
PACIFIC JOURNAL OF MATHEMATICS
Vol. 74, No. 1, 1978

ON GROUPS WITH SPECIFIED LOWER CENTRAL
SERIES QUOTIENTS

JERROLΌ W. GROSSMAN

Intrinsic necessary and sufficient conditions are established
for a tower of groups to be the tower of lower central series
quotients {G/ΓSG} of some group G, in the case in which G/Γ2G
is finitely generated and the case in which G is free. A
process for constructing a large number of groups with the
same lower central series quotient tower is also described.

1* Introduction* Given a group G, one can form nilpotent
approximations G/ΓSG to G, where ΓSG is the normal subgroup of
G generated by all simple s-f old commutators (s = 1, 2, ). The
tower formed by these lower central series quotients and the natural
projections G/Γs+ίG—+G/ΓsG deserves the title nilpotent completion
tower, or simply completion, of G. We do not take the inverse limit
of the tower, but rather view the tower either as a diagram or,
preferably, as a pro-group. A. K. Bousίield [3] has studied the
properties of a transfinite extension of this tower (generalized to
incorporate a ring of "coefficients") with application to homological
properties of topological spaces. G. Baumslag [2] has investigated
groups which have the same completion as a free group. In this
paper we study the following problems: Under what conditions is a
tower of groups {Gs} the completion of some group? Under these
conditions, find (all) groups G such that Gs = G/ΓSG.

Our principal results are as follows. Call a tower of groups {Gs}
a Γ-tower if, for each s ^ 1, the sequence 1 —* Γ8GS+1 -> Gs+1 —> Gs —> 1
is exact. If {Gs} is a Γ-tower and G2 is finitely generated, then {Gs}
is the completion of its inverse limit and, more generally, of each
of a transfinite sequence of subgroups of its inverse limit. In par-
ticular, we obtain a large number of examples of parafree groups
[2]. If {Gs} is a Γ-tower, G2 is free abelian, and {H2GS} has trivial
projections, then {G8} is the completion of a free group. We do not
yet know if every Γ-tower is the completion of a group.

In §2 we review pro-groups and establish the basic properties
of the completion functor. In § 3 we derive the properties of
Γ-towers. A "decompletion" process in described in § 4, which
enables us to construct groups of small cardinality with a given
completion, once one group with the given completion is known. We
treat the finitely generated case in §5 and the free case in §6.

2* Pro-groups and the completion functor• Let ^ be any
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category. The category tow-^ has as objects towers in <g%

• > Xs+1 > X8 > > Xx ,

written {Xs} and called pro-objects over ^ (pro-groups in case ^
is the category of groups). The morphisms X8+1—>XS within the
tower (and their compositions) are called projections. Morphisms
in tow-^ are given by^

Homtow^({Xs}, {Ys}) = lim Inn Horn, (Xif Yd) .

For our purposes it is enough to note that a sequence of morphisms
{XS—>YS} commuting with the projections in the towers {Xs} and
{Ys}, that is, a morphism in the diagram category, represents a
morphism from {Xs} to {Y8} in tow-^ and that cofinal towers are
isomorphic. See [1], [4], or [7] for a fuller discussion of pro-objects.
Although the category of pro-groups is, as we shall see (2.2), the
"right" setting in which to study completions, the reader may view
the towers in this paper simply as diagrams.

We consider ^ as a full subcategory of tow-^ by identifying
an object X in ^ with the tower {X8} in which each X8 is X and
each projection the identity. A pro-object isomorphic to an element
of i f is called constant. The inclusion functor ί^—•tow-^ is left
adjoint to the inverse limit functor lim: tow-^ —> ̂ , if the fatter

exists. In that case, {Xs} is constant if and only if {Xs} = lim Xs.

We next define the completion functor. Recall [9, Chapter 5]
that if A and B are subgroups of a group G, then [A, B] denotes
the subgroup of G generated by all commutators [a, b] — a^b^ab
for aeA, beB: Inductively define the lower central series of G by
Γfi = G, Γ8+1G = [Γ8G, G]. Thus ΓSG is generated by all simple
8-fold commutators [glf g2, , gs] = [[• [glf g2], g3] , gs] of elements
of G. Let ΓωG = ΠT=i ΓSG. A group is nilpotent if Γ8G = 0 for
some s < ω and residually nilpotent if ΓωG — 0. Each Γ8G is normal
in G; G/ΓSG is nilpotent for s < ω and G/ΓωG is residually nilpotent.
The inclusions Γ8+1G c Γ8G give rise to epimorphisms G/Γ8+1G —> G/ΓSG,
and we call the pro-group {G/ΓSG} the completion of G. Denoting the
category of groups [resp. nilpotent groups] by ^ [resp. Λ"]9 we
more generally define the completion functor C: tow-^7

DEFINITION 2.1. Let {Gs}etow-S^. Then C{GS} is the pro-group
{GJΓ$GS}, called the completion of {G8}. There is a canonical mor-
phism {G8}—>C{GS} induced by the identity.

