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THE CHARACTER SPACE OF THE ALGEBRA OF
REGULATED FUNCTIONS

S. K. BERBERIAN

The character space of the algebra of regulated functions
on a closed interval is computed and is identified with the
character space of the algebra of functions of bounded vari-
ation. The dual space of the Banach space of regulated
functions is analyzed in terms of the character space.

1. Introduction. The regulated complex functions on a compact
interval form a commutative C*-algebra with unity. The objective
of this paper is to explore the character space of this algebra, and
those of several related Banach algebras. E. Hewitt’s computation of
the character space of one of the related algebras [7]is given a new
interpretation (§4). In pre-Banach algebra times, H. S. Kaltenborn
gave an elegant description of the dual space of the algebra of
regulated functions [10]; we re-examine his results from a Banach
algebra point of view, recasting slightly his formula for the con-
tinuous linear forms (§6).

Let I = [a, b] be a nondegenerate closed interval of the real line
R, fixed for the rest of the paper. A complex-valued function f
on I is said to be regulated if it possesses (finite) one-sided limits
at every point of I; that is, the limits

fle+) = lim f@&), fle=)=_lim f(2)

exist in C for every c € [a, b) and every c € (a, b}, respectively. Every
regulated function on I is bounded. We write &2 = <Z(I) for the
set of all regulated functions f: I— C. With the pointwise operations
and the norm || f|l. = sup,.;|f(x)|, & is a commutative C*-algebra
with unity [16, p. 276, Def. 11.17]: completeness for the norm
metric follows at once from the “iterated limits theorem” [15, p. 149,
Th. 7.11]. To enlarge the perspective a bit, &2 is a closed *-subalgebra
of the commutative C*-algebra <& = <& (I) of all bounded complex
functions on I. In turn, the algebra & = & (I) of all continuous
complex functions on I is a closed subalgebra of &Z; thus & ¢ .#Z C
B,

A complex function f on I is called a step function if there
exists a partition of I into finitely many subintervals (possibly de-
generate) on each of which f is constant. We write &¥ = ()
for the algebra of all step functions on I, and ZF 7 = ZF7 () for
the algebra of all complex functions on I of bounded variation. It
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is clear that & C £# 7" and that .57 is the linear span of the set of
characteristic functions @; of subintervals J of I, and ZF7 c #
because, by the Jordan theorem, <& 7" is the linear span of the
monotone functions (which are evidently regulated). Thus & C
FBY C B, since .~ is dense in # for the sup-norm topology [2,
Ch. II, §1, »° 3], &2 is the completion of both .&¥ and ZF 7 for
this norm. {In particular, &#7" is not complete for this norm. In
§5 we study <Z#7" as a Banach algebra relative to another norm.}

2. Some decompositions of regulated functions. Regulated
functions have a certain capacity for self-improvement:

PrROPOSITION 1. Let fe . Define f*: 1— C by the formulas
(1) _f*(w) = f(z+) for =zela,b), [f*b)=Sf(b-).

Then f*e.#. More precisely: (1) f* is right-continuous on [a, b);
(il) f* s left-continuwous at b; (iii) f*(x—) = f(x—) for all x € (a, b];
Gv) [ * e £ | flleo; (V) f*() = f(x) for all but denumerably many
values of x. :

Proof. {The motivation for the definition of f*(b) is that, when
considering possible discontinuities of f at the endpoints a, b, it is
convenient to extend f to the interval [a@ — 1,b + 1] by defining
fx) = fla+) on [a — 1, @) and f(x) = f(b—) on (b, b + 1]. The ex-
tended function will then have at most removable discontinuities at
@, b, and f* is continuous at these points.}

(iv) is obvious, and (v) is immediate from the fact that f is
continuous at all but denumerably many points of I [2, Ch. II, §1,
Th. 3].

(i) Let c€la,b), c<ec,<b,e,—c. For each n, choose x,, ¢, <
z, < b, such that |f(z,) — f(c.,+)| <1l/n and |z, — ¢,| < 1/n; then
%, — ¢, therefore f(z,)— f(c+), therefore |f(c+) — f(c,+)|—0.

