A NOTE ON RADON-NIKODYN THEOREM FOR FINITELY ADDITIVE MEASURES

SURJIT SINGH KHURANA

The Radon-Nikodyn theorem for finitely additive measures is deduced from the corresponding result for countably additive measures.

In ([4], Theorem 1, p. 35) a Radon-Nikodyn type result is proved for finitely additive measures. In this note we prove that this result is a simple consequence of the corresponding result for the countably additive case.

Let \mathfrak{A}_0 be an algebra of subsets of a set X; without loss of generality we assume that \mathfrak{A}_0 is reduced, i.e., separates points of X ([5], p. 68). We denote by ρ the isomorphism between \mathfrak{A}_0 and \mathfrak{A} the algebra of all clopen subsets of \hat{X} , the compact Hausdorff, totally disconnected space which is the Boolean space for \mathfrak{A}_0 ([5], p. 70).

THEOREM ([4], Theorem 1, p. 35). Let λ and μ be two complexvalued finite-additive measures on \mathfrak{A}_0 such that μ is bounded and λ is absolutely continuous relative to μ ($\varepsilon - \delta$ meaning of absolute continuity). Then there exists a sequence $\{f_n\}$ of \mathfrak{A}_0 -simple functions on X such that

(1) lim $\int_{A} f_n d\mu = \lambda(A)$, unif. for $A \in \mathfrak{A}_0$ and

(2) $\lim_{m,n\to\infty} \int |f_n - f_m| d |\mu| = 0$, $|\mu|$ being the total variation of μ ([2]).

Proof. For any disjoint sequence $\{A_n\} \subset \mathfrak{A}_0, |\mu|(A_n) \to 0$ (note μ is bounded) and so $\lambda(A_n) \to 0$. This means λ is exhaustive (\equiv strongly bounded) and so λ is bounded ([1]). λ and μ naturally give rise to countably additive measures λ' and μ' on \mathfrak{A} and as such can be uniquely extended to the σ -algebra \mathscr{R}_{∞} generated by \mathfrak{A} ; \mathscr{R}_{∞} is also the class of all Baire subsets of \hat{X} ([5], p. 70). We claim $|\lambda'|$ is absolutely continuous with respect to $|\mu'|$: suppose $|\mu'|(B) = 0$ but $|\lambda'|(B) > 0$ for some $B \in \mathscr{R}_{\infty}$. This means there exists a $C \subset B$, $C \in \mathscr{R}_{\infty}$ such that $|\lambda'(C)| > \varepsilon$ for some $\varepsilon > 0$. Fix $\delta > 0$ such that $P \in \mathfrak{A}_0$, $|\mu|(P) < \delta$ implies $|\lambda(P)| < \varepsilon$. Since Baire measures are regular, there exists an open subset V of \hat{X} such that $V \supset C$, $|\mu'|(V) < \delta$, and $|\lambda'(V)| > \varepsilon$. Again by regularity and total disconnectedness of \hat{X} there is a clopen subset $U \subset V$ such that $|\mu'|(U) < \delta$ and $|\lambda'(U)| > \varepsilon$. Taking $P = \rho^{-1}(U)$ we get $|\mu|(P) < \delta$ and $|\lambda(P)| > \varepsilon$, a contradiction. By ([2], Theorem 7, p. 181) these exists an $f \in \mathscr{L}_1(X, \mathscr{B}_{\infty}, |\mu'|)$ such that $\lambda' = f\mu'$. Since \mathfrak{A} -simple functions are dense in $\mathscr{L}_1(X, \mathscr{B}_{\infty}, |\mu'|)$ there exists a sequence $\{f_n\}$ of \mathfrak{A} -simple functions such that $\lim_{x \to \infty} \int |f_n - f| d| |\mu'| = 0$. From this it follows that $\int_{E} f_n d| |\mu'| \to \int_{E} f d| |\mu'|$ uniformly for $E \in \mathfrak{A}$. Note on \mathfrak{A} the variation $|\mu'|$ of μ' is the same whether this variation is calculated relative to \mathfrak{A} or \mathscr{B}_{∞} ([2]), Theorem 3, p. 76). The results (1) and (2) of the theorem are obvious now.

References

1. J. Diestel and B. Faires, On vector measures, Trans. Amer. Math. Soc., 198 (1974), 253-271.

2. N. Dinculeanu, Vector Measures, Pergamon Press, New York, 1967.

3. N. Dunford and J. Schwartz, *Linear Operators*, Vol. 1, Interscience, New York, 1958.

4. C. Fefferman, A Radon-Nikodyn theorem for finitely additive set function, Pacific J. Math., 23 (1967), 35-45.

5. J. D. M. Wright, The measure extension problem for vector lattices, Ann. Inst. Fourier (Grenoble), **21** (1971), 65-85.

Received July 6, 1977.

UNIVERSITY OF IOWA IOWA CITY, IA 52242