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MOMENT SEQUENCES OBTAINED
FROM RESTRICTED POWERS

RODNEY NILLSEN

Let W ; = 1 be an increasing divergent sequence of posi-
tive numbers. Then we are interested in characterising
those sequences (αj~=χ for which <xn = I xmnf(x)dx for

n = 1,2, and some fe L2([0,1)). It is shown that if {mn)Z^
diverges sufficiently rapidly, then Σn=i k J 2 < °° if and only

if an = Vm7 I xmnf(χ)dx for w = 1,2, and some / e L2([0,1)).
J o

It is also shown that if (mn)~=! is a lacunary sequence of
integers then the Hubert subspace of L2([0,l)) generated by
the functions xmn (n = l92, •••) has a reproducing kernel.

1* Introduction* Let C([0, 1]) denote all the complex valued
continuous functions on [0,1]. If a ^ 0 let ea be the function in
C([0,1]) given by x —• xa. Throughout the paper, S will be a given
sequence (mn)£U of positive real numbers so that 0 <; mt < m2 <
m3 < and limn-co mn = oo. The subspace of C([0, 1]) obtained by
taking the uniform closure of the vector space generated by
{em.: i = 1, 2, •} will be denoted by AΓ(S).

A classical result due to Mϋntz and Szasz (see, for example, [2]
p. 272) says that if mx = 0, M(S) = C([0, 1]) if and only if
XΓ=2 V

mi — °° I n the case where Σ£U l/w< < oo it can be shown
that ea is not in M(S) unless a = mt for some i ([7], p. 305). It
follows from this, using the Hahn-Banach theorem, that if
Σ£=2 Vm% < °° a n ( i if i is given, then there is a measure μ so that
\ xmί dμ(x) — 0 iΐ i ^ j and I xmj dμ(x) Φ 0. Among the results of
Jo Jo

this paper, it is shown that if S satisfies a certain stronger condition
than Σil21/Wi < °°, the measure μ can be chosen to be absolutely
continuous with respect to Lebesgue measure and at the same time
be supported by [0, δ], where 3 > 0 is preassigned.

We also let U be the Hubert space of all square integrable
functions on [0, 1) and we denote by A(S) the subspace of U obtained
by taking the closure, in the U norm, of the vector space generated
by {em%: n = 1, 2, •}. Any function in Λf(S), if restricted to [0,1),
belongs to A(S). S = (m»)2U is said to be lacunary (or a Hadamard
set) if there is a > 1 so that mn+1 > amn, for n = 1, 2, 3, .
Lacunary sets are well known in complex analysis ([8], pp. 314-316)
and in harmonic analysis ([7], pp. 100-118). We show that if S is
lacunary then A(S) has a reproducing kernel.

Finally we shall be concerned with characterizing those sequences
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(ίOίU which are of the form an = \ f(x)xmndx for w = 1, 2, , for
Jo

some feL*. As noted in [3], vol. II, pp. 139-140, any such sequence
(*OSU belongs to /*, the Hubert space of all square summable se-
quences on the positive integers. It is shown that, regardless of
what S is, it is never possible to obtain all of s* simply by taking
different functions / in L2. However it is possible to obtain all of
/2 in this way if we consider instead sequences (αn)2U of the form
an = τ/m7 \ ^mnf(x)dxf provided the sequence S diverges rapidly

Jo

enough.
The basic idea underlying a number of our results is that

provided there are "sufficiently large" gaps between mt and mi+1 for
i = 1, 2, , then the functions {emi: i = 1, 2, •} are "sufficiently
orthogonal" for them to be treated (in a certain sense) as orthogonal
functions.

2* Properties of A(S). In L2 the Gram-Schmidt process can be
applied to the functions emι, emz, to obtain an orthonormal sequence
Pit P» " ' Of course we can write pn = Σ?=i &•&»,- o r

(2.1) pn{x) = Σ <*>njXmj f for 0 ^ ^ < 1 and n = 1, 2, 3, .
i=i

If the inner product in L2(0,1) is denoted by ( , •) then also we
have

(2.2) (p%, pm) = 0 if m ^ ^ , and 1, if m = n .

Then functions in -4.(5) are precisely those functions of the form
2«=i^ΛpΛ for some sequence (α,); s l such that Σ?=i W 2 < °°> where
the series is to be interpreted in terms of the U norm. We shall
assume that the Gram-Schmidt process has been carried out so that
ann > 0 for all n, in which case the constants an3 in (2.1) are uniquely
determined. If S is a sequence of integers, it should be noted that
the pn are polynomials and can be regarded as being defined on
D = {λ: |λ| < 1}.

LEMMA 2.1.

(2.3) an = τ/2m1 + 1 and a21 = -V2m2 + l | " 2 m i + 1 Ί .
Lm2 — mιJ

If n > 2 and j < n we have

(2.4) α B 3 = ( - l
Λ - w 3 J<=i.