(iii) is proved similarly, and implies (ii). '

The mapping P: . % — & defined by

(2) Pf=f* (fe=)

is an algebra *-homomorphism, continuous for the sup-norm topology,
idempotent (P* = P). We write

(3) RB* = P(R)

for the range of P, and
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(4) A" = ker P

for the kernel of P; thus .4 is a closed ideal of <&, and Z#* =
ker (1 — P) is a closed =-subalgebra of 2 that contains 2. {Remark:
It is easy to see that ||P||=1 and ||1 — P|| = 2.} Every f &€ .# has
a unique decomposition f = g + h with g € &Z* (that is, Pg = g) and
he._ 4" (that is, Ph = 0), namely g = Pf, h = f — Pf.

COROLLARY 1. (i) .&Z* 1s the set of all ge & such that g s
right-continuous on |a, b) and left-continuous at b; (i) A4~ is the
set of all he # such that h(z+) = 0 for all x<la, db) and h(x—) =0
for all z€(a, b].

Proof. This is clear from Proposition 1 and the definition of f*.

From (ii) of Corollary 1, one sees that for he._#; the set of
discontinuities of & is the set {x € I: h(x) # 0}.

COROLLARY 2. (i) ./ s the closed limear span in # of the
characteristic functions @, xel; (i) Z* is the closed linear span
n A of the characteristic functions @;, where J is a subinterval
of I such that either J = [¢, d) with d < b, or J = [c, b].

Proof. (i) If f = ¢;, J a subinterval of I, then f* can differ
from f only at the endpoints of J; therefore if f is a step funection,
then 1 — P)f = f — f* vanishes at all but finitely many points
(hence is a linear combination of functions ¢,). Suppose he 7
Choose a sequence of step functions f, such that f, — h uniformly
in I; then (1 — P)f, — (1 — P)h = h uniformly, whence (i).

(ii) Let _# be the indicated set of subintervals of I; these
are the subintervals J of I such that ¢; e .cZ*. Let .22, be the closed
linear span of the ¢,;, J€ _#; evidently &, c . #*. If f is the charac-
teristic function of a subinterval of I with endpoints ¢, d, then f*
is the characteristic function of the interval in _# with endpoints
¢, d; therefore f* €. <%, whenever f is a step function. Suppose ge
#*. Choose a sequence of step functions f, such that f, — ¢ uni-
formly in I; then ff — g* = g uniformly, whence g € ..

E. Hewitt studied the algebra of restrictions to [a@, b) of the
functions in .Z#*; identifying the two algebras in the obvious way,
part (ii) of Corollary 2 corresponds to Theorem 4.5 of his paper [7,
p. 87]. Here are some useful characterizations of . #":

COROLLARY 3. The following conditions on a function f:I—C
are equivalent:
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(@) fes7

() feZ fx+)=0 for all x<la,bd);

M) feB f(xa—)=0 for all xe<(a,b];

(¢) feA and the set {xel: f(x) + 0} is denumerable;

d) feZ and the set {xel: f(x) = 0} is dense in I;

(e) there exist a sequence ¢, € I and a sequence r, € C with r,—0,
such that f(c,) = r, for all n and f(x) = 0 for all other .

Proof. (a)= (b), (b’) by Corollary 1.

(b) = (¢), (b') = (c): Clear from the fact that every fe.Z#Z is
continuous at all but denumerably many points of I.

(¢) = (d): Obvious.

(d) = (e): From (d), it is clear that (b), (b’) hold, hence also (c).
To prove (e), it will suffice to show that, given any ¢ > 0, the set
{xel:|f(x)| = ¢} is finite. Assume to the contrary that |f(z,)| =¢
for a (faithfully indexed) infinite sequence x,. Passing to a subse-
quence, we can suppose that x, is convergent, say z,— x, and that
either x, < z for all » or x, > « for all n; in either case, f(xn)-—>0
by (b) or (b’), contrary to |f(x,)] = e.

(e)=1(a): In the notations of (e), let f, = > L TPy’ then
| f — fulle. — 0, therefore fe._4" by (i) of Corollary 2.

