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TOPICS IN HARMONIC ANALYSIS ON SOLVABLE
ALGEBRAIC GROUPS

ROGER E. HOWE

This paper consists of two parts, and in the first of
these we develop the representation theory of solvable
algebraic groups over a local field of characteristic zero in
analogy with the work of Auslander and Eostant for solvable
Lie groups. We show how all the representations arise and
show that the Kirillov method of orbits applies to this situa-
tion. We find that the theory carries over completely and
we discuss traces, CCR representations and we give a version
of the Eostant independence of polarization theorem.

In the second part we take up the problems of decom-
posing the space of square integrable functions on a solvable
Lie group modulo a discrete cocompact subgroup. We show
how to reduce this problem to the special case when the
nilradical of the solvable group is Heisenberg. These two
sections represent the initial part of a comprehensive program
in this direction to be completed later.

Introduction* The theory of harmonic analysis on nilpotent Lie
groups was established essentially in one blow by A. A. Kirillov
[21] in the early 1960's, after some initial researches by Dixmier.
Subsequently, other authors ([16], [17], [24], [29], [37]) explored
further topics, such as character theory, extension of these results
to unipotent p-adic groups and more general nilpotent groups, and
the spectral decomposition of arithmetic and adelic quotient spaces of
unipotent groups. The methods initiated by Kirillov have been
extraordinarily supple, and while harmonic analysis on nilpotent groups
is hardly complete, I feel it may rightly be considered a mature
subject.

Meanwhile, an effort was made to extend Kirillov's analysis to
solvable Lie groups. Although the same philosophy eventually suc-
ceeded, considerably more sophisticated concepts were required. Several
major attacks ([5], [6], [10]) yielded partial progress, but the essence
of the problem was not exposed until 1968 with the announcement
of Auslander-Kostant [3], and their results, with proofs, have only
been published very recently [4]. The Auslander-Kostant results
provide a complete description of the representations of a connected,
simply connected type I solvable Lie group, and characterize which
connected, simply connected solvable Lie groups are type I. More
recently, L. Pukanszky [30] has very successfully attacked the problem
of doing harmonic analysis on a general, nontype I, solvable Lie
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group. Thus it may be safely said that the basic phenomena of
harmonic analysis on solvable Lie groups are understood, and the
foundational era of this subject is over. However, very few of the
more baroque developments, such as described above for nilpotent
groups, have been considered. The present paper attempts a partial
remedy for this grievous lack.

The paper consists of two parts, the first two of a projected
five. The focus of the full project is harmonic analysis on algebraic
solvable groups over algebraic number fields. The fifth part would
consist of miscellany concerning the harmonic analysis of the rational
points of such a group, or of arithmetic subgroups, considered as
abstract discrete groups. The first four parts are coordinated and
culminate in part four, which would treat adele groups. Thus the
first three parts are in some sense preliminary to part four. Part
one treats representations of p-adic algebraic groups. Parts two
and three consider the problem of describing the spectrum of L\S^\Γ)
where Sf is a solvable Lie group, and Γ a discrete subgroup such
that S^jΓ is compact. As seemingly always in this subject, the
crucial case is that when the nilradical of S^ is a Heisenberg group.
Part 2, presented here, is concerned with reduction to this case and
is probably quite tedious. Part 3 would look at the multiplicity
theory of abelian extensions of Heisenberg groups. This part of the
theory is in my opinion very pretty, and provides relief after part
2. The situation is very concrete, and the results connect with the
Weil representation [36] on one hand, with the conjecture of Langlands
[22] on another, and with the recent announcement of Auslander-
ΪBrezin [1] on another.

We will now describe in more detail the content of parts one
and two.

In the first part, we develop the representation theory of charac-
teristic zero p-adic solvable algebraic groups in analogy with the
work of Auslander-Kostant [4] on real groups. We show how all
the representations arise, and show that the method of orbits ("Kirillov
theory") applies completely to an open normal subgroup containing
the unipotent radical ^V of an arbitrary p-adic solvable algebraic
group <9*. We show that any irreducible unitary representation of
3/* can be induced from a finite dimensional representation of some
subgroup. We show that the Mackey obstruction for extending a
representation from ^V to its isotropy group in S? always vanishes.
We show that the restriction of any representation of Sf to <yV is
multiplicity free, and that if any two representations of S? have
the same restriction to Λ\ then one is the tensor product of a linear
character of &* with the other. We discuss traces, and characterize
the CCR representations. All the above results are valid whether
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or not &* is split. In addition, we give what we feel deserves to
be considered a canonical parameterization for the entire dual of £f,
for Sf split, by proving an analogue of Kostant's "independence of
polarization" theorem.

We obtain our results with much less effort than Auslander-Kostant
expend for theirs. There are two main reasons for this, I feel. First,
we restrict our attention to algebraic groups. Besides being struc-
turally simpler than general solvable groups, algebraic groups are
all type I, so no questions of type enter. Secondly, p-adic solvable
groups have very large open compact subgroups to which Kirillov
theory applies perfectly. This, in particular, allows one to induce
from nonalgebraic subgroups, providing a much simpler analogue of
Kostant's scheme of complex polarizations. Together, these simplifi-
cations facilitate the analysis tremendously. However, we must work
harder to parametrize the representations, and for less complete
results. It is difficult to say at this point whether this limitation is
fundamental or due to lack of insight. It is possible, though, that
it is in the nature of things. The Auslander-Kostant analysis, as
beautiful as it is, may be special to real groups, since only over the
reals can an exponential map be globally defined, permitting a blurring
of the distinction between R and Rx. Thus, in our retreat from a
complete "orbit picture" we have accepted the additive and multipli-
cative groups, the unipotent and semisimple, as co-equal and funda-
mental, and have constructed the full theory using both of them.
Thus solvable groups provide, as they should, a transition from
unipotent groups, where Kirillov theory and additive principles do-
minate, to semisimple groups, where Kirillov theory is much less
powerful, and multiplicative features prevail; and they lend thereby
a coherence and unity to the whole theory of representations of
algebraic groups.

In §2, we take up the problem of decomposing L\S^/Γ)f where
£f is solvable Lie group and Γ is a discrete subgroup, such that
S^jΓ is compact. This problem was solved in [16] and [34] for the
case of Sf nilpotent. The section begins with an elementary discussion
on the general features of the problem, and tries to show how the
methods involved in the solution of the problem for nilpotent Lie
groups generalize partially, and to pinpoint the special structural
features of nilpotent Lie groups that permit the methods to work
completely. It is pointed out that an arbitrary locally compact
separable metabelian group is susceptible to the same methods.

We then focus on solvable Lie groups. Let &* and Γ be as
above and let <yK be the nilradical of the connected component of
Sf. We assume £f\yi/~ is abelian. The main result is a reduction
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of the problem to the case when ^V is Heisenberg and Sf = J7~ Xs

Λ/~ (semidirect product) where ^~ is abelian, acts effectively on %Ar

but trivially on the center of ^V and ^~\S~ Π Γ is compact. This
reduction is based on the known solution for nilpotent groups and
is given in several steps. After several preliminary reductions, it
is shown (Theorem 2.1) how to compute the multiplicity in L\S^/Γ)
of a representation p of £f induced from a representation τ of a
certain type of subgroup & of £f, in terms of the multiplicity of
τ in L\&\& Π Γ). Then a structural result (Propositions 2.3 and
2.4) shows that the problem for έ% is essentially the problem for
Sf of the stated special form.

Theorem 2.1 is a clear analogue of a theorem on finite groups,
and is developed in the spirit of analogy. At a critical point (Lemma
2.4) in the proof, we use the structure of ^V as an unipotent
algebraic group defined over Q to prove our construction provides
enough representations to fill up L\S^jΓ). It is precisely this step
which allows us to remedy the deficiency noted in the preliminary
discussion at the beginning of the section and obtain the full desired
result for our case.

I* The local story* In this section F will denote a p-adic
field of characteristic zero — that is, a finite extension of Qp, the
p-adic numbers. For the purposes of argument in this section, we
will assume p is odd, in order not to have the extra complications
that arise when p = 2. The results all remain valid with perhaps
slight changes for p = 2. The modifications necessary in the
arguments are technical and time-consuming, and will not be
given.

sgf will denote a connected affine solvable algebraic group defined
over F. £^F will denote the .F-rational points of ^ . We may
write ggί = k2H X s . ^ (semidirect product), where jgl is a maximal
torus of cgf defined over F, and *sK is the unipotent radical of *gf.
Then also S*F = ^~F XS^F- See [8].

Note. We will commit reasonably often the barbarism of re-
ferring to the jP-rational points of an algebraic group over F simply
as an algebraic group.

We suppose c5f £ Gln for some n. Then &% £ Gln(F) as a (Zariski)
closed subgroup, so S^F inherits a locally compact topology. Let S, £,
and K be the Lie algebras of ^ , ^ , and ^ Then SF, TF> and NF

may be regarded as subspaces of Mn(F), the n x n matrices with
entries in F. Mn(F) may, of course, be regarded as the Lie algebra
of G\n(F). We have SF = TF®NF (direct sum). For any group G
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mentioned above, let Ad G denote the adjoint action of G on its Lie
algebra.

As is well-known, one may define on a suitably small neighborhood
U of the origin in Mn(F), the exponential map exp: Z7 —>Gln(F) by
the usual formula. The map exp will be a homeomorphism onto its
image, which will be a neighborhood of the identity in Gln(F). The
inverse mapping, from exp U to U, will be denoted log. Haar measure
on U is sent to Haar measure on expί7 by exp. U may be chosen
to be invariant under Ad Gln(F). Then U will contain all nilpotent
elements in Mn(F), and in particular NF £ U.

Let R be the ring of integers in F, and let π be a prime element
of R. Let V £ SF be an open compact uJ-module in SF. Set [ F, F] =
(Σi b>i> Wi\> vi> wi 6 V}> where [, ] denotes the Lie bracket operation
on SF. We recall from [18], that V is called e.e. if [F, F] £ πβV,
where β is a suitable power of π. We refer to [18] for the precise
definition of β. If V is e.e., and V £ U, then C = exp F will be a
compact open subgroup of S^F. C is also said to be e.e. We have
the following simple lemma.

LEMMA 1.1. There is a compact open R-submodule W of TFJ and
a sequence of open compact R-submodules {Yi}T=i of NF9 such that
Yi QYi+i9 and F* = W(&Yi is e.e. and contained in U, and \JiYi =
NF. Then Ci = exp(F<) are open compact e.e. subgroups of S*F, and
if Co = exp W9 then Ci £ Ci+19 and CL = Ui Ci = Co Xs ^4r

F is an open
normal subgroup of S^F.

Proof. Let adΓ be the adjoint operation of TF on SF. Let %\NF)
be the groups of the ascending central series of NF. Then adΓ acts
semi-simply on NF and preserves each 3Γ*(NF). Let NF = φ*= 1 B5

be a decomposition of NF into irreducible subspaces under adΓ such
that for each i, there is mt ^ m such that ^%NF) = φfi x 5, . Then
if we choose a sufficiently small neighborhood W of zero in TF, for
any teW, B,άτ (t) will have eigenvalues so small that we may choose
open compact jβ-modules Z3 £ Bjf such that adΓ (t){Zό) £ πβZjm We
may as well assume W is also an jB-module. Since [JV̂ , SΓ^Np)] £
%*i+1(NF), and since if X Q NF is compact, then [X, X] is compact,
we see that given any integer lm9 we may inductively, starting with
m and going down, choose {lj})=m such that l^ > 13 , and such that
if Y = Σ?=i π~ljBj> then Γ + Γ is e.e. Then inductively choosing a
sequence of IJs larger and larger, we get a sequence {Yk}ΐ=ι of open
compact .R-submodules of NF such that Yt QYi+ίf Vt =WQ)Yi is e.e.,
and UiYi = NF.
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If we have chosen W small enough, then W £ U. Since U is open
and invariant by Ad Gl% (F), whether or not y e Mn(F) is in U is
determined by the eigenvalues of y. But if t e TF9 n e Np, then t + n
and £ have the same eigenvalues, since the action of SF on Fn may
be triangularized over some extension of Fy by Lie's theorem. Hence
Wζ&Yi QU for all i, and the lemma is proved.

Using Lemma 1.1, we may apply the result of [18] to C0^VF.
For a locally compact group G, let G denote the primitive ideal space
of G. G is understood to have its standard hull-kernel topology
(see [13]). For a type I group G may be regarded as the set of
(equivalence classes of) irreducible unitary representations of G,
suitably topologized. For such groups we will consider either a
primitive ideal or a unitary representation as being a point of G.
For G abelian, G is the familiar Pontryagin dual group.

Now \JiVi= W®NF= Foo is open in SF, and exp:Foo->C0 χs^φ/

F = C^
is a homeomorphism and sends Haar measure to Haar measure.
Ad S^ acting on SF preserves V* and we denote by Ad C^ the action
of Coo on Foo by Ad. Since AdCL is an action by automorphisms,
by dualizing it we get an action Ad* CL of C*, on Ko, the Pontryagin
dual of Foo. We denote the space of orbits for this action by FΌo/Ad* CL.
We give this space the quotient topology.

For a totally disconnected locally compact group G, let C?(G) be
the Schwartz-Bruhat space of locally constant complex-valued functions
of compact support. If G is abelian, and G is also totally disconnected,
then Fourier transform defines an isomorphism between C?(G) and
C~(G). If CeC?(G), let / denote its Fourier transform. A linear
functional on C™(G) is called a distribution on G. The spaces of
distributions on G and G are also isomorphic by Fourier transform.
C?(G) is, of course, an algebra under convolution. We define an
involution, *, of C?(G) by f*(g) = fig'1), for geG, where " denotes
complex conjugate. Also f*h is the convolution of / and h. A
distribution θ on G is positive-definite if θ(f*f) ^ 0 for all / e C?(G).

All three groups, CL, Foo, and V^, are totally disconnected. The
exponential map defines an isomorphism from GΓ(Coo) to CΓ(Foo).
Also, for ψ G Foo, we may regard ψ as a function on CL by composing
f with log.

It follows by simple arguments (see [31]) that all Ad* <yίr

F orbits
in NF are closed. Since CjΛp is compact, it is very easy to see
further that all Ad* CL orbits in Foo are closed. Now by using
Theorem 1.1 of [18] and taking an inductive limit over the C/s,
one arrives at the following result. (To be absolutely certain of the
applicability of Theorem 1.1, we may assume we have actually con-
structed Vt so that [Vi9 V,] Q πβ+1Vt.)



TOPICS IN HARMONIC ANALYSIS ON SOLVABLE ALGEBRAIC GROUPS 389

PROPOSITION 1.1. Notations as above.
( i ) There is natural homeomorphism /3:VJAά* C^-^C^.
(ii) Coo is C.C.R. (see [5]). Any irreducible representation p

of Coo sends 0^(0^) to finite rank operators (p is "admissible"). In
particular the distribution θp; f —> trace (p(f)) is defined. θp is a
positive-definite distribution, called the character of p.

(iii) // tf £ Foo is an Ad* CL orbit, then & carries a unique
invariant measure, do, up to scalar multiples. Let p = β(έ?). Then
if do is properly normalized, θp(f) = I fx do, where f — f° exp e

C7{Vm).
(iv) (Bochner theorem) Any positive-definite invariant distri-

bution on Ceo is the image under exp of a distribution on V^, which
is the Fourier transform of a positive Ad* Coo-invariant measure
on Foo.

(v) (Plancherel theorem) The δ-distribution (δ(/) = /(I), 1 =
identity of CΌo) is the Fourier transform of Haar measure on Fro.

Notice that the above statement, in contrast to others of its ilk,
says nothing about the concrete realization of representations. We
now attend to this matter. We establish two results, one for CL,
the other for all of £fF. The first one is analogous to Pukansky's
condition ([32]) for polarizations on exponentiable solvable Lie groups
to give an irreducible representation.

If H £ Coo is any subgroup, we say H is e.e. if log H is an R-
module and [log H, log H] £ πβ log H. Note that Proposition 1.1 will
also apply to H. If ψ e F^, and H £ C^ is an e.e. subgroup, we
will say H is subordinate to ψ if the restriction of ψ o log to H is
a linear character of H.

PROPOSITION 1.2. Take ψ e V^, and H £ C^ an e.e. subgroup
subordinate to ψ. Suppose H contains the isotropy group of ψ under
Ad* Coo. Let ψ'eίϊ be the restriction of ψo\og to H. Let ind?f°°α/r'
denote the representation of C^ induced from ψ' on H. Then
a necessary and sufficient condition that ind̂ °°α/r' be irreducible
and hence equal to /S(Ad* CJ&))) is that Ad* H{f) = ψ + (log H)λ,
where (log H)x is the subgroup ofV^ consisting of characters trivial
on log if — that is, the annihilator in V«, of log H.

REMARK. If we specialize the above lemma to the case when
cgf is actually unipotent (in which case the proof simplifies drastically),
we see that the result then transfers to the context of [17], giving
a complement to Proposition 12 and preceding remarks. Also note
that H is not required to be an algebraic subgroup. Thus we allow
for instance for inducing a representation of a Heisenberg group
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over a local field from an open subgroup which is compact modulo
the center (of the Heisenberg group). See Lemma 1.2.

Proof. We begin by investigating the structure of H. Put J =
log H £ Foo £ SF. Let J° be the linear subspace of SF spanned by J.
Then it is easy to see that J° is a Lie subalgebra of SF, and that
J Q J° is open. Let J 1 = f\x&FxJ. Then J1(^J° is a linear subspace,
and may be described as the largest linear subspace of J° contained
in J. Since / is open in J°, and is closed under [ , ], J 1 is actually
an ideal in J°. J/Jι is compact.

