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TRANSCENDENTAL CONSTANTS OVER THE
COEFFICIENT FIELDS IN DIFFERENTIAL

ELLIPTIC FUNCTION FIELDS

KEIJI NISHIOKA

Let A; be a differential field of characteristic 0, and Ω
be a universal extension of k. Suppose that the field of
constants k0 of k is algebraically closed. Consider the follow-
ing differential polynomial of the first order over & in a
single indeterminate y:

T(y) = ( y ' V - λ S ( y ; * ) λ e k ; λ Φ O ;

here

S(y; K) = y(l - y)(l - κzy)

κek; ic2Φ 0,1; *' = 0 .

Take a generic point z of the general solution of T. Then,
z is transcendental over k, and k{z, zr) is called a differential
elliptic function field.

We prove the following:
THEOREM. Let k(z, zf) be a differential elliptic function

field over k. Then, there exists a finitely generated differen-
tial extension field &* of k such that the following three
conditions are satisfied:

( i ) z is transcendental over k*;
(ii) the field of constants of fc* is the same as ko;
(in) there exists an element ζ of Ω such that k*(z, zf) =

**(C, ζθ and (CO2 = 4S(ζ; *} with the same modulus as K.

Matsuda [3] gave an example of a differential elliptic function
field such that k = k and we can not take k as &* (cf. [5]).

REMARK. Matsuda [3] gave a differential algebraic proof of the
following theorem essentially due to Poincare: Suppose that a dif-
ferential algebraic function field K over an algebraically closed
coefficient field k is free from parametric singularities. Then, K is
a differential elliptic function field over k if the genus of K is 1.

The author wishes to express his sincere gratitude to Dr. M.
Matsuda who presented this problem and gave kind advices.

l Two lemmas* The following theorem is due to Kolchin [1]:

LEMMA 1. Let Σ be a perfect differential ideal in the differenti-
al polynomial algebra k{y), and let J be a differential polynomial
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in k{y} which is not in Σ. Then, Σ has a zero η in Ω such that
J(η) Φ 0 and the field of constants of k(τj} is k0.

We shall prove the following:

LEMMA 2. Let F be an element of k{y] of the first order and
let ζ be a zero of F which is transcendental over k. Suppose that
F is algebraically irreducible over the algebraic closure k of k, and
that the field of constants of k(ξ} is kQ. Then, there exists a non-
singular zero η of F such that ζ is transcendental over k(τ}} and
the field of constants of kζjj} is kQ.

Proof. Let η be a generic point of the general solution of F
over k(ζ). Then, η g k(ξ) and ηίϊc. Hence, ξ $ k<7]). By Gourin's
theorem (cf. [4, p. 49]) both ξ and η are generic points of the general
solution of F over k. Hence, there exists an isomorphism of k(ζ}
onto k(rj} over k. Therefore, the field of constants of fc<^> is kQ.

2* Proof of Theorem* We shall prove that there exists a non-
singular zero w of T such that z is transcendental over k(w} and
the field of constants of k(w} is k0. First we shall assume that the
field of constants of k(z} contains properly k0. Let Σ be the prime
differential ideal in k{y} associated with the general solution of T.
Then, the separant 2yr of T does not belong to Σ. By Lemma 1,
there exists a nonsingular zero w of T such that the field of constants
of kζw} is k0. Suppose that z is algebraic over k(w}. Then, the
field of constants of k(z} is contained in k0, since k(z) Q k(w). This
contradicts our assumption. Hence, z is transcendental over k(w).
Secondly, let us assume that the field of constants of k(z) is the
same as k0. Then, there exists a nonsingular zero w of T such that
the field of constants of k(w) is k0 and z is transcedental over k(w)
by Lemma 2, since T is algebraically irreducible over k.

We shall denote k(w) by fc1# Let us define an element a of
kx(z) by

a = {B(z, w) - 2X-1w'z'}/A(z, w)2 ,

where

lf y2) = 1 - fc

B(ylt y2) =

The polynomials A, B and S satisfy a relation:

(1) B(y19 ytγ = 4S(y1)S(»I) + fa - ytfAfa, y2)
2
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which is verified in the following:

B(yl9 y2)
2 -

By the definition of a

{A(z, w)2a - £(z, w)}2 - A\'\wJ(zfy = 0 .

Since w and 0 are solutions of Γ = 0 and (1), the left hand side is

{A(z, wfa - B(a, w)f - 4S(w)S(z)

- A(z, w)4a2 - 2A(z, w)2B(z, w)a + B(z, wf - AS(w)S(z)

= A{z, w)4a2 - 2A(z, w)2B(z, w)a + {z - w)2A(z, wf

= A(z, w)2{A{z, w)2a2 ~ 2J5(2;, w)a + (z - w)2} .

Since A(z, w) Φ 0, we have an algebraic relation over kt between a
and z:

( 2 ) A(z, w)V - 2B(z, w)a + (0 - w)2 = 0 .

The left hand side of (2) is

V - 2z(l - w)(l - fc2w) + w(l - «)(1 - fc2z)}a

a\κ4z2w2 - 2iί2zw + 1)

- 2a[tc2wz2 + { r V - 2(1 + Λ;2)W + 1}» + w]

+ z2 - 2zw + w2

z\fc4a2w2 - 2yc2α^ + 1)

- 2z[£2wα2 + {Λ:W - 2(1 + Λ:2)^ + l}α + w]

+ a2 — 2wα + iϋ2 .