Dually, one can define, for each fe.2Z, a function *fe.ZZ by
the formulas

(5)  *fw)= f@—) for we(abl, *fla)= fla+).
Defining Q: # — 2 by
(6) Qf = *f (fe?),

one sees that @ has properties analogous to those of P; in view of
the symmetry in Corollary 3 of Proposition 1, the kernel of Q is
also .47, we write *<Z = Q(<#), which is the set of all fe€.<Z that
are left-continuous on (@, b] and right-continuous at ¢. In view of
Proposition 1 and its dual, inspection of the definitions yields the
formulas

(7) PQ=P, QP=Q.

{We remark that if fe.Z is real-valued, then the upper and lower
semicontinuous regularizations of f [1, Ch. IV, §6, n° 2], namely
the functions f = lim sup f, S =liminf f, are given by the formulas
f=max {f, Pf, Qf}, f = min {f, Pf, Qf}, hence are obviously regulated.
Writing g = f, h = f — f, one obtains a decomposition f = g + k with
g €. 92 upper semicontinuous and k € _#" (by criterion (¢) of Corollary 3
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of/Proposition 1). However, such decompositions are not unique, nor
do they possess the algebraic properties enjoyed by the decompositions
described earlier; they will play no role in the rest of the paper.}

3. The character space of 2. A character of a commutative
Banach algebra .o is an algebra epimorphism .o — C. The set
X(.%7) of all characters of .o/ equipped with the topology of simple
convergence in .57 is a locally compact space, called the character
space of .7 (this topology on X(.o7) is called the Gelfand topology);
when .& has a unity element, X(.&) is compact [4, Ch. I, §3].
Since &% is a commutative C*-algebra with unity, it is isomorphic
to the algebra Z°(X(<2)) of all continuous complex functions on the
compact space X(#) [4, Ch. I, §6, Th. 1]; our central objective is
to explore the space X(.Z#).

THEOREM 1. X(.Z2) s totally disconmnected.

Proof. Let _# be the family of all subintervals J of I. The
mapping B+ (B(®@,))se - 1S a continuous mapping of X(<Z) into a
cartesian product 2= of copies of the discrete space {0, 1}; it is
injective because .&° is dense in Z#; since X(<#) is compact and
£ is separated, the mapping is a homeomorphism of X(<Z)’ onto a
subspace of the totally disconnected space 2%

THEOREM 2. X(#) does mot have a denumerable basz for opsn
sets (hence 1s not metrizable).

Proof. Since & (X(<2)) is isomorphic to .2, it suffices to prove
that the Banach algebra <2 is not separable [1, Ch. X, §3, Th. 1].
This is shown by the family of functions f, = @, € I, which satisfies
IIfe — fulle =1 for = + y.

The closed open sets of X(.#) (there are lots of them, by Theorem
1) correspond, via the Gelfand isomorphism, to the idempotents in
the algebra <#. The idempotents of &#Z are all in .&7:

THEOREM 3. The idempotents of & are the characteristic func-
tions @,, where A is the union of finitely many subintervals of I.

Proof. Let fe<# be idempotent, say f =@, ACI. Let ce
[a, b) and consider open intervals JC I with left endpoint ¢; if one
had both JNA#* @ and JN (I — A) = @ for every such J, then
f(c+) would fail to exist, a contradiction. Thus, for every c€|e, b),
there exists an open interval J, C I with left endpoint ¢, such that
either J,c A or J,cI — A. Similarly, for each c € (e, b], there exists
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an open interval K, C I with right endpoint ¢, such that either K, C A
or K,cI— A. Defining

U,={atUd, U,=K,U{b}, U =K, U{ctUJ, for ce(a,b),

one has an open covering of the compact space I; say I= U, U
v,uU---uU,,; then A=ANU,)U---UANDT,,), and each ANU,,
is either an interval or the union of two intervals.

COROLLARY. In the lattice of closed open subsets of X(#), there
exists @ demumerable family that does not have a supremum.

Proof. Let ¢, be a sequence in I such that ¢, <e¢, <e, < +--
and ¢,—b. Let J,=[c, ¢,.) and f, = @,,. Assuming that the
corollary is false, let f (resp. g) be the supremum of the f, for =
odd (resp. even). {Caution: We mean here supremum in the lattice
sense, which must be distinguished from the pointwise supremum.}
Say f = ¢4 9 = 3. For m # n one has f,f, =0, thus f, <1 — f,;
it follows that fg = 0, therefore AN B= @&. By Theorem 3, 4 is
the disjoint union of a finite number of intervals; since ADJ, for
all odd =, the rightmost nondegenerate interval in this representation
of A has right endpoint b (which it need not contain). Similarly,
B contains a nondegenerate interval with right endpoint 5. Then
A N B contains a nondegenerate interval, contrary to AN B = @.