Let M be the isotropy group of ψ under Ad* C^. Let A=logΛf.
Then as in [18], it follows that A = {a e V^: ψ([a, V^]) = 1}, and A
is an e.e. iϋ-submodule of V^. By our assumptions A £ J. Put A0 =
span of A in SFf and A1 — largest linear subspace of SF contained
in A. Then, just as above, A1 and A0 are subalgebras of SF, A1

is an ideal in A\ A/A1 is compact, and A is open in A0. Also
A0 £ J°, and A1 £ J 1 £ NF.

Put B° = {beSF, ψ([b, NF]) = 1}. Then B° is a linear subspace of
SF, and by the Jacobi identity, since NF is an ideal in SF, B° is a
subalgebra. If b e B° Π Foo, then exp & exists, and a term by term
development of Adexp&(w), for neNF, shows Ad* exp b(f)lNp —
Here X\Np indicates the restriction of ψ to NF. Conversely if c
and Ad* c(ψ)lNF = ^ i ^ , then the inverse formula

[logc, n] - Σ (-D^^-^AdCc) - 1 ) ^ )

for w e JV̂ , shows that log c e ΰ ° n V^. Hence putting

M° = exp (B° Π F.) ,

we conclude that M° is the isotropy group under Ad* CTO of the
restriction of ψ to NF.

On the other hand, the kernel of the restriction map from V*
to NF is discrete, since V^/Np is compact. Therefore, M, the isotropy
group of ψ under Ad* CTO must contain an open neighborhood of the
identity in M°. Hence A contains a neighborhood of zero in B\
Since clearly M £ M°, we have A0 = JS°, so JB° £ J°. Thus, if H° =
exp (J° Π FTO), M° £ H°.

Now we will show ind^ψ' is irreducible. We begin by showing
ρ° = indf V is irreducible. Put i ϊ 1 = exp J1. Then jff is open in H\
and ί ί 1 is normal in H°, and H/Hι is compact. By reasoning very
similar to that of Lemma 1.1, we can find e.e. subgroups {ίfjΓ=o such
that H = HQ £ if, £ iί i + 1 £ H°, if0 = U?°=o i?ί, and with Ht normal in
£Γi+1. Let pi = indfV' Assuming ^ is irreducible, we will show
pi+1 is irreducible. Then in the limit p° will be irreducible.
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Let us recall the basic facts about inducing from and restric-
ting to normal subgroups. If G is a separable locally compact
group, and a is an automorphism of G, then a acts on the repre-
sentations of G as follows. If σ is a representation of G, then
<X(G)(Q) = σ(a~~\g))- This action may then be transferred to G, the
primitive ideal space of G. The resulting transformation is a
homeomorphism of G. Now if G £ G' is a closed normal subgroup
for some separable locally compact group G', then conjugation in Gf

results in an action of Gf on G by automorphisms, and thereby in
an action of Gf on G. We write this action as Ad* G'. Of course,
under Ad* (?', G acts trivially. If G is a type I group, and p is an
irreducible representation of G (or if G is not type I, but p is C.C.R.),
then indg'̂ o is irreducible if and only if the orbit under Ad* G'/G of
the point in G corresponding to p is a principal G'jG orbit; in other
words, if and only if gf e G', and Ad* g\ρ) = p implies gf e G. Whether
or not inάa'p is irreducible the restriction of any subrepresentation
of it to G consists of a direct integral over all Ad* G\p). See [5],
[23] for details.

Returning now to our solvable group, note that pi+1 = indf j + 1 pt

by transitivity of induction. Suppose Ad* h(pt) = pt for some
heHί+1. Let Ji = logHi. Since Ht is e.e., Proposition 1.1 applies
to it also. Let & £ J^ be the Ad* Hi orbit corresponding to piβ

Then since pt is induced from ψ', Proposition 1.3 of [18] shows έ?
contains the restriction ψt of f to J i t Now the naturality of the
correspondence between JJ Ad* Ht and Ht implies Ad*&(^) = ^ .
(This compatibility justifies the ubiquitous use of the Ad, Ad* nota-
tion.) Since g? = Ad* JEΓ^) we may assume, after altering h by
an element of J9Γ< if necessary, that Ad* h{<f%) = ψt. This in turn
implies that Ad* h(ψ) sψ + JtQψ + Jo' Hence, modifying h again,
this time by an element of Ho = JET, we will have Ad* h(ψ) = ψ. But
then heHQ Hi by our assumption that H contains the isotropy
group of ψ. Hence pi+1 is irreducible, and so ψ' induced up to H°
is irreducible.

Now H° Π Λ^F is a connected algebraic subgroup of ^V^. The-
refore let us now consider the following situation. Suppose Ht and
H2 are two subgroups of Coo, such that H° £ ίfx £ H2. Suppose also
that Hi Π c^S = Gi is a connected algebraic subgroup of <yΓF, for
i = 1, 2, that Hi = H0-Gu and that G2 normalizes Glβ Let ^ = indf^'
for i — 1, 2. We will show that if ^ is irreducible, then p2 is irre-
ducible. In this way, we may conclude after a finite number of steps
that

is irreducible. But since H°^4^F is normal in Ĉ ,, the same analysis
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as used above to show indf ° ψ' irreducible will show ind^00 ψf irreducible,
and we will have shown the sufficiency of the condition of the pro-
position.

Let & be the Ad*./?! orbit in Jγ (where Ji = log fli) corresponding
to ft. Then, as before, έ? contains the restriction of ψ to Ji.
Consider the restriction σί of ft to Glβ If έ?' is the set of restrictions
of elements of 0 to log Glf then since log Gγ is preserved by Ad Hlf

&' is just the Ad* H, orbit of the restriction ψt of ψ to log Gx. έ?f

is a union of Ad* Gx orbits, permuted transitively by Ad* HJG^ We
see 0Ί decomposes into a direct integral of representations corres-
ponding to these orbits.

Since Gx is normal in H2, Ad* H2 acts on log Gt. Suppose for all
heH2- Hί9 Ad* h(έ?') Π 0" is empty. Then σ1 and Ad* fcfo) are
disjoint — that is, contain no common irreducible components, since
Ad*fe(σ1) will be a direct integral over the representations corresponding
to Ad* GL orbits in Ad* h(έ?'), by the naturality of the correspondence
of Proposition 1.1. Then it follows (see [23]) that p2 is irreducible.
Thus we must consider the possibility that 0" and Ad* h(0") are
not disjoint. Then if ^ e ^ n A d * ^ ' ) we have φ = Ad* x(ψJ,
with x 6 Hlf and φ — Ad* h(φ') for some <pf e ^ ' , and φf = Ad*
for some # e iϊi. Thus Ad* x^hyiψj) = ψ^ In particular Ad* z
agrees with ψ on J(Ί JVF. Since Ad* H(ψ) = ψ+J±, Ad* H(ψ{NF) consists
of all elements in NF which agree with ψ on JπNF. Therefore, we
can find zeHsuch t h a t Ad* zχ-ίhy(ψlNF)=flNF. Then zx~ιhy eM°QH°.

Hence h e Ή.λ. Thus always Ad* h(έ?') Π 0" is empty if heH2 — Hlf

so the first half of the lemma is complete. Now we prove necessity.
We assume p = ind̂ °° ψr is irreducible, and want to show Ad* H(ψ) =
ψ + J 1 . As in [17], remark preceding Proposition 12, we must have
ψ' + J1 S Ad* Coo(ψO = ^ , or else p would contain other representations
besides the one corresponding to 0. So we may assume ψ + JλQ^
and then p is a factor representation, equivalent to some multiple of
the representation corresponding to 0*.

With this observation, the procedure becomes similar to that
followed just above. Suppose ceC^ — H is such that Ad* c(ψ) 6
ψ + J1. Then it is not hard to see that we may find subgroups Gx

and G2 of CL such that HQ GXQ G2, GL is e.e. and normal in G2 and
GJGί is finite (so Gx is also open in G2), and c e G2 — Glβ For if c e
H\ consider the sequence {JΪJΓ=o of subgroups of H° constructed
above, and let j be the smallest integer such that c e Hj9 Then put
G2 = Hj, G, = jffy.!. If o $ H\ then let H° £ fl? £ H2° . S iϊfc° = C^
be a sequence of groups such that H- Π ̂ VF is normal in H-+ι. Suppose
c e Hϊ+i — -H? Let G2 be generated by Hϊ, c, and a small neighbor-
hood of the origin in H-+1. Then G2 is compact modulo HI, and it is
clear that one may choose G1 £ G2 satisfying the stated conditions.
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We will show p2 = indj ψ' is reducible. We may as well assume
p1 = indj1 ψ' is irreducible, or we are done. Then, as observed above,
if ΨΊ is the restriction of ψ to log G19 then Ad* G^O must contain
all φ e log Gx which agree with ^(i.e., ψ) on J~log H. Since Ad* c(ψ) e
ψ + J 1 , we have Ad* c(ψ\) 6 Ad* G ^ ) , which means Ad* c(Ad* G1(ψ1)) =
Ad* GiO^). Since Ad* G^O corresponds to ft, c is in the isotropy
group of pί under Ad* GJG^ Hence p2 = ind^ft cannot be irreducible.
So finally p = ind^Γft is reducible and Proposition 1.2 is finished.

An e.e. subgroup if of CΌo subordinate to f e F M which satisfies
the equivalent conditions of Proposition 1.2 will be said to polarize ψ*.

The next proposition will allow us not only to find groups from
which to induce representations of CL, but of SfF as well. It will
have several important consequences for the representation theory
of S^F. Before proving it, we record an elementary result.

Let Jg^ denote the wth order Heisenberg group over F. That
is c%fn is a two-step nilpotent connected unipotent group, of dimension
2n + 1, and with one-dimensional center JΓ. The Heisenberg groups
are basic to Kirillov theory for nilpotent and solvable groups, and
are important in other connections too. Thus for future reference,
we spell out explicitly some details of its representation theory. These
are consequences of Propositions 1.1 and 1.2, but have essentially
been known at least since [24]. We leave the proof as an exercise.

LEMMA 1.2. Let p be an irreducible representation of
Then if p is trivial on %Fy p is one-dimensional. If p is nontrivial
on %F, then p restricted to %"F is a multiple of some linear character
φp. In turn, φP determines p. If P is any subgroup of <%*nF, such
that %F £ P and if σ is a representation of P and restriction of
σ to %F is a multiple of φp, then inducing σ up to £έfnF gives a
multiple of p. It is possible to induce p from a one-dimensional
character of P if and only if P/ker φ9 is a maximal abelian subgroup
of ^g^/ker φp. If P is an algebraic subgroup of SifnFi then this is
equivalent to saying P is maximal abelian in c^nF. In this case,
dim P = n + 1. Any P such that P/ker φ is abelian is contained in
a maximal group of this type.

Now consider the action Ad* SfF of £fF on NF. As is well-known,
this action is algebraic. This may be seen as follows. Take any
character χ of F. Then using χ, one may define a homomorphism
a: NF ~> NF, where AT* is the vector space dual of N. The formula
defining a is a(n*)(n) = χ(n*(ri))> where neNF and n* eN$. It may
be verified (see [37]) that a is in fact an isomorphism of topological
groups. Moreover, if Ad* ^ denotes the action of ^ on N* dual
to A d ^ on N (the co-adjoint action) then the diagram
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j Ad* ̂ V

N? > NF

commutes. This shows the action Ad* 6^F on NF is indeed algebraic
and further justifies the continuing ubiquitous use of Ad* to denote
these actions.

Now consider a point ψ e NF. Let &*+ be the isotropy group of
f under Ad* SfF. From the above, we see S^ψ is in fact the group
of irrational points of an algebraic group ^ψ defined over F. Of
course, *9fψ is not necessarily connected.

PROPOSITION 1.3. Take ψeNF. Then there are algebraic sub-
groups Jίf1^^2^^*, all normalized by ̂ ψ, and having the follow-
ing properties, ^ψ Π ,χ^gJSg2. Both ££} and ^ 2 are normal in ig 3 ,
and ^itSf} is a Heisenberg group with J^VίS 1 as its one-dimen-
sional center. The restriction of ψ o log to £fF is a nontrίvial linear
character φ, trivial on ^fF. Thus, if J ? £ sS?3 is an algebraic
subgroup, with ^ 2 ^ 2 , then if ^/^f2 is abelian, then &>F is
subordinate to ψ. If ^\^} is maximal abelian in £Q\Jj?}, then
£PF polarizes ψ. Thus, any subgroup G of £fF, containing £fF,
and such that G/ker φ is maximal abelian in £fF/keγφ, polarizes
ψ and induces the irreducible representation corresponding to
Ad* ^ΓF(ψ).

Furthermore, one may choose groups G\ i = 1, 2, 3, as follows.
First, ^QG'QG^GSQ^. Second, G2 polarizes ψ, and Gι and G3

are normalized by S^ψ. Third, G1 has finite index in G\ Finally,
G2 is normalized by a subgroup of S^ψ, of finite index prime to p.

If άtl is split (or simply if the action Ad* S^ψ splits over F),
then one may take J ^ 2 = ig 3 , in which case £?l itself is subordinate
to and polarizes ψ.

REMARK. Thus in the #-adic case too the relative complexity of
the nonsplit case is evident. The comparison to the real case is quite
direct and is the more interesting in the light of known ways to
realize discrete series representations of semisimple groups over real
and p-adic fields. There is also a parallel result for algebraic solvable
groups over finite fields (see, for example, [19]) which may be compared
with the classically known facts ([12]) that given a finite group G,
for every representation of G to be monomial, it is necessary that
G be solvable and sufficient that G be super solvable.

Proof. The first paragraph of the proposition follows more or
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less immediately from Proposition 1A of [19] and the facts about
the Heisenberg group recorded in Lemma 1.2. We will not go into
details. We should perhaps mention that the definition of polarizing,
given here on the basis of Proposition 1.2, is the same as that given
in [19] for the case of an algebraic subgroup of a unipotent group.
For if ^Sik^V* is an algebraic subgroup, with dim J J = l/2(dim ̂ Y* =

and &F is subordinate to ψ, then Ad* &F(ψ) is open

and (Zariski!) closed i n | + ( log^,) 1 . (One uses on iVthe structure
of variety over F defined via the map a given above.)

The third paragraph of the proposition follows easily by inspection
of the proof of Proposition 1A of [19].

We will prove the second paragraph of the proposition. Since
ΓΊ ^VF Q Sfh S^Ψ a c t s (by conjugation) completely reducibly on
Sfl (which we may regard as a vector space over F, since it is

abelian). Write S^FJS^F = M= φ =iMi9 where the Mt are irreducible
subspaces under the action of Sfy. Let us once again denote this
action by Ad Sfψ.

As is well-known (see [19]), if in the Heisenberg group S(f%F if
one identifies %F with the additive group of F, then taking com-
mutators induces a nondegenerate, antisymmetric (i.e., symplectic)
form on Jg^/Jf. Hence in our situation we have a symplectic form
< , > on M9 and since Aά.Sfy is an action derived from automorphisms
of £fβ or, more to the point, of £fH£fFi this symplectic form is
preserved by Ad ,PV Thus in each Mi9 the radical of the restriction
of < , > is invariant by Ad Sfy, and consequently either < , > remains
nondegenerate when restricted to a given Mi9 or Mt is completely
isotropic with respect to < , >. Suppose some Mt is isotropic. Then
for some j9 (Mi9 Mj) Φ {0}. Since the annihilator with respect to < , >
of Mi in Mi is invariant, it is zero, since M3 is irreducible. Reversing
i and j and repeating the argument, we see dim Mt ~ dim Mj9 and
that < , > puts Mi and Ms in duality. Now

M' = ( m e l , <m, Af4 + Md) = 0}

is invariant by Aά&fy, so we may as well assume that M' — ®\&,3Mi.
Now let &1 be the inverse image in S^F of Λf'©Λf< and let S^F be the
inverse image of Mt. Then it is clear that J^β is still subordinate
to ψ. Let <2?F be the largest algebraic subgroup of ££% on which
ψ o log is trivial. Then we see that <g>$9 £*?}> and Sfl are the ir-
rational points of algebraic subgroups which also satisfy the conditions
of the first paragraph of the proposition. Hence we may restrict
our attention to the case when M = φ*= 1 Mif and < , > is nondegenerate
on each Mt.

Now S^ψl{S^ψ Π ̂ VF) is abelian, so Ad* £fy acting on Mt is an
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action of an abelian group. Thus we may apply the lemma of [19]
to conclude there is a field extension Ft of F, and a quadratic ex-
tension F'i of Fi9 and a homomorphism ht: S^ψ —> F'f, with image
in the kernel of the norm map from F\ to Fi9 and an isomorphism
μt: Mi —> F'if such that

•I \Ad*

commutes. (The action on the right is by multiplication in F't.)
Moreover, there is an element c e ker tr (Ft/Ft) such that

{μ-\x\ μ~\y)} = tr (Fi/F)(c(τ(x)y - τ{y)x)) ,

where tr denotes trace and τ is the Galois automorphism of F\ over

Now to obtain < , >, we have identified JZfβ/JZf), the center of
-SfJ/oSfA with F. In this identification, we may suppose that R is
identified to the largest iϋ-module in the kernel of f ° log factored
to £?}!&}.. For any ^-module Z £ M, put Z* = {me M, <m, Z) £ R}.
Then since < , > is derived from taking commutators, we see that
the inverse image of Z in Sfi is abelian modulo ker ψ ° log if and only
if Z £ Z*9 and maximal abelian if and only if Z = Z*. Suppose
Z = φti Zi9 where Zt = Z Π M,. Then also Z* = ©UU Zf, with Z? =
z* n ΛΓi.