The proofs of the following propositions are fairly straight-
forward and hence omitted.
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PROPOSITION 2.2. C is left adjoint to the inclusion functor
tow-«yf —> tow-^7, and C restricted to & is left adjoint to the inverse
limit functor from tow-.///" to &. Furthermore {Gs} —*C{G8} is an
isomorphism if and only if {Gs} is isomorphic to a tower of nilpotent
groups.

PROPOSITION 2.3. For any group G,
( i ) 1 -> Γs (G/Γs+ιG) — G/Γs+ιG — G/ΓSG — 1 is exact for each

s < ω;
(ii) Γt(G/Γ.G) = ΓtG/ΓaG for i ^ s ^ ω;
(iii) (G/Γ.G)/Γi(G/Γ.G) = G/Γfi for i ^ s ^ ω.

3* /"-towers* By 2.2 every tower of nilpotent groups is, up
to isomorphism in tow-S^, its own completion. Our problem is to
characterize those towers which are completions of groups.

DEFINITION 3.1. A Γ-tower is a tower of groups {Gs} such that,
for each s ^ 1, the sequence

is exact.

PROPOSITION 3.2. Let {Gs} be a Γ-tower. Then for each s,
( i ) 1 —> ΓiGs —> Gs —> Gt —> 1 is exact for all i < s;
(ii) GJΓiGs^Gi for all i < s;
(iii) Γ . G . ^ 1 ;
(iv) if ΓSGS+1 = 1, then Gk s Gs for all k > s;
(v) if P is a set of generators of G2 and P' is a set of elements

of Gs which maps onto P by the projection Gs —> (?2, then Pr generates
Gs.

Proof We prove (i) by induction on s — i. The statement is
true by definition when s — ΐ = 1. Denote the projection Gm —> Gn

by pm,n for m > n. Clearly psΛ is surjective; we must show that
ΓiGs = ker psΛ. Let x e ΓiG8. Then 2>β,β_i(α?) e ΓtG8^19 so by induction
J>.,β-iO*O e ker Ps-ut, whence x e ker psΛ. Conversely, suppose x 6 ker psΛ.
Then pSίS-x{x) e ker p,_ l f<. By induction p^-^x) 6 ΓjGs^; thus we can
write ps,s^(x) = Ή.f=ι[a3tl9 αi>2, •••, α i f i ] . Since p,,,^ is surjective, we
can choose bjΛ e Gs such that ps,s_3 (6ifl) = ajΛ for 1 ^ i ^ i^, 1 ^ ί ^ i.
Let i/ = UU [6/,i, 6/,», , 6i,i]. Then x r 1 6 ker p t f β - 1 - Γs_fis c AGS.
But 7/ e ΓiGs, so cc 6 ΓiGs. Clearly (i) implies (ii), and (iii) is immediate
from the definition. To prove (iv), note that the natural surjection
Gk/Γ8+1Gk —> GkIΓsGk induces an isomorphism (? s + 1 —> G$ by (ii) and the
hypothesis; hence Γs+1Gk = /^Gv But then the definition of the
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lower central series and (iii) imply that Γ8Gk = ΓkGk = 1. Hence by
(ii), Gs = GJΓ8Gk = Gk. Finally (v) follows from [9, Lemma 5.9].

By 2.3 (i) CG is a Γ-tower for every group G. We conjecture
the converse: Given a Γ-tower {G8}, there exists a group G such
that G/ΓSG = Gs.

In §5 we prove this conjecture in case G2 is finitely generated,
and in § 6 we prove it in case G2 is free abelian and {H2GS} ^ 0.

4* Constructing small decompletions* If CG = {GJ, then the
natural map G —>limGs has kernel ΓωG. By 2.3 (iii) the residually

nilpotent group G/ΓωG has the same completion as G. We therefore
make the following definition.