We write 5, 7, 6 for generic elements of X(.<#); there are the
obvious characters

(8) B.(f) = f(x) for feZA,
(9) 0,(f) = fw+) for fe2,
(10) V(f) = f(x—) for fe,

defined for xzel, x€la, b) and z € (a, b], respectively; we shall see in
Theorem 5 that there are no others.

THEOREM 4. Define ¥: 1 — X(#) by ¥(x) = 6, for x<la, b) and
T(b)=",. Then ¥ is right-continuous on [a,b) and left-continuous at b.

Proof. Let fe<Z. For all xel one has T(x)(f)= f*(x), thus
the theorem is immediate from §2, Proposition 1.

THEOREM 5.
X(#) = {B,:xzela, b} U {6,: xela, b)} U {7,: xc(a, b]} .

Proof. Let Be X(<Z) and assume to the contrary that B does
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not have one of the three indicated forms, equivalently, that ker 8
is not equal to (hence is not contained in) ker B,, kerd, or ker7,,
for any z. For each z<l, choose f, cker 8 with f,(x) # 0; replacing
f. by f.f., we can suppose that f, = 0, f,(z) > 0. For each z<[a, b),
choose g,cker 8 with g, = 0 and g.(x+) > 0; let J,cI be an open
interval with left endpoint 2z, such that g, is bounded away from
zero on J,. Similarly, for each x € (a, b], there exist h, cker 8, h, = 0,
and an open interval K, I with right endpoint 2, such that &,
is bounded away from zero on K,. For xzec(a,d) define

VZZKZU{x}UJx’ kxzkm+fx+gx’

and define V, = {a} U J,, k, = f, + 9., Vi, = K, U {b}, k, = hy + f,. For
every zel, V, is a neighborhood of 2 in I, and %, is a positive
function, belonging to ker B8, such that k, is bounded away from zero
onV,. SayI=V,U---UV,. Thenthe functionk==%k, + --- +k,,
belongs to ker 8 and is bounded away from zero on I; it follows
that 1/k is regulated, whence 1 = (1/k)k € ker B, which is absurd.

COROLLARY 1. X(.<2Z) has the cardinality of the continuum.

We write « for generic elements of X(%), specifically a.(f) =
f(x) for xel, f € €; the mapping I — X(Z) defined by z+—a, is a
homeomorphism [4, Ch. I, §3, Cor. 2 of Prop. 1]. If Be X(<#),
then B|% € X(¥), thus B|% = a, for a unique x € I; defining &(8) =
2, we have a continuous surjection

(11) 0: X(B)—— 1, Qs =B|% for Be X(F).

For the mapping ¥ of Theorem 4, one has @-¥ = id;; so to speak,
¥ is a right-continuous cross-section for @. {No continuous cross-
section exists, since X(<#) contains no connected subset with more
than one element.}

COROLLARY 2. @7'({a}) = {B,, 0.}, 27'({b}) = (B, 7}, and @7 '({x}) =
{B., Vs 0.} for z€(a,d).

COROLLARY 3. If £€ X(<%), there exists c€ I satisfying one of
the following three conditions: (i) &(f) = f(c¢) for all fe.#; (ii)
&) = fle+) for all fe.=2; (i) &) = fle—) for all fe ..

Proof. Let B = &|.2 and cite Theorem 5.

Here is another perspective on Corollary 3. Regard Ivd (I with
the discrete topology) as a dense subspace of its Stone-Cech com-
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pactification X(<#). Every bounded function f: I— C may be uniquely
extended to a continuous function f: X(#)— C. The message of
Corollary 3: for each ¢ € X(<Z), there exists cel such that -one of
the following three conditions holdsA: @) f(&) = f(e) for all fe #; (ii)
f& = fle+) for all fe.zz; (iii) f(&) = f(c—) for all feB {We
remark that all three cases occur, since the mapping X(#) — X(.#)
defined by restriction of characters is surjective [13, p. 126, (3.2.16)].}

COROLLARY 4. For every x € I, {8} 1s an isolated point of X(.#).