Now suppose μ^Z^ = πjβiίί, where πj is a prime of F'i9 and i2J
is the ring of integers of F[. Then a calculation using the explicit
form of < , > © μr1 shows that μt(Z*) is also an iϋ -module, and hence
μt(Zi) — π'tR'i. Moreover, it is easy to see that as a varies, the sum
a + b — d remains constant. If d is even, we may then choose Zt

so that a = b, and then Zt = Zf. If d is odd, then we can arrange
a — b + 1, so that μ^Z^ = π'iμ^Zf). In either case, if s e S^ψ is
such that hi(s) e 1 + %\Ί£U then Ad s leaves invariant any Z\ such
that ZtQZ'iS Zf. But the kernel of the norm map from F\ to Ft

is in particular a subgroup of R[x, the units of i? , and 1 + 7τίi2 is
a subgroup of R\* of finite index prime to p.

Now we see that if we choose Z1 = 0?=i Zi9 where the Zt are
chosen as just above, and then put Z5 = Z1*, and let Z2 satisfy Z1 £
Z2 Q ZB and Z2 = Z2\ then if G\ i = 1, 2, 3, is the inverse image of
Z* in .Sf̂ , the Gι satisfy the requirements of the proposition, and
we are done.

Now we spell out some consequences of the above proposition.
Again choose ψeNF. Since S^ψ is algebraic, we may by [8], write
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where ^Vψ = S^ψ Π ̂ S , and ^ψ is the group of ir-
rational points of a reductive group defined over F. ^ψ is abelian,
since ^Γψ = S^ψj^Vψ £ £fFl^¥]?. If ^V were connected, then ^ ^ .
would be a maximal torus of ,9V

Since ^ ^ is a semidirect product we may apply to £fF the
Mackey theory for representations of a semidirect product. References
for the general theorems, whose specializations to the present case
we will now relate, are [5] and [23]. We note here at the beginning
that the preconditions for application of the theory, e.g., that ^VF

be type I, and that the action Ad* SfF of JrF be smooth, in the sense
of Mackey, (which is much less smooth than most people demand) are
easily checked to be true. Also, we remark that we could, by special
arguments, avoid the use of Mackey's theory, since we already have
complete control over the open normal subgroup CL of SfF. However,
since the general theory is available, it would seem egregious to
ignore it.

If p is an irreducible representation of S^f then according to
Mackey's theory, the restriction of p to ΛΊ breaks up into a direct
integral over representations all belonging to a given Ad* SfF orbit
& in ^Vp. We say that p lies above &. This terminology gains
context from the fact that by associating & to p we get a continuous
map r: £fF —•.x /̂Ad* £fF. The set r~~\&)y consisting of (primitive
ideals attached to) representations lying above &, is called the fiber
over έ?m

Mackey's theory permits us to describe r~\&). First, let us
identify ^Vpjkd^S^. By Proposition 1.1, we have the homeomorphism
β: NF/Aά* ^Vp —> ̂ Y*F. Since β is natural, it follows that we also
have a homeomorphism β: ΛΓ̂ /Ad* S^ -* ^ / A d * SfF. Thus β'1

is an Ad* S^F orbit in NF. Call it & Pick ψ e £?, and let
Ad* ^VF{γ)* Then β($) = σ is an irreducible representation of
and is a point in ^ . For Mackey's theory, we must identify the
isotropy group ^ of σ under Ad* SfF. By the naturality of β, this
is the subgroup of S*F of elements s such that Ad* s (^) = ^ζ. This
in turn is the group of s such that Ad* s(ψ) e &. Thus if s
there is n e Λ* such that Ad* ns(ψ) = φ. Therefore &ί

We will show shortly on the basis of Proposition 1.3 that σ can
be extended to a representation & of Sfa. That is, there is an irre-
ducible representation σf of St, such that the restriction of σ' to
^Vp is exactly σ (and not a multiple of σ). This is the essential
point. Then Mackey's theory shows that every representation of

lying above ^ is uniquely of the form indj> μ (x) σ', where μ
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is an irreducible representation of Sfa1 trivial on ^V*F. Thus μ is
essentially a representation of J7~ψ, and since ^ψ is abelian, μ is
one dimensional. Moreover, we note that μ is the restriction to
y σ of a linear character v of S^j^Vp, and a simple check shows
indj>μ%σ'=-v®σ' =v<ξ§ind|>σ'. Thus, we see that we may
parametrize r~\έ?) by elements from j^ψ, or more canonically, by
elements of ^J./ .^. 1 , where J7~ψL ζkjf~F is the subgroup of characters
of ^7~F annihilating J7~<f* Of course, the parametrization depends
on the choice of base-point, that is, on the choice of σ\ For if &
extends σ, then so does μ®σ' for any μ e ^ψ. We will consider
later on the problem of choosing the "correct" extension of σ.

For any locally compact group G, let G1 be the group of linear
characters of G. Then Gt acts as a transformation group on G via
tensor product. Thus if σ is an irreducible representation of G, and
φ is a linear character, we define "p translated by φ" to be φ®p. In
particular, for our £fF, we have ^~F Q (£fF\> so ^~F acts on 5%. By
what we have seen just above, we may describe the sets r~\έ?) for
& an Ad* S^F orbit in ^Ϋp, as being precisely the orbits for this
action of ^fF. Also, the isotropy group of any point in r~\έ?) under
this action is, as we have noted, ^ ^ x . This completes our description
of r-\<?).

Now let us show that σ may be extended to a representation
of St,. Recall that ψ is a point in ^ = β~\σ), and Sζ = ^ψ X s ^/ΓF.
Let G\ i = 1, 2, 3, be the groups described in the second paragraph of
Proposition 1.3. We then see from Proposition 1.2 that a is induced
from the restriction of ψ o log to G2. Let σx = indgϋ (ψ o log). Then
clearly σ is induced from σ1# But G3 is normalized by &ψ and
^ X S G 3 . Moreover, σx is obviously invariant under Ad
Suppose we can extend σt to a representation σί of S?ψ Gz. Then
clearly the representation of S^a induced from σ[ extends σ. There-
fore we are reduced to extending aλ from G3 to ^ψ XSG3. This is
a classical problem, which in the context of locally compact groups
has been considered by Mackey. Again we refer to [5] and [23]
for details. The obstruction to extending σx (the "Mackey obstruction")
is a certain element of Hχj7~ψ, T), the second cohomology of J7~ψ
with coefficients in the circle group. This element has finite order
dividing the degree of σu which in this case is a power of p (p being
the residual characteristic of F). We will show that it also has
order prime to p, and hence is trivial.

Let & C ^ψ be the normalizer of G2 in S^ψ. By Proposition
1.4, J7~ψl& is finite of order prime to p. Now since Ad* ^ψ leaves
ψeNF fixed, Ad* &S leaves ψ ° log 6 G2 fixed.

Let us briefly recall how the Mackey obstruction arises. Since
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Ad* J7~ψ leaves σ1 fixed, there is for each t e ^ψ a unitary operator
U(t) on the space of σx which satisfies ox{frxgt) =U(t)~1σι(g)U(t) for
g 6 G3. The operator U(t) is determined up to scalar multiples. Thus
if we select for each ί e ^ some U(t) having the above property,
then for each pair t19t2 e ^+ there is a constant c(tlf t2) such that
U{tτ)U{Q — c(t19 t^Uititz). The function e(tlf t2) is a cocycle defining
the Mackey obstruction. (In the present context, where σt is finite
dimensional, c(t1912) can be chosen to be locally constant.)

Now since Ad* £% leaves ψ o log on G2 invariant, it follows from
the definition of σx that for te& and geG3, σ^t^gt) = σ^g). Thus
we may choose U(t), as defined above, to be identically one on &.
This extends σx to & Xs G3. Since the extended representation is
trivial on ^ , we see we are actually reduced to the problem of
extending σ1 factored to G'/ker^ to ( ^ / ^ ? ) XS (G3/ker σ,). The
obstruction to doing this is in H\^~+l&, T). As is well-known, the
cohomology groups of a finite group have exponent dividing the order
of the group. Thus our Mackey obstruction has order dividing the
order %?r+l&, which is prime to p, as we claimed. This completes
the demonstration that the representation σ of ^/ΓF can be extended
to &,.

Having described the irreducible representations of £fFy we draw
some conclusions about harmonic analysis on &%>. Again let & Q
^4^F be an Ad* S^F orbit, and choose σ e ^ , and let S^σ be the isotropy
group of σ under Ad* S^F. Then we have shown any representation
p e r-\έ?)f where r: S?F —• ^fS/Ad* S?F is the map described above,
is induced from an extension of σ to S*. It follows that the restriction
of p to ^V*F is the direct integral over S^F\S^a of the representations
Ad* s(σ), for s e S^F/<9ζ. By definition of Sζ, all these representations
are distinct, so each occurs only once in the integration. This means
the restriction of p to Λ^ is multiplicity free. (In this situation,
this means that the algebra of operators on the space of p which
commute with ρ(n) for all n β ̂ 4^ is abelian.)

We can make this more precise. We may take σ\ and induce it
first from £fa to ^-CL, obtaining a representation p[, which will be
an extension to Sζ-Coo of an irreducible representation px of CL.
We may then take p[ and induce it all the way up to S^a to get p.
Since CL is open in S^F9 the restriction to CL of p will contain p1

discretely, and since p is already multiplicity-free on ~^S, it follows
that the restriction to CL of p is a discrete direct sum of representa-
tions Ad* 8(p1)f each occurring once.

Since C^ is C.C.R., it follows immediately that there are compact
operators in the range of p(C?(&%)). From [5] it follows that £fF

must be type I, as was only to be expected.
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We may also extend this analysis to derive criteria for p to be
C.C.R., and for S?F to be C.C.R. See [24]. As noted there p is
C.C.R if and only if ρ(Gΐ(S^F)) consists of finite rank operators, and
this is so if and only if p(CT(Ct)) consists of finite rank operators,
for any fixed C* as in Lemma 1.1, since Cΐ(S^F) is spanned by trans-
lates in SfF of functions supported in Ci# This just means p restricted
to Coo is C.C.R. But now, applying Fell's criterion [13], this is so
if and only if Ad* S^ip^ is closed in Coo. From the fact that
β: Foo/Ad* Coo ~»Coo of Proposition 1.1 is a homeomorphism and natural
with respect to Ad* SfF, we see that if px = /3(^), and φ1 e έ?19 then
p is C.C.R. if and only if Ad* S^F{φ) Q V^ is closed.

Now £fF is by definition C.C.R. if and only if all pe3*F are
C.C.R. This by the above means Ad* S^F{φd is closed for any φx e
Foo. Since the kernel of the restriction map from SF to Foo is
compact (recall SF is the Lie algebra of S^F), this is the same as to
say Ad* S^F{φ) is closed for any φ e SF.

Now by [9], if J^I is a maximal torus of <j^ defined over F,
then we may write J^I = .JΓα Jg[I where Jg^ is the "anisotropic part"
of JζT and .Jζ is the "split part" of J7~. jg^ is characterized as
having no characters (in the sense of algebraic groups) defined over
F, while the characters of Jgl defined over F restrict to a subgroup
of finite index the characters of jg^. Both jg^ and Jf̂  are defined
over F, and J^a Γl J ζ is finite.

I claim that S^F is C.C.R. if and only if j ^ is central in Sfm

For suppose ^ s is not central. Then the action A d * ^ ^ on SF is
nontrivial, and it is diagonalizable over F. Thus the eigenvectors
for Ad* ^~sF span SF. Let φ be one such eigenvector. Then Ad* SfF(φ)
contains the origin in its closure, and so is not closed. On the other
hand, suppose J ^ is central. Then the maximal tori of the adjoint
group of ^ are anisotropic over F. This implies Ad ̂  is a compact
extension of A d . ^ , (see [9]). Since all Ad* Λp orbits in SF are
closed, so will all Ad* S^F orbits be closed. This establishes the stated
criterion that £fF be C.C.R. Again, one has the complete analogue
of the real situation. See [5].

We now summarize the the results established in the discussion
since Proposition 1.3 in the following portmanteau theorem.

THEOREM 1.1. Letr: £fF —> ^S/Ad* £fF and rx: &F -> CJAd* S?F

be the maps derived from restriction of representations. Let p e S^F9

ρx 6 Coo, σ e ^ΓF. Write r(ρ) = &, r^p) = <?„ Suppose p, e 0\. Let
Qι Q Foo be the Ad* S^F orbit corresponding to rγ{p). Let S% be the
isotropy group of a under Ad* S^F.

( i ) S?F is type I.
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(ii) £fF is C.C.R. if and only if the split part of a maximal
torus over F of ^ is central in J?f.

(iii) The Mackey obstruction to extending σ from ^VF to S^σ

vanishes.
(iv) All representations p of S^F are induced from finite dim-

ensional representations of suitable subgroups. All representations
Pi of Coo are induced from one-dimensional representations of suitable
subgroups.

(v) The restriction of p to ^Vp is multiplicity-free. The
restriction of p to CL is discretely decomposable and multiplicity-
free. It is the direct sum of the representations Ad* s^), s e 6^FJ

each appearing once.
(vi) p is C.C.R. if and only if Q1 is closed in Foo.
(vii) Any representation pf e r~\^) is of the form τ (x) p wnere

T is a character of S^F/^/VF. Moreover, τ 0 p is equivalent to p if
and only if τ is trivial on S^ψl^Vψ. Thus r~\&) = jf~F\^~σ

L ~ ^
where

REMARKS. AS a complement to (vi), we note that it follows from
(v) and Proposition 1.1, that if p is C.C.R. and / e CΓ(CΌo), then tvp(f)
is given by the integral of the Fourier transform of / over ^ . We
can say more. Even if p is not C.C.R., p{f) will be of trace class
if (and only if) the intersection of ^ with the support of / is closed.
In this case the trace of / is again by the orbital integral. It is
interesting in this connection that if r^p) == τ^pf) for two different
representations p and p', then evidently the traces of p(f) and p\f)
will be the same, for / e Cc°°(CΌo). Pukanszky [33] has observed a
similar fact for real algebraic groups. Here, however, there is a
simple explanation since p and pf look so much alike. We observe
also that the existence of many functions which are mapped into
trace class operators, and the expected formula for their traces,
even for nonC.C.R. representations, has recently been pointed out
by C.C. Moore [25], Pukanszky [30] and others.

As the final point to our analysis, we try to fix a good "base
point" for r~X&) when *5f is split. We will also comment on the
problem when ^ is not split. For now, however, assume <j?f is
split.

Pick an Ad* ^Vp orbit & Q NF, and pick ψe^. Let S^ψ be the
isotropy group of ψ under Ad* S^F. By Proposition 1.3, for <5f split,
we can find on algebraic subgroup ^ £ ^ 7 such that &F polarizes
ψ and is normalized by S^ψ. Let ψ' be the linear character of &F

obtained by restricting ψ©log to &F. Put σ = ind^/^'. We want
to extend σ to a representation & of Sfa = S^ψ ^Ϋp in a well-defined
way. We do this as follows. Write S^ψ — J7~ψ X s ^ , with _ ^ the
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F-rational points of a maximal reductive subgroup over of S&9 and
^ - ^ n ^ S . Then ^ = j ^ χs^TF. Also Sf+*&w = J^Ψ χ$^F.
Clearly Ad* j?~ψ leaves ψf on ^V-invariant. Thus we may extend
ff to a linear character φ on ^ψ χ s &F by letting <p be trivial on
^~+. Then we will call the representation σf of J7~ψ Xs^Vp induced
from φ the standard extension of σ. The main point about σ' is
that it does not depend on the various choices we have made. As
we said, this is an analogue of Kostant's independence of polarization
theorem.

PROPOSITION 1.4. φ is independent of the choice of the reductive
component Jfψ of Sfy. The representation σ' is independent of the
choice of ^ subject to the conditions that &F polarizes ψ and is
normalized by S^ψ, and is independent of the choice of ψe &.

Proof. If J7~ψ is another maximal reductive subgroup of
then we know by [14] that ^ψ and ^ V are conjugate in Sfy. If
^ y = n^^ψn for some n 6 ̂ Vψ, then φ' — Ad* n(φ), where φ and
φ' are the extensions of ψ' defined by using ^ψ and J7~ψ respectively.
But since φ is a linear character of ^~ψXt&F and ί i e ^ C ^ . ,
we see φf = φ.

If ψt — Ad* n(ψ), for n e Λ^F, is another point in ^ , then the
isotropy group of ψt is n^S^n, which has split component n^^^n.
If &F polarizes ψ and is normalized by S^ψ, then n~ι^Fn polarizes
Ad* n(ψ) and is normalized by n^S^ψn. If φ is the extension of ψ'
to ^ψ Xs ^F defined above, then φ^x) = φ{nXn~x) for

x e ^

is the corresponding extension of ψ[(ψ[ = ψto log restricted to n^^n)
to n~\^+ x &F)n. Obviously 9? and φι induce the same representation
σ' of ^ .

So we come to the main point, that σ' is independent of the
choice of £?. This is proved in the classic manner, by induction on
the dimension of &Ό. The group Λ^ obviously contains ^{^VF), the
center of ~ ^ . Let Sίf be the largest algebraic subgroup of ^Γ(^S)
contained in the kernel of ^ olog on Λ+. Then έ%f is obviously
contained in the kernel of σ, so by dividing out by it, if necessary,
we may assume that £ίf is trivial. Then ^(^V]?) is one-dimensional,
and ψolog is nontrivial on it.

