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A SCHEME FOR APPROXIMATING BOUNDED
ANALYTIC FUNCTIONS ON CERTAIN

SUBSETS OF THE UNIT DISC

A. STRAY

We denote by H°° the space of all bounded analytic
functions in the unit disc D = {z: \z\ > 1}. We consider a
relatively closed subset S of Ώ with the following property:
If / e ί Γ 0 and its restriction f\s to S is uniformly continuous,
there exists a bounded sequence of polynomials {pn} such that

( i ) Pn^f uniformly on compact subsets of D.
(ii) pn~>/uniformly on S.

A set S with this property, is called a Mergelyan set for H°°.
The object of this paper is to give a new and constructive
proof of the following result:

THEOREM. Let S be a relatively closed subset of D.
Assume that the clusterpoints of S on the unit circle T —
{z: \z\ = 1} which are not in the nontangential closure of S9

has zero linear measure. Then S is a Mergelyan set for H°°.

A point 7] G T is said to be in the nontangential closure of S
if η is a limit point of Sί lΰ(λ, η) for some λ > 0 where D(λ, η) =
{z e D: \z - η\ < λ(l - \z\)}.

The theorem above solves a problem raised by J. Detraz [1].
(She also proved the converse of the theorem.)

The first proof of it (due to A. M. Davie) was based on func-
tional analysis, and is rather short and elegant. See [5] for details.
But from a constructive point of view, the proof is not very satis-
factory. So the main reason for introducing this new and longer
proof, is that it gives a rather explicit construction of the approxi-
mating polynomials {pj~=1.

This theorem is part of a more general problem in simultaneous
approximation introduced to me by Professor L. Rubel. (See [4],
[51, and [6].)

Proof of the theorem* We denote by S2 the extended complex
plane. If BeS2, and g is a function defined on B, then we define
||0||B = sup{|j(s)|, zeB}. Various absolute constants will be denoted
by A19 A2, •••.

Let/and S be as in the above theorem. We assume \\f\\D <; 1.
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If Ed T is measurable, \E\ denotes its linear measure. Let D(X, p)
be as above. By a well known result of Patou, ([3], page 34) there
is a set F c Γ, with \F\ = 0, such that

(1) lim
-*P

λ

exists for all p e T\F and all λ > 0. Let E denote the limitpoints
of S on T. By (1) and our hypothesis on S, the continuous exten-
sion of / to S U E, coincides with / * almost everywhere on E.
(With respect to linear measure.)

By approximating as in § 1 in [7], we can also assume that / *
is continuous on T\E. But then / * (considered as a function on T)
is continuous on T\(E\B), where B denotes the interior of E relative
to T.

The approximation of / is now done in two steps. If \E\B\ = 0,
the first step can be omitted. So we assume \E\B\ > 0.

The idea is to modify Vitushkin's scheme for rational approxima-
tion (see [2], page 210) to be suitable for our problem. We shall
construct functions fn, n = 1, 2, such that g = f — ΣΓ/ n has the
following two properties if ε > 0 is given in advance:

(2) \\f-g\\8 < e .
(3) g is holomorphic in D and continuous in D U T\E0, where

EoaE\B is compact and \E0\ = 0. Also \\g\\D ^ A,.

Before we construct {/J«=1, let us indicate the second and last
step in the proof. Denote by A(D), all uniformly continuous analytic
functions in D. We choose functions a and b from A(D) such that
there is a neighborhood V of ϋ?0 in C with the following property

( 4 )

\a-f\<e 2-1 on Sf)V.

6 = 0 on Eo and if z e S, then

Hz) - f(z)\ > 2e - 1 1 ~ b(z)\ < ε .

The construction of a and 6 can be done as in [3], page 80. We
partion Eύ into finitely many subsets El9 , En with pairwise disjoint
neighborhoods Wlf , Wn9 such that there are complex numbers
λ, 1 ^ j ^ n with | / — λ, | < ε2~2 on each Eά. For each j we argue
as on page 80 in [3] and find b5 e A(D) with b5 = 0 on E5 and
Re bj < 0 on D\Ed. Then we define



A SCHEME FOR APPROXIMATING BOUNDED ANALYTIC FUNCTIONS 253

a = Σ
1

where N is a sufficiently large number. Then \a — f\ < ε2-1 in some
neighborhood F of Eo, and we ehoose b e A{D) with 6 = 0 on E09

\\b\\D ̂  1 and |1 - b\ < ε on D\V.