Proof. It is clear from Theorem 5 that

{8.} = {Be X(2): |B(p) — Bup)| <1} .

Theorem 2 is an obvious consequence of Corollary 4. The proof
of the next corollary employs the ‘hull-kernel’ characterization of
the topology of X(<#). If .o is any commutative Banach algebra,
the Gelfand topology on X(.%) is finer than the hull-kernel topology;
when the two topologies coincide, .o is said to be completely re-
gular. Every commutative C*-algebra is completely regular [13,
p. 174, (3.7.2)]. In particular, .&# is completely regular; thus, if S
is any subset of X(.<#), the closure of S is given by the formula

(12) S = hk(S) = {ﬁ' e X(27): ker > ) ker ,s} .

COROLLARY 5. Let X(<Z)= E U F U G be the partition of X(#)
defined by

(13) E={B,xela,bl}, F={0,2z¢c[a,b),G={7,:xe(a,d]} .
Then E is a dense, open, discrete subspace of X(H#), and

(14) F=G=FUG=X(#)—E

18 @ perfect subset of X(.#) with empty intsrior.

Proof. That E is dense results from [),.; ker 8, = {0}, thus it is
clear from Corollary 4 that E has the properties claimed for it. From
§2, Corollary 8 of Proposition 1, one sees that k(F)= 4" = kG),
therefore F = hi(F) = hk(G)_= G; since F' UG =(F is clos_ed, it follows
that FUG=FUG=FUG=F =G. Evidently FcG and GC F,

therefore F'U G is dense in itself. Since F U G is disjoint from the
dense set E, its interior is empty.

From Corollaries 4 and 5, one sees that a subset of X(&Z) is
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dense if and only if it contains F, and that X(.<Z) has 2° open subsets.
The second assertion of Corollary 5 is an instance of a theorem of
A. Pelczyinski and Z. Semadeni: a compact space T contains a non-
empty perfect subset if and only if there exists a continuous surjection
T— I ([12], [11, p. 29, Th. 2]). Incidentally, X(<Z) is not the St\gne-
Cech compactification of its dense open subspace E; for, the Stone-Cech
compactification of a discrete space is extremally disconnected [19,
p. 300], and X(<#) is not extremally disconnected (by the corollary
of Theorem 3 [cf. 17, p. 185, Th. 14]). {Alternative proof: # has
¢ idempotents (Theorem 3), whereas < has 2° idempotents, thus &
and .%Z are not isomorphic.} The fact that X(<#) contains a dense
subspace E homeomorphic to I, (I with the discrete topology) was
predictable from [5, p. 225, Th. 1], since <Z contains the functions
Paye

An explicit formula for the closure operation in X(<2) is given
in Corollary 7; the following notations prepare the way. For a subset
A of I, we write .7, for the kernel of the set {8,: x € A}, that is,

(15) fl:ﬂ4ker,8m={fe%: flA =0},

We write A, for the set of x eI for which there exists a sequence
x, € A such that x, > x and z, — x, thus

(16) A, ={xel. xe(x, +)N A};
this is, so to speak, the ‘right derived set’ of A. Similarly, we write
amn A ={xel. xe(—o,x)N A} .

Then A}, U A_ = A’, the usual derived set of A. One has (AU B), =
A UB,, (AUB_=A"_JB.. If Jis a subinterval of I with endpoints
¢, d (¢ £d), then J, = [¢,d) and J_ = (¢, d].

LeMmMA 1. Let ACI,_S= {B,oxeA},cel. Then: (i) /_9065 if
and only if ce A; (i) 6,€ S of and only if ce A'; (iii) v, €S if and
only if ce A”.

Proof. (ii) Suppose 6,€ S (in particular, ¢ < b), that is, ker d,
k(S)=._%,. Assuming to the contrary that ¢ ¢ A, choose an open inter-
val JcI with left endpoint ¢, such that ANJ= @; then ;| A =0 but
@s;(c+) = 1, contrary to the supposition that .#, C ker §,. Conversely,
suppose c€ A, and choose a sequence c,€ A such that ¢, > ¢ and
¢, —c¢. For every fe . f(e,) — flc+); if, moreover, f €. %, then
f(e,) = 0 for all n, whence f(c+) =0, f €kerd,.