Now let J ^ be a two-dimensional normal subgroup of Sζ, such
that ^{^VF) S ^ C ΛF and ^^{^Vp) is central in ^ J / ^ ( ^ J ) .
Such a subgroup ^ exists because S^o is split. Let Λ^p be the
centralizer of ^ in ^ J . Then a simple calculation shows dim
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dim Λ^ — 1, and taking commutators defines a nondegenerate pairing
from ^\%:{^TF) x ^S/.^S 1 to ^(^ΫF1). By our construction, since
ψ o log is nontrivial on 3Γ(Λϊ)f ^/ΓF

ι will contain Λfy. Let ψ1 be the
restriction of ψ to iV>, where NF = log^^^C^^.. Let σ,. be the re-
presentation of %ArF corresponding to Ad* ^ ( f 1 ) . Let σ[ be the
standard extension of σ1 to S^ ^ΓF

ι = ^ ^ XS^VF1-

Let ^ p be any algebraic subgroup of ^i^F which polarizes ψ1

and is normalized by Sfy. Then necessarily ^ £ ^ since ^ is
central in ^V*. It follows then that &F polarizes ψ. Thus as σx

is obtained from inducing ψ1 o log on ^ j . up to c^ί1, and σ is obtained
from inducing ψolog on &F up to %yγFy it follows that a\ on ^ F

induced to ^VF gives σ. Precisely the same chain of reasoning shows
that σr on St, is induced from σ[ on Sf+ ΛSp. By hypothesis σ[ and
hence α1' is independent of the choice of g?F £ Λt.

Now suppose &F is a polarizing group for ψ not contained in
ΛΊ?, and normalized by S^ψ. Then necessarily vĴ  n &F — ^ ( « ^ F ) >

and ^ = (^F Π Λ^F)-^ also polarizes ^, and is normalized by Sfy.
Let 9 be the extension of ψolog from &F to ^"+¥>9&F which is
trivial on ^~ψ and let φ1 be the extension, trivial on ^ j . , of ψolog
from ^ to ^ > X , ^ . Let & = &F ^?\ Then ^ £ ^ and
^ j . £ ^ . To show 9? and φλ induce the same representation of ^ ,
it is enough to show they induce the same representation of &.

Let ^ p l be the largest algebraic subgroup of &F Π &F contained
in the kernel of ψ © log. Then &λ is normalized by ^^ and is normal
in <̂ . The group &' = &1&1 is a three-dimensional Heisenberg
group. The characters <£> and ^ factor to ^ψ χ s &F\έ2x and
u ^ XS^FI^1 respectively. Similarly the representations of
induced from φ and φ1 both factor to representations of ^ψ Xs

Furthermore, if & £ ^ψ is the kernel of the adjoint action of
on ^V^51, then & is likewise in the kernel of the representations
of ^f Xs & induced from both φ and φ1. Thus to prove the pro-
position, it is enough to consider the case when ^F is the three-
dimensional Heisenberg group and ^ψ acts effectively on
Moreover, it is completely clear that we need only worry when
is nontrivial. We now concentrate on this case.

Let us change notation slightly. Let Sίf denote the three-
dimensional Heisenberg group. Let its Lie algebra be H. Let %£
be the one-dimensional center of Sίf, and let ψ be a character on ST.
Let F*f the multiplicative group of F, act on 3ίf by an action Ad,
as follows. Write J ϊ = y i 0 ΐ ^ φ l o g %, where V1 and V2 are one-
dimensional subspaces. Take x e Fx. For v 6 Vί9 put Ad x(v) = xv;
for v e V2, put Ad (x)(v) = x~'v. For x e log %, put Ad x(z) = «. Then
Ad is in fact an action by automorphisms, and using exp and log,
we may transfer Ad to an action of Fx on §ίf by automorphisms.
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Form the corresponding semidirect product G = F* Xs Sίf. Then it
is easy to see that G is in fact a split algebraic solvable group over
F, and that the action of Fx on £ίf fixes ψ and hence fixes the
representation of έ%f corresponding to ψ by Lemma 1.2. It is not
hard to see also that G is maximal with respect to these properties
in the following sense. With the notation of the previous paragraph,
if ^ψ acts effectively on ^ p /^ p l , then there is an injective homo-
morphism J7~ψ χ β &1&1 —>G, such that the image of ^ . is in F*.
Therefore, in proving our result, we need consider only G.

There are precisely two two-dimensional subgroups, %fλ and £ίf%,
of §tf which are normalized by Fx. Each Sίfi is the image under the
exponential map of V< 0 log %:. Put G* = F* Xs S^\ On Gi there
is a unique character φι which is trivial on Fx and agrees with ψ
on ^Γ. Observe <p* must be trivial on expV* We must show the
representations of G induced from the φi on G* are equivalent, and
then we will be done.

Recall the explicit definition of indgi φ\ See [7] for details. Let
δt be the modular function on G\ That is, if d*g is a right Haar
measure on G\ d%gog) — δ^g^g for any gQ e G\ Let Y* be the space
of locally constant functions f on G with compact support modulo
G\ and such that for geG\yeG, f(gy) = φ\g)δ\I2{g)f{y). G acts on
Y{ to the right, by translation. There is an essentially unique G-
invariant inner product on Y* and the completion of Y* with respect
to this inner product yields an Hubert space on which G acts unitarily.
This is the representation indgi^.

To show these representations are equivalent, it is enough to
define a G-invariant nontrivial Hermitian (linear in one variable,
conjugate linear in the other) pairing between them, and to do this
it is enough to define a nontrivial Hermitian pairing between the Y\
See the discussion in [20], pp. 23-30. To define this pairing, take
ft 6 Yι and consider the product fλf2 where ~ indicates complex con-
jugate. Since ft has compact support modulo G\ fxfz has compact
support modulo G1 Π G2 = Fx x MΓ._ Moreover, if g e G1 Π G2, and
yeG, then fJ2{gy) - δ\/2{g)δ\/2{g)fj2{y). Moreover, we note that
since G1 Π G2 is abelian, it is unimodular. Since G is unimodular also,
and G = G' G2, we have d^δ^g) = 1 for g e G1 n G\ Thus fj2 is a
function on X= G1 Π G2\G. Again, since G1 Π G2 and G are unimodular,
there is a G-invariant measure dx on X, unique up to multiples ([36]).

Define (f1,f2) = 1 fif*dx. This is our pairing. It is easy to see
<, > is G-invariant, because dx is G-invariant. To show < , > is
nontrivial is also not hard. Choose a sufficiently small neighborhood
U of the identity and suppose ft vanishes outside GιU and is identically
one on U. We leave the details to the reader. This concludes Pro-
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position 1.4.
To establish the analogue of Proposition 1.4 for nonsplit groups,

one would use Proposition 1.3 plus the demonstration that the Mackey
obstruction vanishes. For brevity, we adopt the notation of that
demonstration. Our problem is to define a "canonical" extension of
the representation σ1 of G5 to j?~ψ X8G

3. Since the restriction of σι

to G1 is a multiple of a linear character of G1, the problem essentially
reduces to a problem over the residue-class field of F. In this con-
text we have a candidate for a canonical extension, definable via the
Weil representation for finite fields. To see whether this candidate
was the right one, one would have to investigate it in detail, then
verify it has the proper independence properties. One should also
check for consistency with the above definition and with the orbital
parametrization for real groups.

II* Representations defined by solvmanifolds: Reduction of
the problem* In this section S? will denote a solvable Lie group
and Γ & discrete subgroup of Sf such that the quotient is compact.
Then S^ is unimodular and S^\Γ carries a unique probability measure
dμ which is invariant under left translation by £f. Thus if L\S^jΓ)
is the Hubert space of square integrable functions on S^IΓ with respect
to dμ, then we have an action of Sf on L\S^IΓ) by unitary operators.
If this action is denoted by U, and / 6 L\S^/Γ), we have the formula
U(s)f(x) = fs-i(x) = f(s~ιx), for s e Sζ x e £f\Γ. We will consider the
problem of decomposing L\S^/Γ) into its irreducible constituents.
In the case £f is actually nilpotent, this problem was solved in [16]
and [34]. We begin with an elementary general discussion in order
to put the results of [16] and [34] in perspective, to make clear in
what measure those results are general and in what measure they
require special properties of nilpotent groups.

First let us reformulate the multiplicity result of [16] and [34].
Let <sV be a nilpotent Lie group, and let Γ Q ^V still be a discrete
subgroup such that ^KjΓ is compact. Let p be an irreducible unitary
representation of ^ 7 Then p corresponds by Kirillov theory to a
certain orbit #* of the co-adjoint action of *yV" in the dual of the
Lie algebra of Λ In [16] and [34] the multiplicity of p in L\^V\Γ)
is computed in terms of the number of Γ orbits among certain "integral
points" in a homogeneous space associated to έ?. The precise for-
mulation is directly tied into the Kirillov theory for Λ~ and is slightly
complicated. I believe, however, that the connection of this result
with Kirillov theory is somewhat superficial and even, perhaps, in
some ways misleading (although of course for purposes of taking a
unified approach toward nilpotent groups, such a formulation is
desirable). As was rather elliptically noted in [16], the result may
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be restated more simply in the following way. Recall (see [24])
that Γ gives rise to a Q-structure on <yK(Q = rational numbers), so
that ^V is the real points of a unipotent algebraic group over Q.
Let Sίf be a rational algebraic subgroup of Λ~ with respect to this
Q-structure, and let ψ be a character of Sίf. Suppose that p =
ind^ ψ. Then the multiplicity of p in L\^Γ/Γ) is equal to the number
of double cosets βgfmΓ, m e ^v; such that Sίf/Sίf Π mΓm~ι is compact
and ψ* is trivial on έ%f n mΓm~\

Compare this with the analogous statement for finite groups,
due to Mackey [23]. Suppose G is a finite group, and Hx and H2

are two subgroups. Let p be an irreducible representation of G and
suppose |0 is induced from some linear character ψ of J3i. Then the
multiplicity of p in L\G/H2) is equal to the number of double cosets
HygH2 such that ψ is trivial on Hi Π gH2g~\ The resemblance between
the statements is evident. To go from the context of finite groups
to that of nilpotent Lie groups we must first restrict our attention
to cosets J%fmΓ which are closed. (The condition that Sίf Π mΓwr1

be compact is equivalent to asking that £έfmΓ be closed, by a standard
argument. See [28].) Let us call such cosets "good" double cosets.
Second, we must only consider rational subgroups Sίf (or at most,
subgroups conjugate in ^V to rational subgroups). This restriction
functions to insure the existence of sufficiently many good (<%Ί Γ)
double cosets. That is, examples show if p is induced from ψ on
<%*, then the number of good double cosets SίfmΓ such that ψ is
trivial on βέf Π mΓm"1 tends to underestimate the multiplicity of p
in L\^V/Γ). For instance, if £ίf is not rational, but is normal,
then there are no good (Jgf Γ) double cosets, but p may appear with
positive multiplicity. This already happens in the Heisenberg group.
In the first few propositions, we look at the method of determining
multiplicity by counting double cosets. We give examples where it
works, and show how it tends to give lower bounds for multi-
plicity.

Let G be a locally compact separable unimodular group, and let
Γ be a discrete subgroup such that GjΓ is compact. Then G/Γ
carries a unique G-invariant probability measure dx, and we may
consider the representation of G on If (G/Γ) = L\G/Γ, dx) derived
from the left action of G on G/Γ. Of course, in terms of induced
representations, this representation is just ind£ 1, where the 1 here
denotes the trivial representation of Γ. Let p be an irreducible
representation of G. We want to determine whether p occurs in
L\G/Γ) and if so, how often. We will suppose there is a closed
unimodular subgroup H £ G such that H Π Γ is compact, and that
there is a representation σ of H which induces p. Then this first
result is an example of what one can say.
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PROPOSITION 2.1. (i) Suppose H is normal in G. Then all
(H, Γ) double cosets are good. For a given double coset HgΓ, let mg

be the multiplicity of σ in L\HjH ΓΊ gΓg'1). Then the number of
double cosets such that mg > 0 is finite, and the multiplicity of p
in L\GjΓ) is exactly equal to Σ*eiτ\G/r ^V

(ii) Suppose H = Ho £ Ht £ £ Hx = G, where HJHt Π Γ is
compact and Hi is normal in Hi+1. Then the multiplicity of p in
UiGjΓ) is at least equal to the multiplicity of σ in L\HjH Π Γ).

Proof. The proof is very simple. Part (i) is a translation of part
of Proposition 1 of [16], and part (ii) follows easily by induction on Z.

We recall the language necessary for translation of Proposition
1 of [16] to the present context. As described in part I, we have
an action Ad* G of G on H. We say that two Ad* G orbits Ot and
02 in H are equivalent if their closures are equal. An equivalence
class of orbits is called a quasiorbit. We denote by if/Ad* G the
space of quasiorbits endowed with the quotient topology from H.
We call iϊ/Ad* G the relative primitive ideal space of H in G.

We may define a continuous map r: G —• iϊ/Ad* G. If p is an
irreducible representation of G corresponding to some point xeG,
the restriction of p to H will define a closed subset of Ή. which
will be the closure of an Ad* G orbit and which therefore defines a
a point in .ff/Ad* G. This point is r{x). By abuse of notation, we
also write r(p). Note that we have already encountered r, for the
special case of a solvable p-adic group and its unipotent radical, in
the context of Theorem 1.1 of part I.

Now if p = indl σ, then r(p) is the quasiorbit determined by σ.
Consider L\H/H Π Γ). The representations of H occurring here define
a discrete subset of H, and this subset [is clearly invariant under
Ad* Γ, and so is a union of Ad* Γ orbits. Any two representations
of H which are in the same Ad*Γ orbit clearly occur in L2(H/H Π Γ)
with the same multiplicity. By Proposition 1 of [16], p can occur
in L\G/Γ) only if r{ρ) = Ad* G(σ) = Ad* G(σ^ for some σx occurring
in L\H/Hf]Γ). If this happens, then p does occur in L\G/Γ) and
with multiplicity given by Σna, where a runs over the Ad* Γ orbits
in r{p) and na is the common multiplicity with which the representation
in a occurs in L\GjΓ). Of course na is nonzero for only finitely
many a.

Now it is clear that a occurs in L\H/H f] gΓg"1) if and only if
Ad* g(σ) occurs in L\HjH Π Γ), and with the same multiplicity. Since
the isotropy group of σ under Ad* G is precisely H (since σ induces
an irreducible representation of G), there is a one-to-one correspondence
between Ad* Γ orbits in r(ρ) and (N, Γ) double cosets, given by
associating NgΓ and Ad* Γ(Ad* g(σ)) = a{g). From our observation
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just above, we see that mg = na{g). This proves the first statement
of the proposition.

The second statement now follows from the first. Suppose H =
HoQH^ -QHi = G, where HJHi Π Γ is compact and Ht is normal
in Hi+1. Put Pi = indf•" σ. Then for i < jf pό = indf\ ρ5. Since H =
iϊ0 is normal in JHΓi, we see from the first part that the multiplicity
of ρx in UfJKJIIi Π Γ) is at least equal to the multiplicity of pQ = σ
in L\H/H Π Γ). Similarly, the multiplicity of ft in L\HJH2 Π Γ) is
at least equal to the multiplicity of ft in UiHJHy^ Π Γ). Following
this reasoning on up the chain of H/s, we obtain our result.

REMARKS, (a) Part (ii) of the proposition applies in particular
to nilpotent Lie groups and generalizes the positive part of the
occurrence criterion of [34]. It is perhaps a matter of some technical
interest that we obtain here and elsewhere lower bounds for mul-
tiplicities. Most estimates in the literature are upper bounds. See
[11], [23], and [24].

(b) Each of the two parts of the proposition is a partial general-
ization of the following comprehensive result on finite groups, due
to Mackey [23]. If G is finite, then the multiplicity of p in L\G/Γ)
is SgeHw/r^V Thus when G is finite, there is no need to take H
normal as in part (i), and one may consider all (H, Γ) double cosets
simultaneously instead of considering only one double coset, as in
part (ii).

(c) The barrier to extending part (ii) to a statement about all
good (H, Γ) double cosets is the possibility that, even though HgΓ
is good double coset, HigΓ might not be good for some H^ A
nilpotent Lie group ^Y* has the property that whenever S$f Q <yK
is a subgroup such that Sίf\Sίf f] Γ is compact, then also
SίfJiSί^ Π Γ is compact if 2Z[ is the normalizer of £ίf in Λ\ This
fact derives from the fact that such an Λ" containing discrete Γ
with compact quotient actually has the structure of an algebraic
group defined over Q, the rational numbers. We may expect also
for compact arithmetically defined homogeneous spaces, and arithme-
tically defined solvmanifolds in particular, that an extension of part
(ii) of the proposition, involving all (H, Γ) double cosets, will hold,
In our present general context, we must be content with observing
that if the chain connecting H to G contains only one intermediate
group, that is, if H — JEf0 £ flΊC H2 — G, with HJΓ compact and Hi
normal in Ht+1, then all (Hu Γ) double cosets are good, and we obtain
the following corollary.

COROLLARY 1. Suppose that in part (ii) of Proposition 2.1 we
have 1 — 2. For each good double coset HgΓ, let mg denote the mul-
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tiplicity of σ in L\H/H Π gΓg~ι). Then the multiplicity of p in
L\GjL) is at least equal to the sum of the mg over all good {H, Γ)
double cosets.

