7 S.7 ' such that .77/ NI is compact, .7 /kero is abelian,
I NZ()<Skero and ' =7 -2(4). If we show .7 '[kero
abelian, then it is quite a standard matter to find such a . On
the other hand, if .7 '/ker ¢ is nonabelian, it is impossible, because
the commutator group of 7' lies inside 2" (_#"), since 7'/ 2 (") =
&[4 is abelian. Hence let us show .7 '/ker o is abelian. To do this,
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we finally invoke condition (¢) of minimality. Notice that up to this
time we have depended entirely on structure theory for Heisenberg
groups and (¢) has played no part. It is here that it enters. Indeed,
condition (c) requires that we be able to extend to .5 a representation
o of _#; o being nontrivial on Z°(_#"); that is, the Mackey obstruc-
tion of extension of ¢ vanishes. It is not hard to compute this
obstruction, and this has been done in [5] and [10], where it has
been shown that it essentially is equal to the commutator form from
(T'Z(A7) X (T '2Z( A7) to Z(")/ker 0. In particular if the
Mackey obstruction vanishes, .7 ’'/ker ¢ is abelian. This completes
Proposition 2.4.

We have now reduced the problem of computing multiplicities
for general $°/I" to the case when .&” is of the form specified by
Proposition 2.4. In part 3 we will consider the multiplicity problem
for such &
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