Hence we have a relation equivalent to (2):

(3 ) A(α, w)V - 2JS(α, w)z + (α - w)2 = 0 .

Since 2 is transcendental over &„ α is transcendental over &! and
satisfies [fcx(α, «): &!(«)] = 2. For the discriminant of (2) is 16S(z)S(w)
by (1). We have k^z) — kL(a, z). We shall prove that a is a constant
(cf. [2, p. 805]). Let us take an element a of k such that α2 = 4/λ
and define a new differentiation signed by the dot in kx{ay z) by
* = ax'. Then,
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( 4) a = {B(z, w) - 2~1wz}/A(z, w)2 ,

(zf = 4S(s) , (w)2 = AS(w) .

In what follows, we denote A(z, w) and B(z, w) by A and i? respec-
tively for simplicity. Differentiating both sides of (wf = £S(w), we
have 2ww = ASww and w = 2SW since w Φ 0. Hence,

- (1 + Λ:2)}

- {3/cW - 2(1 + κ2)w + 1}

- -2K2w2 + 2/c2ws

= 2Λ: 2 ^(2; — w) .

On the other hand

2AZB - (^)2AW

= - 2 Λ : 2 ^ J S + 4:K2zw(l - w)(l - κ2w)

= 2κ2w{2z(l - w)(l - κ2w) - B)

= 2/c2w{z(l -

Therefore

A(JS, - ib/2) = 2AZB - (w)2Aw = 2/c2w(z - w)A .

Similarly we have

A(BW - 5/2) = 2AWJ? - (z)2Az = 2/c2^(^

From the above equalities and (4)

- w/2) - 2AZ5 + (w)2Aw)

- έ/2) - 2AWB + (έ)2AJ

= 0 .

Hence, ά = 0, and a! — 0.
Let k2 denote k^a) and 6 be an element of k2(z) defined by

b =

Then, we have 62 = S(a). In fact from (1) and (3) we have

{A(a, w)2z - B{a, w)}2 = B(a, w)2 - (a - w)2A(a, w)2

and (aw')2 = 4S(w) since w is a solution of T — 0. Hence, Λ
fc2(α, 6) because [k2(z): k2(a)] — [k2(a, 6): k2(a)] = 2 and bek2(z}.
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By Lemma 1, there exists a nonsingular solution v of (y'f = iS(y)
such that the field of constants of k2(v) is k0. Since a is a constant,

trans, deg k*(a)/k* = trans, deg ko(a)/ko = 1,

where fc* = &2< )̂ (ef [2, p. 767]). Hence, α is transcendental over
&*. Therefore, z is transcendental over &* by (3).

Let us define an element ζ of k*(z) by

ζ - {£(α, v) + W}/A(a, vf .

Matsuda [3] proved that ζ is a solution of (y'f = 4S(j/) and
fc*(C» C) = k*(a, b): We may take elements sif ci9 dt (1 ̂  ΐ ^ 3) of Ω
such that

,
oί = 1 — v , di = 1 — fc2v , 8[ = c^

= a , c\ — 1 — a , dξ = 1 — fc2a , b = s2c2d2

We shall prove that

\ o ) o 3 — x o 3 , G&3 — x Λ, ί>3 , έ>3 — o 3 α 3 .

In fact by the definitions

c[ = — s A , d[ = — A;8«A , eg = dί = 0

Since

we have

(1 - sϊ)(l

Hence, c| = 1 — sj. Similarly, we have cίl = 1 — fc2sl, since

1 /r2<?2<}2 — rl% 4 - A 2 « 2 / » 2 — /7 2 _U Λ 2 « 2 λ» 2

We have «J = csdz according to the following:

— rv oίb2) 03

= (1 — ̂ slslXs.c^ + s^dj
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— (1 — tfstsDXs&dz + 82

= (1 — ιc2s\s2

2)(s[c2d2 +'8ic[dί

+ 2fc2s1s[sl(s1c2d2 + s 2 Mi)

= (1 — ^stslXc&d^ — s^

+ 2fC2s1s
2

2c1d1(s1c2d2

slsldl + tfslsld + 2κ2s\s\c1c2d1d2 + 2tc2sίslc2

1d
2

= c&d^ + n^slslc^d^

here

l2 J- fT2S>2 if2Q2Q2/V2

 r 4 Q 2 Q 2 ^ 2^ T ί 6i tV Oib2CUi IV OιO20ι

= did - Λϊβϊ - κ2slcl)

+ fc2c2d - ^2s?s2 - s\dΐ)

= ώ2{l - Λ:2S2(S2 + cϊ)} + Λ:2C2{1 - s\{κ,2s\

Hence,

/-* £ 2 2\2 '

and we have s'3 = c3d3.
By the definition of ζ we have irreducible equations over k*:

A(a, v)%2 - 2B(a, v) + (a - v)2 - 0 ,

)α + (ζ - i;)f = 0 ,

as we' get (2) and (3). Hence, k*(ζf ζ')=fc*(α, b)=k*(z, z'). For we have
[fc*(ζ, ζ'): A?*(C)] = [fc*(α, C): fc*(C)] = [&*(<*, C): fc*(α)] = [fc*(α, 6): fc*(α)] = 2
by above equalities.

We remark that the adopting of the s, c and d gives an exposi-
tory verification of the identity (ζ')2 — 4S(ζ) proved by Matsuda [3].
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