(d) It seems worthwhile to state explicitly the specialization of
the proposition when σ = ψ is a one-dimensional charater of H, since
this situation is the easiest to deal with and occurs often in practice.
So suppose ρ = mdHψ- Notice that a linear character occurs in L\G/Γ)
if and only if it is trivial on Γ, and that then it occurs exactly once.

COROLLARY 2. (i) If H is normal, then the multiplicity of p
in L2(G/Γ) is the number of double cosets HgΓ such that ψ is trivial
on Hf] gΓg~\

(ii) If H £ HoQH^ -Qfy^G, where HJH, Π Γ is compact
and Hi is normal in Hi+lt and if ψ is trivial on H f) Γ, then p
occurs in L\G/Γ).

We would like to point out that this corollary, simple minded
as it is, already gives us enough information to decompose L\G/Γ)
when G is metabelian. This already includes some interesting ex-
amples, notably various ax + b groups.

PROPOSITION 2.2. Retain the above notation. Suppose N QG
is a normal subgroup such that N and G/N are abelian, and NjΓ
is compact. Then every representation occurring in If(G/Γ) is
induced from a linear character <fλ of a group Nlf such that N Q Nί9

and NJΓ Π Nλ is compact. (Note then that Nj_ is normal.)

Proof. Since N is abelian, L2(N/Nf] Γ) just decomposes into one-
dimensional spaces corresponding to the characters of N/N Π Γ. For
any given character ψ on N/N Π Γ, let H be the isotropy group of
ψ under Ad* G acting on N. Since jff 2 N, H is normal in G, and
since the Ad* Γ orbit of ψ in N is discrete, since it belongs to the
annihilator of NΓ\Γ, H/H Π Γ will be compact, by a classical result
[28].

Now in L\H/H Π Γ), the space of functions transforming by N
according to <f is invariant, and it is clearly naturally unitarily
equivalent to the representation σ of H induced from F = (HΓiΓ) N
by the linear character <fr which agrees with ψ on N and is trivial
on Γ. This extension ψf of ψ from N to Y exists because F/kerψ
is isomorphic to (iV/ker f) x {{H Π Γ)/ker ψ) (direct product) since
Γ Π N Q ker f.

Next we see that Y is normal in H. Let H' be the isotropy
group of f' under the action Ad*iϊ on Ϋ. Then clearly if σ '=indf/'Ψ/,
then σf induced up to H yields σ, by transitivity of induced repre-
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sentations. Now, however, we see that σ' will in fact be trivial on
χ= (JEfn Γ) keτψ because ψ' is trivial on X, and the kernel of ψr

is normal in Hf by definition of Hf. Thus we may regard σf as a
representation of the factor group H'/X. As such, it is the repre-
sentation induced from ψ' factored to Y/X. Since H/N is abelian,
and since Y/X is central in H'/X, again by definition of H'9 we see
that Hf/X must be a compact two-step nilpotent group. It follows
easily (see [17]) that all representations of Hr/X are induced from
linear characters of open subgroups. Lifting this information to Hr,
we see that σf decomposes into a direct sum of representations induced
from linear characters of open subgroups of H'.

Now consider a representation p of G occurring in IS(G/Γ). Then,
according to [16], p lies over Ad* G(ψ) Q N for some character ψ
of N/N Π Γ. If H is as above, the isotropy group of ψ under Ad* G,
then p will lie over a certain Ad* G orbit in H and this orbit must
contain representations occurring in L\H/Hf]Γ). Moreover if σ e ίϊ
is such that σ occurs in L\H/H Π Γ) and p lies over Ad* G(σ), then
it follows from Mackey's theory, as explained in part I, that p —
ind|σ. But since we have seen above that σ is induced from a
linear character of a subgroup of H containing (Hf)Γ) N, the pro-
position is established.

Before ending this general discussion, we make two further
remarks. First, the normality restrictions in Proposition 2.1 essen-
tially serve to ensure that certain formally definable intertwining
operators make good sense. This has not been brought out explicitly
because, in fact, when dealing with normal subgroups, one can avoid
the problem of intertwining operators entirely. Second, aside from
the normality restrictions, I hope it has become clear that the main
obstacle to developing a general multiplicity result after the result
of [16] and [34] is the possible lack sufficiently many "good" double
cosets. Both these points will come up in our analysis for the case
of solvable Lie groups.

We now turn to this case. Let £f be our solvable Lie group,
and let Γ £ Sf be a discrete subgroup such that S^/Γ is compact.
We do not assume that £f is connected. Instead we assume that
if S^° is the connected component of the identity of S^9 and if ^V
is the nilradical of S*\ then ^ ° is open in S^ (this may be taken
as part of the definition of Lie group) and S^/^K is abelian. We
also take Λ" to be simply connected. Then it follows that Sf
may be embedded as a closed subgroup of a connected solvable Lie
group (see [26]). Also it is clear that any closed subgroup of S?
containing ^4^ is normal in S?f and satisfies the same conditions.
Also, if S? is connected, it automatically satisfies our conditions.
Note, too that <5 °̂/ °̂ Π Γ will be compact. Furthermore, it was shown
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in [27] that ^ΓΓ is closed. That is, if Δ = ^V Π Γ, then ^ / J is
compact.

Choose σe^V which occurs in L2(^V/Δ). We will try to find
the components of L\S^\Γ) which lie above Ad* &*(σ) Q <_yK Let
& Q <9* be the isotropy group of a under Ad* 6^. Then ^^* Q &
and &\& Π Γ is compact and the subspace of L\&\& Π Γ) which
transforms under ^V according to σ is invariant under &. Thus,
if we can decompose this subspace, we can in principle use Proposition
2.1 to compute the components of L\&*/Γ) lying above Ad* S^{o)9

since & is normal in Sf> and by Mackey's theory all such components
are induced from &. Thus we are essentially reduced to the case
& = £f9 so that Ad* £?(&) = σ, and we now assume we are in this
situation.

We would like to reduce still further, and be able to assert that
<s actually extends to an irreducible representation of £f. We show
that by again restricting our attention to a suitable subgroup, we
can accomplish this also. We could give a special argument based
on explicit realizations of representions of S^, but at the moment a
more general argument is convenient.

Let ^ ? £ ^ now denote a subgroup of £f containing Λ~ such that
( i ) έ% is connected,
(ii) &\& ίl Γ is compact, and
(iii) the representation σ extends to a representation p of <%

in the sense that p restricted to Λ" is irreducible and equivalent
to σ.

Suppose further that & is maximal with respect to the above
three properties. It is clear that maximal ^?'s exist, since all in-
creasing sequences of connected subgroups of £f are finite. Now let
«$?' be the isotropy group of jθe^? under the action of Ad*^. I
claim that the identity component of &' is precisely ^ . For, as
usual ^ 7 ^ ' Π Γ is compact. Thus if £8 is not the whole identity
component of ^ ' , then we may find a connected group &" Q &f

such that &"\&" Π Γ is compact, & £ &", and dim &" = dim & + 1.
Of course peR will be invariant under Ad* ^ ? " . But in such a
situation, since &" is generated by & and a single one parameter
subgroup, p may be extended to an irreducible representation of ^ " ,
by [5]. This contradicts the maximality of ^?, and so we conclude
that, indeed, & is the connected component of &\ Now simply
let ^ denote a maximal subgroup of &' containing & such that
p extends to a representation pt of ^ . Then ^ will be a closed sub-
group of ^?', hence of S^, and an argument like the above, shows that
the isotropy group of p, e ^ under Ad* &* is precisely ^ itself.

Since σ extends to pt on ^ , it follows by Mackey's theory, as
explained in part I, that any representation of ^ lying above σ
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on Λ" is of the form pί (x) <f, where ψ is a linear character of &u

trivial on ^yK Now let τ be a representation of £f lying over σ on
^sK Then the restriction of τ to ^ is clearly a direct integral of
representations lying above σ, so that it is a direct integral over
representations of the form p1 ® ψ>, where ψ varies in (&J^vy.
Since the commutator group of £f is contained in ^ 7 the isotropy
group under Ad* Sf of ρ1®<f must be ^ for any ψ. Therefore
ind5j Pi®Ψ is irreducible for any ψ. Hence we conclude τ =
ind^/Oi®^ for suitable ψ*. Moreover, since S^l^yK is abelian any
character o/r of &JΛ~ extends to a character φ of SΊ^v: Then, if
φ is the extension of ψ to Sf\ΛΪ clearly indj^ p1®

ff — φ®indJJ/v
Thus all irreducible representations of <9* lying over σ are induced
from <̂ ?!, and if τx and τ2 are two such, then τ2 — φ®τ1 for a
suitable character φ of S^\^V. We conclude from all this that if
we can compute multiplicities in ΊI{^1\^1 Π Γ) of representations
of &t lying over σ on ^ 7 then by an application of Proposition
2.1 we can compute the multiplicities in L\S^/Γ). Therefore, we
now take ^ = Sf and assume σ e Λ* actually extends to a re-
presentation p of S^.

REMARKS. Since we have made two reductions to get from the
general case to the case where σ extends, it might appear that we
would have to apply Proposition 2.1 twice to recover the general
case from the special case. It is not hard to convince oneself that
in fact only one application of Proposition 2.1 will be necessary.

Let U(&ΊΓ9 σ) denote the largest ^-invariant subspace of
L\&ΊΓ) on which ^Γ acts by a multiple of σ. Before computing
multiplicities of particular representations, let us consider the general
appearance of If(S*/Γ, σ). This discussion will be analogous to that
of [16], §1, but we can be more specific here. Let L\^V\Δ, σ) denote
the largest .^-invariant subspace of L\<sV*\Δ) on which Λ" acts
by a multiple of σ. Since ^V/J ^ <yΓΓ/Γ, <yΓΓ acts on L\ΛT\Δ)y

and by restriction %ΛrΛΓ acts on L\^VIΔ, σ). Since σ extends to Sf9

a fortiori it extends to ΛΎ. Thus we see that, under the action
of <sVΎ, TLJ{SSV*\Δ, σ) = Σ L i a>i<?if w h e r e t h e σt,i = l9 • • • , £ , a r e v a r i o u s
distinct extensions of σ to ^VΓ9 and Σ*-iα* ίs ^ e multiplicity of
σ in L\^VIΔ, σ). Note too that we may write 0̂  = σx (g) ψif where
the ψi are distinct linear characters of Λ^Γl^Yί We will look at
the ψi more closely later on in this section and in part 3.

It is clear (see also [16]) that the representation of Sf on
L\SΊΓ9 σ) is isomorphic to S ^ i ^ i ^ d S r ^ i ) . Put V = ind^-r^i, and
let pλ be some irreducible component of V. Then if φ is any linear
character of S^/^Γ, clearly ρι (g) φ also occurs in V. (One simply
returns to the definition of induced representation and verifies that
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multiplication by φ preserves the appropriate transformation law.)
On the other hand, the characters of S^I^KΓ span L\S^l^ΓΓ\ and
we may conclude from this that V = ΣΦ PI (8) Φ> the sum being taken
over all linear characters of S^I^VΓ. In other words, V is multiplic-
ity free and contains one copy of each possible extension of σι from
^VΓ to S^. Hence if for ί = 1, •••, I, we let ψ[ be an extension
of ψi from ^VΓ\ΛS* to S^lΛ^ then we may write

where φ again ranges over {S^I^VΓT. Computing multiplicities is
thus seen to amount to determining a particular p1 (or σ2) and the
α/s and ψ/s.

To accomplish this, we proceed in the general spirit of the dis-
cussion of the beginning of this part of the paper. We take a
particular p in £f9 lying above a in *>Y\ and we imagine that p is
induced from a representation τ of some subgroup & of Sf. Then
if τ1 is the representation of ^^*^ induced from τ on &f transi-
tivity of induction shows τx induced to Sf yields p. Since p restricted
to Λ" is already irreducible and equal to σ, we conclude that ^g ^Y* =
^ ^ = 10, and that if ^ = ^? Π ̂ f7 then <τ = ind^ v, where v
is the restriction of τ to ^^C Therefore v must be irreducible, so
τ is an extension of v from ^ ^ to ^ . But now, notice that
&-<yΓ = ^ means that &\^£ and 6^\^V are naturally isomorphic,
and so therefore are their Pontryagin duals. Let /? be another
representation of £f lying over σ on ^ Then p = ρ(g>φ for some
^ 6 {S^I^VT Identifying φ to a character, also denoted ^, of &\Λ€
we see that if f = τ (g) φ, then jθ on ^ is induced from τ on ^ .
That is, all representations of £f lying over a on ^"~ are induced
from & from extensions of v from ^ ^ to ^ .

Now assume that ^ ^ = & Π ̂ ^ is connected, and that &1& Π Γ
is compact. If this is so, then ^ \ ^ f) Γ = ^f^ Π Δ will be
compact too, as may be seen by the following argument, which is
quite general. If ^£j^ D Δ is not compact, then ^ ( ^ Π Γ) is
not closed in ^ , and so (& ΐ\Γ) ^€\^€ is not closed in
But ^ l ^ = S^l^V] and under this isomorphism (^P Π Γ)-
is identified to a subset of Γ^VΊ^V. Since Γ^Vl^Y* is closed and
discrete in S^l^Yl any subset of it is closed. Hence ^ - ( ^ n Γ )
is indeed closed, and ^£\^ Π Δ is compact.

Given these circumstances, we want to establish a result like
Proposition 2.1, or the result in the nilpotent case. This will take
some work. To begin, we show how the existence of a good double
coset &sΓ such that τ occurs in L\&\3B Π Ad s(Γ)) gives rise to
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a subspace of the type of p in L\,5*IΓ). Here we have put Ads(Γ) =•
sΓs'K

The basic idea is the same as in the case of a finite group: we
construct an intertwining map. This was done explicitly by Richard-
son [34] in his discussion of the nilpotent group case. Also, L.
Auslander [2] has explicitly pointed out the function of an intertwining
map in the context of Proposition 1 of [16], and the present discussion
benefits from his observation. As I mentioned above, my own dis-
cussion of multiplicities has so far, by a subterfuge, avoided inter-
twining questions entirely. However, they appear to be necessary
here.

Consider a good double coset &sΓ such that τ occurs in
L\&\& Π Ad s(Γ)). Replacing & by Ad s~\&) and τ by the repre-
sentation Ad* s(τ) of Ad s~\&), which is defined by the formula
Ad* s(τ)(s~ιrs) = τ(r) for r e &, we may suppose s is the identity.
Since τ occurs in L\&\& f] Γ), p occurs in L\Sf\& f]Γ). We try
to embed p in L\S^jΓ) by averaging over Γ\& Π Γ. We can not dα
this directly because of problems of convergence. We proceed, slightly
more cautiously, as follows. For a locally compact space X, let CC(X)
denote the continuous functions of compact support on X. We define
a map a: C££Ί& f)Γ)-> CC(S^JΓ) by the formula

«(/)(«) = Σ
r/rn

The series converges absolutely and uniformly to a function right
invariant by Γ (see [35]). It is clear that a commutes with the
obvious actions of G on the spaces Gc(Sf\& Π Γ) and CJίSΊΓ),
and so we refer to a as a formal intertwining map or averaging
map. We now attempt to obtain from a an actual intertwining map
between L 2 ( ^ / ^ Γ l Γ ) and L2(S^/Γ). We have C c ( y / ^ n Γ ) S
L\SS\& Π Γ) and Ce(<9*/Γ) C L\Sf\Γ). Thus the graph of a sita
inside L\Sf\& Π Γ) x L\£ΊΓ), and is an invariant subspace for
S? acting on this direct product. We consider the closure of
the graph of a. In general, this closure will have no properties
at all. For example, if Sf = R, & = {0}, and Γ = Z, then the
closure of the graph of a is all of L\R) x L\RjZ). In our present
context, however, we do get something useful. Recall that v is the
restriction of τ to ^*C Let I/2(^?/^? Π Γ, v) be the subspace of
L\&\& Π Γ) which transforms under ^ by v. Now of course
the representation of & on L\&\& Π Γ) is just indSnrl, and the
representation of S? on L\£f\& Π Γ) is just ind^nr 1. Thus the
representation of Sf which is induced from the representation of
& acting on L 2 ( ^ / ^ Γ) Γ, v) is just a subrepresentation of .Sf
acting on L\£^\& Π Γ). We denote the subspace of this represen-
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tation by L 2 ( ^ / ^ ΓΊ Γ, v). To give an alternate description,
L\Sf\0l Π Γ, v) consists of those functions / 6 L\Sf\& Π Γ) such
that for almost all xeS^, the function r—*f(xr) on & is in

Put

nr,v) = c c(^/^ n r) n L\sfi& nr,v).

We will use similar notation for other homogeneous spaces in
the course of the next few lemmas. For example, we have already
defined L\£s/Γ, σ) as the subspace of L\S^/Γ) which transforms
under ^Γ by σ. Similarly C,(SΊΓ, σ) = CC{S^\Γ) Π U(SΊΓ, σ).
Clearly a(Cc(S*l& ί lΓ, y)) £ Cβ(S^/Γ9 σ). It is worth remarking
explicitly on the simple general principal behind these definitions,
for it will be very useful later, and helps clarify things. Namely,
suppose Gι £ G2 £ G3 are 3 locally compact groups, each closed in
the next. Then if V £ L2(G2/G1) is a left invariant subspace under
the action of G2, then the subspace of L\GJG^9 consisting of functions
/ such that for almost all gz, the function g2 —> f(g3g2) on GJGι is in
Vf is a well-defined subspace of L\GJG^)f invariant under the action
of G3. Of course, this is simply part of the theorem on induction
in stages.