If n> 1 we have
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(2.5) ann =

Proo/. If /,, ft, , /. e L2([0,1)), let </(/,, / „ . . . , / J be the deter-
minant of ((/<,/y))î <,ŷ » (the Gramian determinant, see [2], p. 177).
Then by [2], p. 183 we have

(2.6)

Pn =
Vg{emi,em2, ,βmn)flr(βWl,βm2, ,emn^)

emi, emi) (em%, emi)

Since (βw<, βmj.) = l/(w4 + m^ + 1), it is possible to use (2.6) to find
the anj and we find that (2.3), (2.4), and (2.5) are true. The calcula-
tion is tedious but straight forward and is similar to one used in
one proof of the Mϋntz-Szasz theorem (see [2], pp. 270-271).

LEMMA 2.2. S is lacunary if and only if there is a number C
so that for all n ^ 2,

(2.7) ^ C , when j ^ n .

Proof. Each term of the product in (2.7) is greater than 1, so
that if (2.7) holds, C > 1. In this case, for n > 1 we will have
(mn + m%_1 + 1) ̂  C(mn - mn^) so that mn ^ (C + 1)/(C - l)mn_ί9

and S must be lacunary.
Conversely, if S is lacunary and m1 > 0, choose a > 1 so that

m i+1 > ami for ί = 1, 2, . Then if ί > j we have

(2.8) m, > «*-%,. .

If x ^ 0 then 1 + x ^ ex so that if j <: ̂  — 1,

(̂  ») ._ii i ———) ~ iJ^Λ

where

If j > 1, we also have

+ »/ + i) = ft1 (i +
(2.io) π
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where

Now 8j. = 2 Σ ( ) + ._Σi ( ) , by (2.9)

oo "1 oo •<

^ 2 J —7—. T + 2J 7-^Z7 7T f D y ^ oJ »

<2Σ .-1 . +Σ

<2.8) and (2.10) ,

i=i α { — 1 m L *=i α* — 1 "

These inequalities for sij% and tό are sufficient to deduce that (2.7)
holds if for C we take

If mx = 0 a similar argument suffices to deduce the conclusion.

THEOREM 2.3. Let S be lacunary, consist of integers and for
z1} z2eD let

(2.11) K(zlf z2) = Σ P.(«i)P («.)

Then the series in (2.11) converges absolutely and uniformly on
compact subsets of D x D. Also A(S) is a Hilbert space of analytic
functions on [0, 1) which has a reproducing kernel given by the
restriction of K to [0,1) x [0, 1).

Proof Let 0 ^ δ < 1 and consider pn(z) where z e D and \z\ < δ.
Let C be chosen so that (2.7) holds and use (2.1), (2.3), (2.4), and
(2.5) to obtain

\pM\ ̂
i=i mn —
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<C-

< -βU± (2m, + 1)5-*) ,

for some Co, since lim,,^ mn = °° .

Hence we have for all k,

(2.12) f lί>»(z)l2 ^ Cj(Σ (2m, + l)δ

If we now use (2.12), which is true for all \z\ < δ, an application of
Schwartz's inequality proves that the series in (2.11) has the stated
convergence properties. We also see that if ΣϊU W 2 < °° a n ( * if
we let F(z) — Y£=xa%pn(z) for | s | < l , then this series converges
absolutely and uniformly on compact subsets of D so that F is analy-
tic in D. From this we see that A(S) consists of analytic functions
on [0,1) and that if 0 ^ x < 1 and fe A(S), f(x) = Σ~=i anpn(x), where
an is the wth Fourier coefficient of / with respect to the orthonormal
system (pj. We now see that K is a reproducing kernel for A(S),
for (2.12) shows that if z 6 D then x -• K(z, x) belongs to A(S), and
if / - ΣϊU « P e A(S), where ΣϊU I^J2 < °°, then

K(z, x)f(x)dx = lim [ (
ί4—oo Jo \fc = l

, by (2.2),

REMARK. It should be noted that if m1 = 0 and Σ^UlM* = ^^
then A(S) does not have a reproducing kernel. This is because of
the Mϋntz-Szasz theorem, which shows that in this case A(S) will
contain the restrictions to [0, 1) of all functions in C([0, 1]). Hence,
if xe[0f 1), the linear functional on A(S) given by f—+f(x) is not
bounded, so that A(S) does not have a reproducing kernel ([2], p. 317).

3; Moment sequences* Let (αΛ)SU be a sequence of complex
numbers and let / G L 2 ( [ 0 , 1)). Consider the condition

(3.1) an = Γ xm-f(x)dx , for w = 1, 2, 3, .
Jo

THEOREM 3.1. Let (cθ£=1 δβ α given sequence of complex numbers.
Then if S is lacunary, a sufficient condition for (3.1) to hold for some
f in If is that
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(3.2) Σi».l<

This condition is not necessary.
If S satisfies the condition

(3.3)

<

< oo ,

then a sufficient condition for (3.1) to hold for some feL2 is that

(3.4) Σ w

If S satisfies the condition

(3.5) <

then (3.4) is α necessary and sufficient condition for (3.1) to hold for
some feL2.