DEFINITION 4.1. Let {Gs} be a Γ-tower. A subgroup G of limGs

is a proper decompletion of {Gs} if the natural maps G-*GS induce
isomorphisms G/ΓSG ~ Gs for all s.

Aside from the case in which a Γ-tower {Gs} is constant (and
hence itself its only proper decompletion), lim G8 is uncountable because

each surjection Gs+1 —> G8 has nontrivial kernel by 3.2 (iv). We shall
see in the next section that limGs is a proper decompletion of {Gs}

if G2 is finitely generated, but we now describe a process for obtaining
decompletions with small cardinality.

PROPOSITION 4.2. Let Hbea proper decompletion of a nonconstant
Γ-tower {Gs}. Let K be a subset of H. Let m be the maximum of
the cardinality of K, the cardinality of G2, and V$o Then there
exists a proper decompletion of {Gs} containing K, contained in H,
and of cardinality m.

Proof. We shall construct an increasing sequence of subgroups,
Ax c A2 c , of H, each of which is obtained from the preceding
one by adjoining at most m elements of H, and whose union is the
desired decompletion. For each element g in a generating set for G2,
let xgeH map to g under the natural sur jection H—>G2. Let Ax be
the subgroup of H generated by K and all the xg's. Since A^—>G2 is
surjective, Ax —• Gs is surjective for all s by 3.2 (v), and the cardinality
of A1 is m. Assume by induction that we have defined AncH such
that An has cardinality m and An —> Gs is surjective for all s.
Consider the groups Ks = ker (An —> G$). Clearly Γ8An c K8, since
Γ8G8 — 1 by 3.2 (iii), but it might happen that there are ele-
ments in K8 which are not in ΓsAn. Such elements are in ΓSH,
however, since H is a proper decompletion of {Gs}. Form An+1 as
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the subgroup of H generated by An and a collection of at most m
elements of H needed to express all the elements of Ks as products
of simple s-fold commutators, for all s. Clearly An+1 satisfies the
inductive hypotheses. Then A — USU Ά* is perforce the desired
decompletion.

PROPOSITION 4.3. The union of a nested family of proper de-
completions of a Γ-tower is again a proper decompletion.

The proof is clear.

5* The finitely generated case* In this section we use a lemma
of Bousfield [3] to show that Γ-towers with finitely generated G2 are
actually completion towers, and we construct many decompletions
of them. In view of 3.2 (v), it makes sense to call such a tower a
finitely generated /Mower.

THEOREM 5.1. Let {G8} be a finitely generated Γ-tower, and let
G = lim G8. Then G is a proper decompletion of {Gs}.

The proof involves the notion of iV-series [3], [9, p. 391].

DEFINITION 5.2. An N-series in a group G is a descending series
of subgroups (indexed by positive integers)

G ^K^K^K^- -

such that [Kr, Ks] c Kr+s for all r, s. There is an associated Lie ring
(&r>iKrlKr+l with Lie product

[, ]: Kr/Kr+1 (x) Ks/K8+1 > Kr+s/Kr+s+ί

induced by the commutator.

LEMMA 5.3 (Bousfield [3]). Let {Ks} be an N-series in a group
G such that

( i ) the natural map G —> lim G/Ks is an isomorphism;

(ii) the Lie product

[, ]: G/K2 0 KJKS+1 > KsJKs+2

is surjective for all s; and
(iii) G/K2 is finitely generated. Then Ks — ΓSG for all s ^ 1.

Proof of 5.1. Let Ks = ker (G --> Gs). It suffices to show that
{Ks} is an jV-series in G satisfying the conditions of 5.3. Express
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elements of G as sequences (glf g2, ) such that gi e Gi and gt+1

projects to gi for all i. Then Ks — {(gί9 g21 •) e G: gi = 0 for i ^ s} =
{(•&, &> *••)€& gtGΓ.Gt for all i} by 3.2 (i) and 3.2 (iii). Since
[ΓrG,, Γ.Gi]c:Γr+.Gi for all i [9, p. 2931, [Kr, Ks]aKr+s. Conditions
(i) and (iii) of 5.3 are given. To verify condition (ii), let g =
(0i, 02, •) e Ks+1. Then gs+2eΓs+ίGs+2, so # s + 2 = Πί=i [2/y,.+2, ̂ ,.+2] for
some elements y3 t8+i e ΓsGs+2 and zJ)S+? e G s + 2. Since {Gs} is a tower
of surjections, we may extend to yό = (yίtl, yj>2) - >)eKs and z3- =
(̂ •,1, &s,2f '")^G. Then g and Πf=i[^i, %j] differ only by an element
of Ks+2, so the Lie product is onto Ks+JKs+2.