LEMMA 2.1. C0(£Sj& n Γ, v) is dense in L\Sf\& Π Γ, v). With
proper normalization of measures, the restriction of the formal
intertwining operator a to Ce(<5^/& ΓΊ Γ9 v) extends to an isometric
injection of L\&\& ΓΊ Γ, v) into

Proof. By the alternate description of h\S^\^ Π Γ>v) given just
above, we see that those functions / 6 L\&Ί& Π Γ, v) which are
of compact support modulo ^ Π Γ are dense in ΊJ(Sf\& ίlΓ,v).
For if U is an open relatively compact set of S^9 and

then the function which agrees with / on Ό& and is zero outside
TJ& is also in L\S^\^S Π Γ, v) since it transforms correctly under
^?. Also it has compact support modulo ^ ( Ί Λ since & Π Γ is
compact. Now let / 6 L\£Ί& Π Γ, v) have compact support modulo
^ , and let β e C c (^) . Then β*f is in

L\&>\& n Λ v),

still has compact support modulo ^?, and is continuous. Now just
let β run through an approximate identity in L\£f)9 and β*f will
approach /. This proves the first statement of the lemma.

We first prove the second part of the lemma in the special case
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when Γ = (^ΓϊΓ) Δ and ^ί is normal in ^V. By our assumptions,
Γ\& Π Γ = J/c^^ Π 4 so we may choose our ^ Γ l ί 1 coset represen-
tatives {Ύĵ Li to lie in Δ. The 7, will then normalize ^t Π 4.

Now if / 6 CC(SS\& Π Γ), and Λ e CC(S*/Γ), then we have the
formula (see [15], [35]):

(1) f a(f)hdμ = \ fhdx .

In this formula dμ is the standard probability measure on
and dx is an appropriately normalized invariant measure on

Π Γ. We regard h alternately as a function of &*/Γ or on
Π Γ, and h is the complex conjugate of h. The formula

expresses the relationship between inner products in L\S^IΓ) and
Π Γ). We may ([15], [35]) rewrite the left hand side of (1):

(2) ( a(f)hdμ = ( ds(\ a{f){sn)h(sn)dμ) .

Here ds and dμ are the standard invariant probability measures on
S^l^ΓΓ and *Λ"\Δ respectively. Similarly, we may rewrite the
right hand side of (1) as:

(3) ( fhdx = f ds(\ f(syMsy)dy) .

Here ds is as in (2) and dy is a suitable invariant measure on

Π ̂ T ) .
Now if / is a continuous function on S^> and s e S^, define fs on
by f8{n) = /(βw). We have a map α: Ce(<yΓl^r n Δ)-*Cc(Λr\Δ)

defined by the formula ά(h)(ri) = Σr^ h(nΎt). Again, the sum converges
absolutely and uniformly on compacta. Clearly for / 6 C£SΊ& Π Γ)9

we have /, 6 Cc{^Vl^ Π 4), and the formula a{f)8(ri) = a(fa)(n) holds.
Using this notation, and using (2) and (3), we see that (1) becomes

(4) ( ds(\ α(fs)h8dμ) = f ds\ fshsdy.

Suppose that h = α{hr) for some h' e CC(SS\& Π Γ). Then the right-
hand side of (4) becomes:

s \ fMKΪdy = ( ds\

r / r

The rearrangement is legal because in fact Δ\^ Π Δ acts properly
discontinuously on ^Y*\^ Π 4 and in fact, for a fixed s, only finitely
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many of the products f8(y)K(yΎi) are nonzero. (We imagine that for
the outer integral in (5), we have picked representatives for se

and are integrating over a nice fundamental domain for
in S^.) Thus we arrive at our final formula for / and h' e

Π Γ)).

6 ) ί a{f)a{h')dμ = \ dsfe \

Take / to be in CC(SΊ& Π Γ, v). This means that for each
s 6 S^ and n e Λΐ the function m ~+ f8 (nm), for m e ^£ is in
Gc{^£\^ Π 4 v), the functions in Cc{^\^ Π Δ) which belong to
the v-isotypic component of L2(^€7^€' Π Δ). Then, since 7< normalizes
^ and ^ Π Δ, and Ad* %(v) Φ v since v induces the irreducible
representation σ of Λϊ we see that C C ( ^ / / ^ Π 4 Ad*7i(v)) is
orthogonal to

But if feCc(£sj£gf)r,v), then m-+fB(nm7i) is in Cc(^yUT Π
4 Ad* 7i(y)). Therefore, by integrating first over the %s€\^ Π 4
fibres, then over Λ^l^, we see that if 7έ does not represent the
identity,

- o

for any f, h'eCc(S^/έ& Γ\ Γ,v). Hence for such /, h', formula (6)
reads

\ α(/)α(λθ=( cfot fs(y)K(y)dy

t f(x)h'(x)dx.
Γ

Thus in the case we have been considering, namely ^ C normal in
^// and Γ = (& PίΓ)-Δ, the lemma is established. We defer the
proof in the general case in order to introduce another important
property of our intertwining operators.

So far we have been considering a single (^?, Γ) double coset,
which we have for convenience normalized to be the identity coset.
Suppose, however, that we have two good ( ^ , Γ) double cosets
^s,Γ and &s2Γ such that τ occurs in L\&H& Π Ad s^Γ)) for i =
1, 2. Put &i = Ad si1 &. Then by choosing coset representatives
for ^ Π Γ in Γ, we can as above form averaging maps

a,: CJ&l&i Π Γ)
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LEMMA 2.2. There are only finitely many good double cosets
such that τ occurs in ~L\&\& Π Ad s(Γ)). Suppose &sj? and
are two distinct good double cosets for which τ does occur.

Then the images of a,: CJ^S^l^ Π Γ, Ad* β,(v)) -> Cΰ(<9"/Γ) are ortho-
gonal (with respect to the inner product GC{S^\Γ) inherits as a
subspace of

Proof. Since &-^V" = &*, any (^?, Γ) double coset has a repre-
sentative in ^K Let &nΓ, n e ^ be a good ( ^ , Γ) double coset.
Then &\& Π Ad ^(Γ) is compact. This as we saw before implies
Λ%\^ Π Ad n(Δ) is compact. Clearly τ can occur in L\&\& Π Ad n(Γ))
only if v occurs in L\^£\^£ Π Ad n(A)). But we know from the
nilpotent case that there are only finitely many good (^ίj Δ) double
cosets such that v occurs in L\^£l^ Π Ad n(A)) with positive mul-
tiplicity. This proves the first statement of the lemma.

To prove the second statement, we again begin by taking ^£°
to be normal in ^K The argument follows the same lines as in
Lemma 2.1. We run through it somewhat faster. Let {7^=1 be a
set of coset representatives for ^ n Δ in A. Then {7,-} will also
be a set of coset representatives for ^ n Γ in ( ^ Π Γ) Δ = Γi9 As
Γ2 is of finite index I in Γ, we may choose a finite set {%}£=i of
coset representatives for Γ2 in Γ. Then { ^ T ^ I . L I are a set of coset
representatives for ^ 2 ί l Γ in Γ. Of course, precisely the same
set-up applies to Γίf but we do not need to make this explicit in
our arguments.

Take /, e CJiS^I^ Π Γ). For /2, we have the formula az(f2){x) =
compute

( Λ(sy)ai(f2)(sy)dy

In the above <Zμ, do?!, cϋ ,̂ and d̂ / all denote appropriately nor-
malized invariant measures on the relevant coset spaces. Consider
a typical term in the inner expression of the last member in (8)
We see

= \ dn( f1(snm)f2(snmηkΎj)dm) .
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Here again dn and dm are the obvious invariant measures. Now
the function m—*f1{snm) belongs to Ge{^\^ (Ί Δ, Ad* n^v)), while
m-+f2(snmηkΊj) is in Gc{^\^ n 4 Ad* ηhΊjiφ>)). The fact that v
extends to τ on ̂ , but induces σ on ̂ 7 shows that the isotropy
group of v under Ad* £f acting on Λ is precisely ^ . Thus the
(^, Z1) double cosets correspond bijectively to Ad* Γ orbits in
Ad* £s(v). Since nx and w2 represent different (^?, Γ) double cosets,
Ad* ^(v) 9̂  Ad* Ίjufjnjί))) for any choice of ^fc or ys. Hence the inner
integral in the right hand side of (9) is always zero, and plugging
this fact in (8) yields the lemma in this case of ^ normal in ΛZ

Using the above, we now establish Lemma 2.1 completely. Then
we will return to Lemma 2.2. For the moment we still take ^
normal in ΛΊ but allow the possibility that ( ^ ΓιΓ) Δ Φ Γ. Again
let {jj} be coset representatives for ̂ f Π Δ in Δ, and let {%}Li here
denote a set of coset representatives for Γ° = ( ^ Γ[Γ) ΔinΓ. Then
we may express the averaging map a: Ce{S^\^ nΓ)-^Ce{S^/Γ) as a
composite of two maps a0: Gc(^/^ Π Γ) -> Ce(S^/Γ°) and 8̂: C,(SΊΓ) ->
Cΰ(S*/Γ). The maps a? and /3 are expressed by the expected formulas:
a\f){x) = ΣiifiPYj) and /S(/)(^) = Σ U / ( » % ) . for / in the domain of
a0 or j8. Since Γ° is normal in Γ, &Γ decomposes into I distinct
(̂ f5, Γ°) cosets, namely &ηkΓ\ k = 1, , Z. If ^ = A d ^ ( ^ ) , then
^ ίl Γ° = A d ^ ί X ^ Π Γ°), and we may define α°fc(/) 6 Ce(S*/Γ°) for
/ e Gc{Sf\&k Π Γ) by the same formula as for / 6 Ge{^\^ Π Γ). (We
note that ( ^ . Π Γ) Δ = Γ° independently of &, again by the normality
of Γ° in Γ.)

Now if / 6 Cc{&>\& n Z7), then if fk(x) - /(a?%), Λ 6 Cΰ(^/^k Π Γ),
and moreover α°(Λ) (a?) = α°(/)(«%). Therefore α(/) = /3(α°(/)) =

= Σ . «°(Λ). So now if /, Λ e Ce(^/^ n Γ), then

(10)

Take now /, fc e ClSf\& Π Γ, v). Then ^Λ belongs to Cc(Sf\&k D
JΓ, Ad* %(v)). The case of Lemma 2.2 which we have established
now guarantees that in the sum in the last member of (10), only
the k for which ηk£Γ° gives a nonzero contribution, and Lemma 2.1
is now completely proven when ^t is normal in ̂ /

When ^ is not normal in <yγΊ> we can pull ourselves up in
stages. If ^^° = ̂ £ and ̂ ί + 1 is the normalizer of ̂ l in ̂ 7 then
the ^ ' ΐ have the following properties. .^C* = %Ar for some finite
Z, and ΛZ1 is normalized by ^ . The quotients ^ i \ ^ i Π 4 are
compact. If ^P* = & ^^^* then ^?* is a closed subgroup of
^ ί + 1 , and gg^^ Π Γ is compact. Put v* = indrί* v. Then j;* is

ί a{f)a(h)dμ - ί a\f)a(h)dμ°

= Σ ( a\f)a%hk)dμ° .
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irreducible and induces a on ^V and vi+1 on ^ i + 1 . For each
i, we can average over cosets of ^ Π Γ in &i+1 Π Γ and this
will produce maps a*: C # (^ ' + ι /^p* Π Γ)->Ce(&i+1/&i+1 Π Γ) and
α': CU^/^P* flΓ)^G e(S^/^ i + 1 Π Γ). Of course the maps α* and «*
are closely related. For a given β e ^ f / e C^S^/^P* Π Γ), define
/f(r) = /(βr) for r 6 ̂ P«+1. Then /. 6 CJ&^l&ί1 n Γ). Similarly, if
fe6Cc(y/^ί+1nrUβ(r) = ft(sr) is in C c ( ^ ί + 1 / ^ i + 1 n Γ), and we
have, for proper normalization of the various measures, the integral
formula

= ί
We know that α* restricted to Cβ(^P ί + 1/^ ί i Π Γ, v*) is an isometric
injection of this space (with the pre-Hilbert norm it has as a subspace
of Lf(^P'+1/^P* Π Γ)) into C c ( ^ ί + 1 / ^ ί + 1 n Γ, vί+1). We conclude from
(11) that a1: C\S/fl^ii Π Γ, J;') -* C c ( ^ / ^ ί + 1 n Γ, Pί+1) is also an iso-
metric injection. Now composing the ai7s gives Lemma 2.1 completely.

Now we finish the proof of Lemma 2.2. The procedure is much
the same as the above, but a slightly different formulation is con-
venient.

Let &7iiΓ, i = 1, 2, wέ e ̂ ^ be two good double cosets such that
τ occurs in L\&\& Π Ad nt(Γ)). Let ^ = Ad nτ\&). With the

o ^ ί as defined above, if Λ€1 = ^ ς then ^ < z " 1 is normal in ^Γ and
^ n ^ C -^T1"1. Put ^ f = t ^ . ^ # ' 1 - 1 and ^PJ = &cΛ

%-\ By
picking a set of coset representatives for ^ Π JΓ in ^?/ Π Γ, we get
averaging maps a\\ CΛ{S^I^ f)Γ)-> Cc{Sf\&l Π Γ) and

Similarly, by picking coset representatives for ^?/ Π Γ in Γ, we get
averaging maps βt: Cc(^/^/ ΠΓ)^CC(S^/Γ). It is clear that the
composites j84°αί = a€ are just the averaging maps from Gc(S^/^i Π Γ)
to Cc(£^/Γ) with which we are concerned.

There are two possibilities: either &'nJΓ and &fnJΓ are the
same, or they are not. Suppose first that they are not. Then
WΛ^R'AίSP, Π Γ, Ad* **,(!>))) £ Cc{£$;\έ%; n Γ, Ad* njφ-% with P1-1

as above. Thus

nr, Ad* w4(v))) S Cc(^/M' Π Γ, Ad* ^(v1-1)) .

But since ^^ z ~ x is normal in ^ the images under the & of the
spaces Cc(&*/&t' Π Γ, Ad* n^v1'1)) are orthogonal by the special case
of Lemma 2.2 which we have already established.
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So consider the other possibility, that &'nγΓ = &'nJΓ. Then
if we choose nt and n2 correctly, n2 = m^ with m e ^£rι~1. Taking
this choice, we see that & — &2' and that ^ and ^P2 are conjugate
in ^ί. This being so, we may make the inductive assumption that
the images of ά[ and ά'2 in CX^/^ΠΓ, Aά^n^v1'1)) are orthogonal.
Then integrating fibrewise, we see that the images of a\ in Cc(Sf\&l Π
Γ, Ad* nSv~1)) are orthogonal. Now we apply Lemma 2.1, which
says βt is an isometric injection of Gc{£f\&l Π Γ, Ad* n^v1"1)) into
GC{S^\Γ). Since <*< = A°αl, the images of the at in GC{S^\Γ) are
orthogonal, and Lemma 2.2 is established.

Having seen how to construct subspaces of L\S^/Γf σ) using
good (^?, Γ) double cosets, we want to show this is not an empty
construction. Indeed, we will show that the spaces we construct in
this way exhaust L\<9*jΓ, σ). From this fact to the multiplicity
formula we are after is but a short step. We base the result on
Richardson's parallel result ([34]) for the nilpotent case. The main
point in applying [34] is the next lemma, guaranteeing the existence
of enough good (^?, Γ) double cosets. It is this argument, which
uses strongly certain facts about algebraic groups, that seems the
hardest to transfer to less structured (e.g., more general) context.
I do not even know how to prove it for a solvable group £f if Ad* S?
does not leave σ fixed. That is the reason for preliminary reduction
to this case.

LEMMA 2.3. Suppose ^€nΔ is a good (^, Δ) double coset in
such that v occurs in L\<Λ€\Λ€ Π Adn(J)). Then &nΓ is a

good (&, Γ) double coset.

Proof. Let ^(^V*) denote the center of ^v; and write S? =
If X Q & is any subset, let X £ &> denote the image

of X under the natural projection of £f onts £/?. Since σ is induced
from v on ^£, ^ must contain 5£(Λr'). Thus &nΓ is the full
inverse image in £f of &ήΓ S Sf. Since &nΓ is good means it
is closed, and likewise for £%nΓ> we see that if we can show &nΓ
is good, we will have proved the lemma.

As is well-known ([24], [26]), the subgroup Δ of ^V~ endows
c^* with the structure of unipotent algebraic group over Q such
that Δ is an arithmetic subgroup of <yK This means that if JV is
the Lie algebra of . ^ then N has the structure of vector space
defined over Q. Let log Δ £ N be the inverse image of Δ under the
exponential map from JV to ^Vl Let L be the additive subgroup of
N generated by log Δ. Then L is a lattice in N. That is L spans
N (over JB) and is discrete in N. The set of Q-rational points of JV
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are those points x such that txeL for some integer t. A basis over
Z for L is a basis over Q for the Q-rational points of N and is a
basis over R for N.

Consider the adjoint action of &* on N. The identity component
of the kernel of Ad: &* —> Horn (N, N) is precisely ^{^K)9 by the
definition of nilradical. Thus the identity component of &* acts
faithfully on N.

To show &ΰΓ is good, it will be enough to show that we can
choose the coset representative n so that Ad n(Γ) Π Γ is of finite
index in Γ. For then έ% Π Γ ΓΊ Ad n(Γ) has finite index in J f l f ,
so &\& Π Ad w(Γ) will be compact, another criterion of the goodness
of &ήΓ.