Proof. By virtue of [2], pp. 226-227, (3.1) holds for some feL2

if and only if

(3.6) Σ **fi

in which case Σ2U (Σy=i α»y«y)3>» will do for /.
If S satisfies (3.3) or (3.5) then S is lacunary so in any case we

may choose a > 1 so that (2.8) holds when i > j . Also, choose C
so that (2.7) holds and use (2.3), (2.4), and (2.5) to obtain for n Ξ> 2,

so that

(3.7)
n

Σ

Σ<&»

VII + 1
α: —

(2m,
•

If (3.2) holds this shows that there is F so that

Σ ^n^j
3=1 Vmn

for all n ^ 2, so that (3.6) and hence (3.1) hold. (3.2) is not necessary
since
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l/(mft + 1) = \ xm*dx , but Σ mJim* + 1) = °°
Jo »=i

Now assume that (3.3) holds. Because of (2.5) and (2.7), (3.4) is
equivalent to the condition

(3.8) Σ \annan\
2 < oo .

Also the approach used to derive (3.7) shows that there is a constant
G, depending only on S, so that

(3.9)
n—1

δΣ ft«Λ

f or w > 2 .

Now let (3.4) hold. An application of Schwartz's inequality
shows that

Since S is lacunary and (3.3) holds we have, for some J, ΣSUi
^ Σ ^ l / l / m Γ < °° These facts, together with (3.3), (3.8), and (3.9)
imply that (3.6), and hence (3.1), hold (the latter for some feL2).

Condition (3.5) is stronger than (3.3), so that if (3.5) holds then
(3.4) implies (3.1). Conversely let (3.5) and (3.1) hold, the latter for
some feL2. An application of the Schwartz inequality to (3.1)
shows that there is a constant H so that \an\ ̂  HjVmn, for n =
2, 3, . Hence ΣSU l<* l < °° a n ^ a l s o

Because of (3.5) we conclude from (3.9) that Σ =i IΣ*=ί αΛJ αy|2 < <*>.
Since (3.1) implies (3.6) we deduce that (3.8) holds and this is equi-
valent to (3.4).

This result suggests introducing a sequence space Ls as follows.
A sequence (an)n=ί belongs to Ls if and only if there is feL2 such

that an = \ xmnf(x)dx, for n = 1, 2, •••. It is shown in [5], p. 237
Jo

that if S consists of integers, then Ls Q /2.

COROLLARY 3.2. If S satisfies (3.5), there is a subsequence Sx of
S so that LSl £ Ls. We also have Ls Φ s2, regardless of whether or
not S satisfies (3.5).

COROLLARY 3.3. Let S be a lacunary sequence of integers and
let a = (ccn)n^ι be a given sequence of complex numbers. Then if
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there are real Ύ q,nd δ, with δ < 1, so that \an\ ̂  Ύδmn for n = 1, 2, ,
then aeLs.

These results suggest that rather than using the functions
xmn(n = l,2, •••) in (3.1) it may be more appropriate to use the
functions mnx

mn or Vmn x™n. The following is essentially a reword-
ing of Theorem 3.1.

THEOREM 3.4. Lβt(an)Z=ί be a sequence of complex numbers. If
S is lacunary and ΣSU lαJ < °° then there is feL2 so that an =
mn I xmnf(x)dx for n = 1, 2, .

Jo

If S satisfies (3.5) then Σ2U \a«\2 < °° if and only if there is

feL2 so that an = Vmn \ xmrf(x)dx, for n = 1, 2, .
Jo

REMARKS. If μ is a measure supported by [0, <?], where δ < 1,

and we let an = \ xmndμ(x) for n = 1, 2, then, assuming that S
Jo

is a lacunary sequence of integers, Corollary 3.3 applies to give a
function feL2 so that (3.1) holds. That is, the measure μ can be
absolutely continuous with respect to Lebesgue measure.

As remarked in the introduction, if ΣΓ=2 V
m% < °° a n ^ J 4s given,

there is a measure μ on [0, 1] so that I xmndμ{x) —• 0 if n Φ j and

S i Jo

xmόdμ(x) Φ 0. If δ is given (1 ^ δ > 0) and S is a lacunary sequence
of integers, the measure μ can be chosen to be supported by [0, δ]
and be absolutely continuous with respect to Lebesgue measure. To
see this, apply Corollary 3.3 to the sequence (snδ

mn)~=1, where εn = 0
if n Φ j and ε, = 1. We obtain feL2 so that εnδ

2m* = Γ(δ^)^/(^)dx,
Jo

from which the result follows by a change of variable.
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