Consider now h = b(g — a) + a. Then h e A(D) and since g ~ h =
(g — α)(l — 6), we have from (2), (3), and (4) above that \\g — h\\s <
max {(AL + 2)ε, 5ε}. But then | |/— Λ||s < A2ε, and we also have
\\h\\D ^ A3. Since heA(D), this function is easy to approximate
uniformly on D by polynomials, and this completes the second step.

We turn to the construction of {/„}.
Let ε > 0 be given. We choose pairwise disjoint discs Δn —

Δ(wn, δΛ), n = 1, 2, and constants t, M, and λ with the following
properties

( 5 ) wne E\B and there are numbers ηn with δn < ηn < 2δn < t
such that [(4>%, ηn)\A{wn9 δn)) Π T] c T\(E\B).

( 6 ) JJSr\(J? U ( U » 4»))l = 0.
( 7 ) sup (1/(2;) — f('p)\, z, pe Δ(wn, 2δΛ) Π -D(λ, ^;w)} < ε.

(8) sup {\f(z) - f(p)\, z,peS, \z ~ p\ ^ Mt) < ε.

More details about how t, λ, and M depend on ε, will be given below.
The important thing is that they are given in advance, before {Δk}
is constructed. The existence of {Δk} satisfying (5)-(8) follows from
Fatou's result (1) about nontangential limits mentioned above, and
the fact that E\B is totally disconnected. To obtain (8) we use that
f\s is uniformly continuous.

We now choose numbers rn with δn < rn < ηnf and smooth func-
tions φn with support in Δ(wn, r%) such that we also have for all n

0 S φn ^ 1 , Ψn Ξ 1 near An, and

(9)

We extend / to C by the equation f(z) = f(ljz). Define functions
Gn, n = 1, 2, by

Gn(p) = TφJ(p) = —

(*)

π JJ z — p d

For basic properties of the ^-operator we refer to [2], page
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30. These properties gives that Gn is analytic in D and continuous
wherever / is. Also f — Gn is analytic near An Π (E\B). Since
ll/llc ^ 1, (9) shows that

(10) \\Gn\\c^A3.

We also claim that the constants t, M, and λ can be chosen so
that

(11) | | G J U < Λ e .

To see this, note first that since Gn is analytic in 'S\4(wn,'t) and
G>(°°) =. 0, an easy application of Schwartz lemma shows that
\Gn(ρ)\ < A(M - I)" 1 < ε if Mis sufficiently large, and \ρ - wn\ > Mt.
This does not contradict (8) if t is sufficiently small. If we use
(8), we see that if peS and \p — wn\ ^ Mt, then we can estimate
the first integral in (*) so that

(12) \Gn(p)\ ^ Aδε + K(X)

where K(X) is a constant tending to zero if λ —> oo. It is easy to
see that we can choose λ depending on ε, but not on n, such that
K(X) < e. (The constant K(X) comes from integration over those
z e 4(wn, rn) where \f(z) - f(p)\ > 2ε).

We can now write fn as

fn = Gn-Hn

where Hn is a rational function with poles only in Δ(w%f δn)\D such
that

\\Hn\\s ̂  \\Gn\\s ^ εAQ

II-H.IU ^ HGJUίS A7

\\Hn - G

The existence of {Hn} is not quite trivial. If we map
{S\Δ(wn, rn)) U D conformally onto ΰ , SU (S2\A(wn, ηn)) is mapped to
a Farrel set (see [5] for definition) in D, and the existence of Hn,
n = 1, 2, , now follows from the main result in [5]. This completes
the proof. In fact, the set Eo in (3) above, is simply (T\(BV (U» 40)

Concluding remark* It is easy to verify that this proof applies
to more general planar domains.
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