Let Λ be the subgroup of S? consisting of elements 7 such that
Ad 7(L) = L. By the construction of L, we have Γ Q /\. On the
other hand, the automorphisms of L form a discrete group in
Hom(iV, N). Since the connected component of S^ acts faithfully
on JV, it follows that /\ is discrete in Sf. Hence Γ is of finite index
in /\. A simple argument then shows that if we can choose the
double coset representative n so that Ad n(Γx) Π Γ1 has finite index
in Γίf the same is true for Γ. But Ad w(/\) Π A will have finite
index in Γ1 if Ad n(L) Π 1/ has finite index in L; for then Ad w(/\) Π
Γi will contain some congruence subgroup of Γλ. Next, we see
Ad n(L) Π L will be of finite index in L if n e <yV" is a Q-rational
point. So we are reduced to showing we can choose n to be ir-
rational.

Since v induces σ, it follows that the set of pairs (Adw(^lf),
Ad* n~\v)) is naturally isomorphic to the space <yKj^ί. (See [16].)
Since Λ€\^ Π Δ is compact, ^ is defined over Q, and ^ 1 ^ has
the structure of variety over Q. This statement that ^nΔ is good
and v occurs in L 2 (^^/^^ Π Ad w(Δ)) implies that (Ad n{^\ Ad* n~\v))
is a Q-rational point of ^<^/^C It is however, well-known (see [14],
and [24] for the role this plays in harmonic analysis on the adeles
of a unipotent group) that the Q-rational points of <yK act transitively
on the Q-rational points of <yV"\^. Hence we may choose n rational,
and the lemma follows.

Now enumerate the good ( ^ , Γ) double cosets {&ntΓ}t=ί such
that v occurs with positive multiplicity in L ^ ^ / ^ f l A d ^ ^ ) ) .
We saw in Lemma 2.2 that these cosets were finite in number. Put
^ = Adnϊ1^) and ^ C = &* Π Λϊ and let vt = Ad* n^v). We
have shown that the averaging maps at: C0(S^/^t Π Γ, vi)-+Cc(S'/Γ, σ)
extend to isometric injections βt: L\S^I^ Π Γ, v<) —> L2(^/Γ, σ), and
moreover the images of the & are orthogonal spaces.
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LEMMA 2.4. The images of the β span L2(S*/Γ, σ). That is, we
have a direct sum decomposition

L\SΊΓf σ) - φ βάU&Ί&t Π Γ, vt)) .

Proof. For a given i, put Γi = ( ^ Π Γ) z/. Then /\ has finite
index l{%) in Γ. Let {rjiβ}%\ be a set of coset representatives for Γί9

We suppose 7]u is the identity. By choosing coset representatives
for ^ Π Δ in Δ, we get averaging maps a\: CJ^l^ n Γ ) ^ CJ^\Γ^
and α : C^^A^C Γ) Δ)—> Cc(<yΓlA). The relations between these maps
and the αέ above are as follows. If / 6 CXS^I&i Π T), then at(f)(x) =

i) For 8 6 ^ if the function fs:n-+f(sn) is in
eί Π Λ), and «S(/.) = «?(/)..

We recall that L\S^/Γ, σ) is the subspace of functions which
transform by σ under ^fΓ Since σ is invariant by Ad* Sf, we may
also describe LXS^/Γ, σ) as the space consisting of h 6 L2(S*/Γ), such
that for almost all s, the function n —> h(sn) on Λ^jΓ is in L2(^^/Γ, tf).
We want to divide L2(^/Γ, σ) into certain invariant subspaces. To
this end, let us consider those good (^t, Δ) doublecosets ^nΔ such
that v occurs in L\^£\^£ Π Ad n{Δ)). By Lemma 2.3, each such
^£xΔ is contained in some ^ ^ Γ , i = 1, , fc. Clearly the (^£ J)
cosets in <yV" which are contained in ^n^Γ are the left translates
by nt of the (^J, J) cosets in ^ Γ . Let ^%xΔ and ^%x'Δ be two
{^C J) cosets in ^ Γ . Then x = r7 and α' = r'τ' with r, r' e ^
and 7,7'eΓ. Suppose ^C#J = ̂ x'Δ. Then r'τ' = mrΎδ with m 6
^ C , δ e J. Thus {mryψ = TδΎ'"1 = δ0 is in ^ Π Γ, and r' = mrδ0

and 7' = δί"^. Conversely, if these relations hold, it is easy to see
that ^£lxΔ = ̂ x'Δ. In fact, if only Y = δo"1^, then if we define
r' = ̂ rδ 0 with m arbitrary in ^tfu we get a representative x' = rΎ
for ^^xJ. Thus Y may be arbitrary in ΎΓif and the (.^C J) double
cosets in ^Γ 0 ^V are in one-to-one correspondence with the Γt

cosets in Γ, and a set of double coset representatives is provided by
{^ίόViόYj^l w i t k Vis a s before and riά e ̂  such that riάηiά e <yyz Finally
we conclude that the good (^£ Δ) cosets in Λ" such that v occurs
in LX^P/^f Π Ad n(Δ)) are the cosets {^XijΔ}ilJijj=sl, where ntriSηtί =

Put ^ , = Ada^V/T = A d ί r ^ y ) " ^ ^ ^ ) = Aάrj^i^tΐ). Let
«Jy: Gc(^V\^/έn Π 4) —> GX^KjΔ) be the standard averaging maps. Let
Xi3. be the closure in L*(^T/A) of ^ ( ^ ( ^ / ^ n Λ A d * ^ ) ) ) .
Eichardson [34] has shown that L2(^T/J, σ) = ©< f i JC<y. (Actually,
Richardson concerned himself only with the case when v is a linear
character on Λt, and also makes some restrictions on ̂ *C However,
once the multiplicity formula is known for general ^/έ (still with v
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one-dimensional), as it is from [16], then, using the fact that if dim
v > 1, we can find ^t £ *^% such that ^&\Λ? Π Δ is compact, and
such that v is induced from a linear character of *Jfr, it is seen that
very small modifications in Richardson's arguments give the result
as stated.)

The XtJ are Λ^-mvariant subspaces of L2(^i^/Δ). However,
when we make the identification Λ^\Δ = ^VΓ\Γ', the Xtί are no
longer invariant under ^VΓ. Indeed, the transformation x —> ΎxΎ'1 =
AdΎ(x) for xe^*T6Γ preserves Δ cosets, and so factors to an
action of Γ on ^V^IΔ, and this action is the same as the standard
left action of Γ on ^yKΓjτ under the identification of ^V\Δ with
^VΓIΓ. On the other hand, it is immediate from the formulas
defining the averaging maps ά°id that if Ad* Γ denotes the action of
Γ on L\^ΓIΔ) dual to the action Ad Γ on ^V\Δy then Ad* Γ per-
mutes the Xtj among themselves. The orbits consist of all Xtj with
arbitrary j and fixed i. The isotropy group of XiS is simply Γt.
Therefore Xt = φj(i} Xti is Ad (Γ)-invariant, and so, looked on as
subspace of L2(^VT/Γ), it is ^KΓ-invariant. We thus get the
orthogonal decomposition L2(tyΓΓ/Γt σ) ~ φLi Xt. If then Y* is
the subspace of L\S^/Γ9 σ) consisting of functions / such that for
almost all s, the function nΎ —* f(snΎ) on ^VΓ/Γ is in Xi9 we see
that the Y/s are ^-invariant subspaces of L\S^jΓ, σ)9 and we have
the orthogonal direct sum decomposition L\£f/Γ, σ) = (BLiYi This
is the decomposition we were after. We will now show that Y* =
βt(L\S'/&i Π Γ, Vi))f and this will prove the lemma.

We proceed in two steps. First we note as a simple corollary
of the discussion of the last paragraph, that if Xid is interpreted as
a space of functions on ^4^ΓJΓi9 then it is ^TYinvariant. Therefore
we may consider Ziό £ L\S^/Γi), defined as the space of / 6 L2(S^/Γi)
such that for almost all s e ^ the function nΎ —• f(snΊ) is in Xij9

The space Zi5 is a well-defined ^-invariant subspace of L\£/*\ΓΪ).
Define the averaging map α*: L2(S*/Γi)—*LχS^/Γ) by the obvious
formula: a^fXs) = Σ}S f(srjiά). Then it is clear (again by checking
the formulas) that a^Z^) £ Γ*. I claim that in fact a^Z^) = Γ*.
This may be seen directly as follows. Verify easily that if feZid,
then the function s~+f(sηu) is in Zin, where Γi

/ηi^il = Γi7]im. Now pick
a fundamental domain U for Γ/Δ in Sf\tyK That is, U is a reasonably
nice set (for example, a Gδ) which contains exactly one point from
each Γ/Δ coset in &Ί^K It is an easy thing to do to find U, since
S^l^Y* is an abelian Lie group. Let U' denote the inverse image of U
in S^, and let U" be the projection of U into £fjΔ. Then it is quite
obvious that the projection of U" into S^\Γ is in fact a bijection.
Similarly, it is obvious that if Ό\) = y^U" = Uf%j(Γ may act on
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on the right because Γ normalizes A), and if Ul" is the projection of
Uϊj in SΊΓn then the projection of E7," to U-" is a bijection, if j φ m,
then U't'/ and UZ are disjoint and S^jΓ, = Uί=OT

The procedure is now clear, though slightly cumbersome (which
is typical of this whole construction). Take / in Yt. Pull / back to
a function / on U'u by means of the bijection between U'ύ and S^jΓ.
Then we may write / = Σ;S/i> where fόeZiά. Let h, (x) = f(xητϊ)
for x e S^IΓi. Then hό e Z4I, as one verifies immediately by checking
the formulas again. Also h3- is zero off yr/U'u. Let h be the function
on S^/Γt which agrees with hά on ^ U"/. Then it is easy to see that
the averaging map at reverses the above process, and at(h) = f.

For the second step, we consider the averaging map a\ defined
at the start of the lemma. By the relations stated there, a\ restricted
to any coset of ^V is just a\. We know from the nilpotent case
that the maps from U^^Kl^tί Π Γ, vt) to Xn derived from a\ is
onto. Since L\S^l^, Π Γ, vt) consists of all feL2 such that on
(almost) any coset of ^ 7 the restriction of / is in L 2 ( ^ / ^ C Π Λ v<),
we conclude that the map from L\S^\^/ίi Π Γ, vt) to Zu derived
from at is likewise onto. This finishes the lemma.

Now we may combine the foregoing lemmas to obtain our sought-
for result on multiplicity.

THEOREM 2.1. Let S^ be a solvable Lie group, Λ^ its nilradical.
Suppose <9*l^V is abelian. Let Γ be a discrete subgroup of S^ such
that S^jΓ is compact. Let σ be a representation of ^V which is
invariant under Ad* S^, and which extends to a representation p
of £f Let & £ &> be a subgroup such that &\& Π Γ is compact.
Let τ be a representation of & which induces p. Then there are
only a finite number of good (&, Γ) double cosets &nΓ such that
τ occurs in L\&\& Π Ad n(Γ)) with positive multiplicity mn. The
multiplicity of p in L\S^jΓ) is given by the sum Σmn over these
good double cosets.

Proof. With Lemmas 2.1 to 2.4 to work with, the proof is a
routine matter. We will therefore do something more, and use
this opportunity to reinterpret the spectrum of L\S^/Γ9 σ) in the
terms of the discussion preceding Lemma 2.1. We reestablish our
notations.

Let ^ — & Π cΛT We have seen ^\^/έ n Γ is closed. Let
v be the restriction of τ to ^£. Let {^^έΓ}f=1 be the good (^, Γ)
double cosets such that v occurs in L\^£\^/έ Π Ad n (Γ)). Put ^ =
ΔAnτ\&), and ^£1 — AdnϊX^f). Denote by vt the representation
Ad*n€(v) of ^ . Recall that L2 (S^/^t Π Γ, vt) is defined as the
subspace of functions / e L 2 ( y / ^ n Γ ) such that for almost all
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a? 6,5? the function m—>f(xm) on Λ^ transforms to the left under
according to vim

Let Ti be the representation Ad*%(τ) on ^ . Let H't =
). Let τ be the restriction of r< to i^. We identify

C Γl Γ and Ht/^t Π Γ in the usual way. Suppose v occurs in
C Π Γ) with multiplicity aί9 Then according to the discussion

of L\£flΓ, σ) preceding Lemma 2.1, we have that under the action
of Hif L * ( ^ / ^ Π Γ, v) breaks up into a sum Σ ; biάτ\ ® £*i> where
the ζίy are characters of HJ^^, and Σy &<y — α*

Again referring to the discussion preceding Lemma 2.1, where
the representation of £f on L\S^I^ Π Γ, v*) is just Σy &*i iadf* ?ί ®
ζίy. If we induce this in stages, going first up to ^ , we get
Σy bid indf/ τj ® ζ i y = Σ ; Σ^ 6^7, ® ζ^ (g) ̂ . Here we have identified
HJ^fi with a subgroup of ^J^^ and ζ^ is any character of ^J^l
whose restriction to Ht is ζ^ . In the second summation φ runs
over all of (̂ /JEΓO^ Now since &' ^V = &ζ we may identify
(έPJHiT with (SΊ^rHiT, and {gej^gΐΓ with (S^/^TΓ. Doing so,
it follows immediately that upon passing from ^ to ^ we get

where the ζ<y's are now interpreted as characters of S^j^Yl and φi
runs over (SflΛ^Hlf as a varies.

Now that we have written this down, we see that Lemmas 2.1
through 2.4 imply that

(12) L\^/Γf σ) s Σ Σ Σ b«p ® C*y ® ^ .

By inspecting this formula, we will see the theorem is true. By
the discussion preceding Lemma 2.1, we see that p 0 ζ<y 0 φ is
equivalent to p if and only if ζ^φ is trivial. Moreover, it is completely
obvious that the multiplicity of τ in L\&\& Π Ad n&Γ)) is the
same as the multiplicity of τi in L 2 ( ^ / ^ Π Γ). These three facts,
plus formula (12) establish Theorem 2.1.

Let us now go somewhat further, and compare (12) with the
decomposition of L\£fjΓ9 σ) given before Lemma 2.1. That decom-
position was L\£s/Γ, σ) ^ Σ* Σ? UtiPi ® Ψt ® Φ) where p, was a fixed
representation which did occur in L\S^jΓ, σ), the ψ't are characters
of S^I^V whose restrictions to ^/KΓ are specified, and φ is arbitrary
in {S^l^vry. For ease of comparison, put p1 = p. In this decomposi-
tion, the φ'i were the most mysterious objects. We had no explanation
of what they would be or how they would arise. Our decomposition
(12) is more refined and provides a partial explanation of the origin
of the ψ'i. Indeed, in comparing the two, we see we must have
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equations ψk = ζiS (x) φ*a. Recall that ζid is a character of
having specified behavior on ΓJΔ and <p*a is trivial on Γt. In particular,
we see that, in addition to ψk9 every character of Γ agreeing with
ψk on Γt will occur among the ψ/s. In terms of the proof of Lemma
2.4, we see that the set of ^,'s agreeing with ψk on Γt arise essen-
tially because Γt = ( ^ flΓ) J may be a proper subgroup of Γ, so
there may be several (^^ Δ) cosets in (&ntΓ) Π ̂ Yi in which case
ΓjΓi permutes transitively the invariant subspaces XiS of L\^VjΓ, σ)
described in Lemma 2.4. Thus, we see that if we can predict the
ζ</s, we can also find the ψt

9s from the (^ , Γ) and (^#J zf) double
coset structure. Thus, if & is a proper subgroup of ^ we have
effected a reduction in the problem of determining the ψi's. Indeed,
if it should happen that we can choose & so that τ is one-dimensional,
then of course v will also be one-dimensional, and LX^tJ^l Π Γ)
will always be one-dimensional, and L 2 ( ^ / ^ Π Γ9 v) will obviously
consist of all extensions of v to ^ / ^ Π Γ. Any two such extensions
differ by a character of ^ / ^ ( ^ Π Γ). Hence, in this case the
ζi/s are completely determined in an obvious manner, and the complete
structure of L2(S^/Γ, σ) is quite clear.

In view of the above discussion, and also to determine the
usefulness of Theorem 2.1, it is of interest to know from what sorts
of groups & we may expect to induce p. Usually it is too much
to expect that we can choose & so that the inducing representation
τ on & is one-dimensional. (Indeed, this is not even true when one
allows any ^?, not just those & such that &\& Π Γ is compact.)
However, this question does have a fairly satisfactory answer, obtain-
able by the now standard techniques of Kirillov theory. The result
we want is almost, but unfortunately not quite (due to the rather
arbitrary nature of our £f) a consequence of Proposition 1A of
[19], and so we give a separate proof. The details of the proof
are the same as for Proposition 1A of [19], and it seems that a
scheme-theoretic version of Proposition 1A would include the present
result. In any case, we point out the obvious strong analogy of this
result with Proposition 1.3 of part I.

This is the set-up. We take Sf and ΛΊ Γ and Δ as always.
We take any a e ^/Γ which occurs in L\^Y*\Δ). We do not necessarily
assume that σ extends to S^f or even that it is invariant under the
action Ad* £f of S? on ^yp: Let Sfβ denote the isotropy group of
σ under Ad* ^ Of course ^V £ S^a9 and S^IS^ Π Γ is compact.

In our present context, that of Lie groups, we will understand
a Heisenberg group to be a two-step nilpotent connected simply-
connected Lie group Sίf, whose center and commutator subgroup
coincide, and are one-dimensional.
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PROPOSITION 2.3. We may find a subgroup & Q Sf, and a
representation v of ^€ = & Π ̂ /ίr such that

( i ) &\& Π Γ and ^\^/έ Π A are compact.
(ii) Sfo = & Λ:
(iii) σ = ind^ v.
(iv) v 6 ̂  is Ad* ^-invariant.
( v) ^ is connected.
If ^ f £ ^ is the connected component of the identity of the

kernel of v, ̂ s£'\^ί€f is a Heisenberg group, or isomorphic to R.
Also ^/έ'l^/έ* (Ί A is compact.