Combining 5.1 with 4.2 and 4.3 we can construct inductively a
transfinite sequence of decompletions as follows. Let {Gs} and G be
as in 5.1, with {G8} not constant. Apply 4.2 to the empty subset of
G to obtain a countable proper decompletion G\ Given the proper
decompletion Ga, for an ordinal a, if Ga Φ G, let xeG — Ga and
apply 4.2 to Ga U {#} to obtain a proper decompletion Gα+1, containing,
but of the same cardinality as, Ga. For limit ordinals λ, let G? =
U«<^α> which is a proper decompletion by 4.3. Note that Ga is
countable for a < ω and has cardinality equal to the cardinality of
a for a^ ω. This process terminates at G, which has the cardinality
of the continuum, (£. Although there is no guarantee that the Ga's
are not isomorphic, any two with different cardinality will be non-
isomorphic, and every cardinality between y$0 and (£, inclusive, is
represented. Since it is consistent to assume [5] that © is an
arbitrarily large cardinal, we have proved the following existence
theorem.

THEOREM 5.4. Let {Gs} be a nonconstant finitely generated Γ-
tower, and let #a be the ath infinite cardinal number. Then it is
consistent with ZFC (set theory plus the axiom of choice) that there
exist #a nonisomorphic, residually nilpotent groups with completion
{Gs}.

Letting {Gs} be the completion of a finitely generated free group,
we obtain a "large number" of examples of parafree groups [2].

6* Completions of free groups* In this section we completely
characterize those towers which are completions of (not necessarily
finitely generated) free groups. We first need two basic results
relating group homology and completion. (These propositions lead
Bousfield [3] to call a certain transfinite extension of {GjΓjG} the
homological localization tower for G.) Given a pro-group {G8} and
an integer n ^ 1, define Hn{Gs} to be the pro-abelian-group {HnG8},
where HnGs is the ordinary homology of the group Gs with trivial
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integer coefficients [8, p. 290]. In particular H^G,} = {GS/Γ2GS}.

PROPOSITION 6.1 (W. G. Dwyer). If {G8}-+{G'S} is a morphism
of pro-groups which induces an isomorphism H^G,} —+ H^G',} and
an epimorphism H2{GS} —• H2{G'S}, then C{GS} —> C{G'S} is an iso-
morphism.

The proof [6] is similar to the proof of the classical version of
the theorem due to J. Stallings [10].

PROPOSITION 6.2. Let {Gs} be a pro-group. Then the natural
morphism {Gs} —* C{GS} induces an isomorphism H^G,} —* jHiC{(τ,} and
an epimorphism H2{GS} —> H2C{GS}.

Proof. Hfis = HάGJΓ.G.) by 2.3 (iii). By [10], for each s the
short exact sequence

1 > ΓSGS - > Gs > GJΓ8G8 > 1

gives rise to a n a t u r a l exact sequence

H2GS > H2(GJΓSGS) > ΓSGJΓS+1G3.

That H2{GS} —> jEΓ2C{Gβ} is an epimorphism now follows by forming the
corresponding exact sequence of towers and noting that {ΓSGS/ΓS+1GS} =
0 because each projection is the trivial homomorphism.

THEOREM 6.3. Let {Gs} be a nonconstant Γ-tower. Then {Gs} has
a free group as a proper decompletion if and only if G2 is free
abelian and H2{GS} = 0.

Proof. The first condition is clearly necessary, and the second
follows from 6.2 since H2F = 0 for F free. To show sufficiency,
let F be the free group on a set of free abelian generators for G2,
and let φ2: F-+G2 be induced by the identity. Lift φ2 to a morphism
φ: F->{GS}. By 3.2 (ii) and the hypothesis that H2{GS] = 0, H& is
an isomorphism and H2φ is an epimorphism. Hence Cφ is an iso-
morphism by 6.1. In fact a diagram chase, using the characterization
of isomorphism in tow-ST in [4], shows that each level F/ΓSF->GS

of Cφ is an isomorphism. Finally since free groups are residually
nilpotent [2], the image of F in lim Gs is free and a proper decom-
pletion of {G8}. *~~
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