Proof. Let N be the Lie algebra of ^ 7 and let iV* be the vector
space dual of N. The original Kirillov theorem [21] asserts the
existence of a surjective map a: JV* —* Λ~ such that the inverse
image of a point in <yf" is an Ad* Λ' orbit in N*9 and which commutes
with the actions Ad* &* of S? on ΛΓ* and Jh Denote by & the
Ad*<^~ orbit cr\a) in iSΓ*. Clearly then Sfo is the subgroup of
s e y such that Ad* s(^) = ^ . Let λ be a point of ^ , and let ^
be the isotropy group of λ. Since Λ^ acts transitively on ^ , we
have Sf* = ^ r ^ K

As sketched during the proof of Lemma 2.3, the existence of
A in «^^ endows ^V with the structure of unipotent algebraic group
over Q. Also N has the structure of vector space over Q, such that
log A, the inverse image in N under the exponential map of A, spans
the Q-rational points of N. Thus iV* has a rational structure, and
the rational points of iSΓ* are those whose values on log A are rational.
It is known ([24]) that with the usual normalization of a, that in
order for σ to occur in L\^K/A), & must contain rational points.
Let λ e ̂  be rational. Then λ is rational on log A, so a multiple of
λ is integral on log A. The property of being integral on log A is
clearly invariant by Ad* Γ, and so Ad* Γ(X) must be discrete. This
implies by the argument we have used so often that &λj&λ Π Γ is
compact.

To produce &, we will produce ^ £ ^ and a representation
v e Λ€ such that ^£ is normalized by ^ , v is fixed under Ad* ^ ,
^/ί\^£ Π J is compact, ^ Π ^ " £ ^ f and ^ ^ and v satisfy (i), (iii),
and (v) of the proposition. Then putting & — &λ-^€, we see this
& will satisfy the proposition.

We will suppose that we cannot find ^£ such that v is one-
dimensional and proceed to the general case. Suppose we can find
subalgebras Mi9 i = 1, 2, 3, of JV" satisfying the following properties:

(a) the Mt are Ad ̂ -invariant,
(b) the Mi are Q-rational (e.g., spanned by their Q-rational
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elements);
(c) M3 contains "maximal subordinate" subalgebras to λ, in the

sense of Kirillov [21];
(d) M1 and M2 are ideals in ikf3;
(e) M, = M2 n ker λ and M1 Φ M2;
(f) MJM1 is a Heisenberg Lie algebra.
Then let Λ? be analytic subgroup of ^V corresponding to Λf8, ^ '

the subgroup corresponding to Mlf and v the representation of ^€
corresponding to the Ad* ^ orbit of λ restricted to Ma. Then our
property (a) guarantees ^£ is normalized by ^ , and our choice
of v will be Ad* ^-invariant. Property (b) guarantees part of
(i) and part of (v) of the proposition. Property (c) guarantees (iii)
of the proposition by Kirillov [21] and property (/) guarantees the
rest of (v) of the proposition. Thus finding such Λf< will establish
the proposition.

We show the existence of the Mt by induction on the dimension
of N, and there are two cases to consider. Let Z be the intersection
of the kernel of λ with the center of N. The subspace Z is rational,
since λ is rational and the center of N is rational. Also, Z is Ad &λ-
invariant. The first case occurs when Z Φ {0}. Then we consider
N' = N/Z. Clearly the action of Ad ^ factors to JV' and Z is
Ad ^-invariant. Also λ factors to N' since Z £ ker λ. Then if
Mi, i = 1, 2, 3 are subalgebras of N' satisfying properties (a) through
(/), it is easy to check that if Mi9 i — 1, 2, 3 are the inverse images
in N of the M'if then the Mt also satisfy properties (a) through (/).
Hence in this case, by the inductive hypothesis, we are done.

In the second case, Z = {0}. Then %*(N), the center of N, is
one-dimensional, and λ is nontrivial on %T(N). Let %T\N) be the
second center of N - that is, the inverse image in N of ^(N/^(N)).
Then %T\N) is rational. Let N{2) here denote the centralizer of

Clearly %T\N) and N{2) are invariant by Ad &λ. Also Ad ( ^ Π y
must act trivially on %*\N), since it fixes λ, so that the Lie algebra
of ^λf]^Γ is contained in N{2). Let i\Γ' = %T2{N) + Ni2). Then
either N' is a proper subalgebra of N, or N is already Heisenberg
(or one-dimensional, which case we have agreed to ignore). In either
case we can clearly find subalgebras AT/, i — 1, 2, 3 of JV' which satisfy
properties (a) through (/) with respect to the restriction of λ to N'.
But since it is easy to check that dimiV— άimNr = dim^(^2(N))l— =
dim(^2(iV) Π N{2)) — 1, it follows that property (c), the only property
that might fail when the M\ are considered as subalgebras of JV
rather than N', persists, so the ΛfJ work also for λ and N. This
proves the proposition.

Proposition 2.3 shows how far things can be reduced in the



430 ROGER E. HOWE

general situation but it is of interest also to know conditions which
guarantee that we may choose v one-dimensional Perhaps the most
satisfactory general class of groups for which we may always choose
v one-dimensional are those groups S^ which are the intersection of
the kernels of the rational characters (in the sense of algebraic groups)
of the real points of an algebraic group &" over Q, obtained by
reduction of scalars from a split group Sf" over some number field.
Such groups will come in for special attention in part four.

By Propositions 2.1 and 2.3, we may consider that we have
reduced the general multiplicity computation to the special case when
the nilradical ^V of Sf is Heisenberg, and A d ^ acts trivially on
%>{*Ar)9 the center of ΛΊ Indeed, with Theorem 2.1, we have done
slightly better than that. We will finish part two by making explicit
precisely how much better we have done. Keeping Theorem 2.1 in
mind, we will say £f is minimal if

(a) <yΓ is Heisenberg;
(b) A d ^ acts trivially on ^ ( ^ T ) ί
(c) given σ^L\^V\A), nontrivial on %'{:^/K)9 then σ extends

to Sf; and
(d) there is no proper connected subgroup ^€ of Λ~ such that

^£\^ Π Δ is compact, ^ is normal in ^ and a can be induced
from

Clearly we have reduced to the case of minimal <$? Now let us
translate the conditions of minimality into conditions on the structure
of S^ independent of σ.

Let S? be minimal. Let %*(N) be the center of the Lie algebra
N or ^ Let V = N/3T(N). The action Ad &> of £f on N factors
to an action Ad Sf on V, and Λ" acts trivially on V, so that Ad Sf
on V is actually the action of the abelian group ^l^Yl As is well-
known [19], the commutator on N factors to V and there defines a
symplectic form, which we will denote by < , >. Since A d ^ acts
by automorphisms on N, and acts trivially on %'{N)9 the action
A d ^ on V preserves < , >. The image in V of log Δ is a lattice
L, and V has the structure of vector space over Q, with L span-
ning (over Q) the Q-rational points of V. The action of AdΓ on
V of course preserves L.

PROPOSITION 2.4. Let S^ be minimal. Then
( i ) For any Ad £f-invariant rational subspace U of V, the

restriction of < , ) to U is nondegenerate. Equivalently, there are
no Ad S^'-invariant rational subspaces of V which are isotropic with
respect to < , ).

(ii) Ad 6^ acts semisimply on V.
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(iii) &" is isomorphic to a semidirect product S^f

where JίΓ is abelian and ^~\J7~ f)Γ is compact, and &" = ^/ker σ.

We will prove (i), (ii), and (iii) in that order. Recall two simple
facts from the representation theory of the Heisenberg groups [24].
If ^ £ ^V then σ can be induced from a representation of ^ if
and only if ^{^T) Q ^ and dim «̂ T - dim ^ = dim %r{y#) -
dim ^(^^")( = dim JΓ(^f) — 1). This is the same as saying ^£ is
the centralizer in <yΓ of %f(y<&). From these facts, we conclude that
the condition (d) in the definition of minimality is equivalent to saying
there is contained in ^y no normal abelian connected subgroup ^
of Sf such that ^£l^£ π Δ is compact.

Let Λ€ Q ^V contain JΓ(^~), and let U be the image of the
Lie algebra of M in V. The following statements are easily checked.
The condition that ^'\^€ Π Δ be compact is equivalent to the state-
ment that U/UΓiL be compact, that is, that U be rational. The
condition that ^/ί be normal becomes the condition that Z7 be Ad Sf-
invariant. Finally, the condition that ^/ί be abelian is equivalent
to the condition that U be isotropic with respect to the form < , >.
These conditions clearly imply the second statement of (i). To see
both statements of (i) are equivalent, let U £ V be rational and
Ad ^-invariant and suppose { , ) is degenerate on U. Then if UΊ is
the radical of < , > on U, it is obvious that Ux is rational, Ad £f-
invariant and isotropic with respect to <, > and thus cannot exist.
This finishes (i).

Now we prove (ii). Let VQ be the Q-rational points of V. Then
AdΓ acts on VQ preserving < , >. The group of all linear transfor-
mations of VQ preserving <, > is obviously an algebraic group. By
a standard theorem in algebraic groups [8], given ΎeΓ, we may
write Ad Ύ = s u where s is a semisimple and u is an unipotent
transformation of VQ. Moreover s and u both preserve < , > and have
the property that they commute with any transformation the com-
mutes with Ad 7. If Ad Γ does not act semisimply, then for some
7, u is not the identity. For this 7, let YQ be the kernel of 1 — u
and let Y'Q be the image of 1 — u. Then YQ and Y'Q are proper non-
trivial subspaces of VQ and they have nontrivial intersection YQ since
1 — u is nilpotent. Let Y" be the real span of Yq. Then Y" is
clearly rational. It will also be Ad ^-invariant, since A d ^ will
commute with 1 — u. Moreover Y" will be isotropic with respect to
< , >. For if x, y e Γ", then x = (1 - u)x' for xf e V. Hence

<>, y) = <(1 - u)x', y) = (xf, y) - <u(x'), y)

- <»', y) - <x', vr\yy> = <x', (1 - u^y) = 0
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since u(y) = y. Therefore Y" cannot exist by (i). Hence Ad Γ acts
semisimply on VQ. Then, since S^/Γ is compact, Ad S^ acts semisimply
on V.

Statements (i) and (ii) of the proposition have essentially been
consequences of condition (d) of minimality. Statement (iii) depends
on condition (c). Without worries about disconnectedness or rationality,
statement (iii) is a very standard result, essentially amounting to the
existence of a Cartan subalgebra. In our present situation, the basic
argument stays unchanged, except we use the structure of ^4^ but
details must be followed more carefully.

First we will show that we can write S? — £ίf* %Λrf with £ίf
and ^ ' £ *sK having the following properties:

(a) ^ ' A ^ T ' Π Δ and Sίf\Sίf Π Γ are compact;
(b) <yΓr is normal in 6^\
(c) if ^ T " = £ίf Π Λ", then Ad (Γ Π Sίf) acts trivially on

To do this, take ΎeΓ and consider Ad7 acting on V. Write
V= Viφ V2, where Ad 7 is the identity on Vι and Ad 7—1 is nonsingular
on V2. This is possible since Ad 7 is semisimple. Since 7 6 Γ, we
see VΊ and V2 are rational subspaces of V. For i = 1, 2, let Λl denote
the subgroups of Λ* corresponding to the inverse images of V% in
N. Both ^i are normal in S^. Let 3ίfγ be the inverse image in
Λ" of the centralizer of the image of 7 in S^l^yi. Then §ίfx is a
closed subgroup of S? and < ^ Π ̂ >^ = ̂ K by construction. Also

is compact by our usual argument, since 7 e Γ . I claim
^ 2 . In fact, if s 6 ̂  then (s, 7) = STS"^" 1 6 ̂ 7 and

we may look at v, the image of (s, 7) in V. (We may identify V
with tSf/^i^V) by the exponential map, which in this situation is
a group isomorphism.) Write v = vλ + v2 with ^ 6 Vt. Then s 6 ^
if and only if v2 = 0. Let ̂  e «^ς, and let ̂  be the image of n in
V. Then (we, 7) = n(s, Ί)n~\n9 7), and the image of (ns, 7) in V is
1; + (1 — Ad Ύ)u. Since (1 — Ad 7) is invertible on V2f we may arrange
that (Ad7 — l)n = v2, in which case ns = he3ίfγ. Thus s = n^h and
the claim is established.

If we rename ^ = Sζ Λl = ̂ 7 and Γ Π P^I = Γ, we may repeat
the above reduction, until we arrive at a situation where Ad Γ acts
trivially on V. We note that minimality is preserved under this
reduction (that is J^t must be minimal) so ̂ 7 and successive subgroups
selected by this process will all be Heisenberg groups, unless they
reduced to %'{^ir)J at which point we are done. Thus we have
accomplished the desired decompositions £f = Sίf ^<^'. If in this
decomposition Sίf n Λ~ = %(^V) or if Ad JT7 is trivial on

n
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then we are ready for the final step. Otherwise we must make
another reduction. So assume Sίf Π ^V is Heisenberg, and Ad Sίf
is nontrivial on (2ff Π ̂ r ) / ^ ( ^ T ) . Rename 2(f = Sf, and ^ T Π 3tf =
^ 7 and Γ Π ̂ ^ = A Then we see our new Sf is again minimal,
and in addition, Ad Γ acts trivially on ^K/^i^A^) = V.

Let ^ t n o w be the kernel of the action of A d ^ on V. Then
^ is normal in £f, and ^V £ ^ and Γ £ ^ , so Jgt/Γ and ^/<%t
are compact. We take note of another easily proved fact about the
Heisenberg groups: any automorphism of ^V which acts trivially
on « ^ 7 J T M O is inner. It follows that we may write ^gt = Λ'-C,
where C denotes the centralizer of ^P~ in ^{. Of course C Π yίr =
^ 0 > Ό . Moreover, since the centralizer of <_κ̂  is the same as the
centralizer of Δ = - ^ Π Γ, we see that C is compact modulo its
intersection with Γ. It is clear also that G{yp^) is normal in S^.

Now we repeat the first reduction, but with s e ^ not in Γ.
Consider Ad s acting on V and write V = V1 0 y2 where Ad s is the
identity on Vx and 1-Ad s is nonsingular on V2. The Vt may not be
rational, but this need not concern us. Since they are composed of
distinct eigenspaces for Ads, they are orthogonal with respect to
< , >, so the restriction of < , > to each of them is nondegenerate.
Let ^Ϋ1 be the connected subgroups of *Λ^ corresponding to the
inverse images of the Vi in N. Let & be the subgroup which is
the inverse image in .ζf of the centralizer of the image of s in

Then by the same argument as above, ,9* =& ,yyi. I claim
Indeed, C is normal so (c, s) e C if c e C. But always (c, s) e ^K*

since S^l^Y* is abelian. Hence fesJeCn^^^ί^f) s o c does
indeed centralize s modulo .yl/[. By picking a succession of s, we see
we may arrive at a decomposition S^ — &' yK*" where <%}' and
^T" Q yγ~ are as follows. Both ^V" and %Arf = &' Π ^T are
Heisenberg or equal to ^{^V), and both are normal in £f. Moreover
C ^ ^ ' and Ad.^ ' acts trivially on ^ ' / ^ ( ^ ) . The same reasoning
that produced C now shows that &' — C-^K' where C is the cen-
tralizer of Λ~' in &'. Then it follows that ^ = C ^ ^ and

Of course C £ C . On the other hand, C'/C^C
is compact. Since ^ t / Γ is compact, we conclude C'/C'ΓiΓ is

compact. Hence if _^~' = C, then ^ " ' has the properties that Sf —
^"'.^// and ^Ί^' Π Γ is compact, and jT~' n ^ = ^ ( ^ T ) .

To complete the proof of (iii) and finish the proposition we want
to find ^ £ ^ " ' such that . f / y f l Γ is compact, ^/kert f is abelian,
jT~ Π %{^T) £ ker σ and ^ " ' = j ^ ~ ; T ( ^ ) . If we show ^'/kertf
abelian, then it is quite a standard matter to find such a ^ 7 On
the other hand, if ^~'/keτσ is nonabelian, it is impossible, because
the commutator group of ^ " ' lies inside ^ ( ^ T ) , since ^~'/%r(<yΓ) ^

is abelian. Hence let us show j^'/kβr ^ is abelian. To do this,



434 ROGER E. HOWE

we finally invoke condition (c) of minimality. Notice that up to this
time we have depended entirely on structure theory for Heisenberg
groups and (c) has played no part. It is here that it enters. Indeed,
condition (c) requires that we be able to extend to &* a representation
σ of Λ] o being nontrivial on %{^)\ that is, the Mackey obstruc-
tion of extension of σ vanishes. It is not hard to compute this
obstruction, and this has been done in [5] and [10], where it has
been shown that it essentially is equal to the commutator form from
( j T 7 ; r ( ^ ) ) x ( ^ V ^ ( ^ r ) ) to %r(^Γ)/keτσ. In particular if the
Mackey obstruction vanishes, ^ ' / k e r σ is abelian. This completes
Proposition 2.4.

We have now reduced the problem of computing multiplicities
for general S^/Γ to the case when Sf is of the form specified by
Proposition 2.4. In part 3 we will consider the multiplicity problem
for such &*.
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