(iii) is proved similarly, and (i) is obvious.
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LEMMA 2. Let AcI, S={B,;xcA). Then S=SU{d,:xc A }U
{v,.xe A’}

Proof. Immediate from Lemma 1 and Theorem 5.

COROLEARY 6. The closed open subsets of X(#) are the sets of
the form S,, where A is the union of finitely many subintervals of
I and S, = {B,: xc A}.

Proof. The closed open sets in X(.#) correspond to the idem-
potents of <2 via the Gelfand isomorphism. By Theorem 3, the
idempotents of .<# are the functions ¢,, A the union of finitely many
subintervals of I. For such an A, the closed open subset of X(.Z#)
corresponding to ¢, is the set U(A) = {8 e X(A#): B(p,) = 1}; evidently
B.py) = 1 if and only if x€ A; é,(p,) =1 if and only if z€ A’; and
Y@, = 1 if and only if x e A’; therefore

UA) = {B,:xec A} U {0, xc A} U{7,:xec A"},
thus U(A) = S, by Lemma 2.
From Corollary 6 (or Theorem 3) one sees that X(<#) has ¢

closed open sets; a closed open subset of X(<#) either is a finite
subset of E or has cardinality c.

LEMMA 3. Let Bcla, b), S = {0,;xeB). Then SNF = SU
{.:weB).

Proof. Let x¢€[a, b); the problem is to show that §,€S —zx¢c
BU B..

Proof of =: Suppose x¢ BU B,. Since z < b and z ¢ B, there
exists ¥,z <y <b, such that BNn(x, ¥) = @. Since z¢ B, also
Bnlz,y)= @. Let J=[x,¥9),f=@,;,. If teB thent<zort=y,
and in either case f(t+)=0; thus fe);,.zkerd, = k(S). But
flz+) =1, thus kerd, 2 k(S), that is, d,¢S.

Proof of —=: Suppose z € B’.. Choose a sequence z, € B such that
z, >« and x,—2. Then 0, — 0, by Theorem 4, thus §,€S.

LEMMA 4. Let Bcla, b), S={0,:x € B}. Then SNG={V,:x<cB'}.
Proof. Let z¢€(a, b]; the problem is to show that v,€S = xzc B’.

Proof of =: Suppose xz¢ B’.. Then, since a¢ < z, there exists
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¥y, a <y < x, such that the interval J = [y, ) is disjoint from B.
Let f=¢,. If teB then t<y ort=x, and in either case f(t+)_= 0;
thus fek(S). But f(x—) =1, thus ker?, 2 k(S), that is, 7, ¢S.

Proof of =: Suppose z € B’.. Choose a sequence z, € B such that
x, <%, —2x If fek(S) then f(x,+) =0 for all »; thus, in the
notation of §2, Proposition 1, one has f*(x,) =0 and 7,(f)= f(z—)=
f*(z—) = lim f*(»,) = 0. Thus kerv, D k(S), that is, 7,€S.

LEMMA 5. Let BCla,b), S ={0,:xc B}. Then
S=8SU{d,;xeB,}U{Y,:xeB}.

Proof. Since SCF, one has S c F = F UG, therefore S=(SnNF)U
(S N G); cite Lemmas 3 and 4.

By dual arguments one shows:

LEMMA 6. Let Cc(a, b, S={7,:2eC}. Then
S=8SU{r:2eC}U{d,:xzeC’}.

COROLLARY 7. Given any set S C X(#), say
S={B,:xcA}U{d,:xeBlU{v,:xeC},
where A Cla, b], BC|a, b), Cc(a, b]l. Then
S=8U{d.:xe(AUBUC)JU{7,:xe(AUBUC)}.

In particular, S is closed if and only itf (AUBUC).CB and
(AUBUQC).cC.

Proof. This is immediate from Lemmas 2, 5, and 6, and the
‘additivity’ of the derived set operations.

Here is an amusing consequence of Corollaries 6 and 7. Let
AcI. In order that A be the union of finitely many intervals, it
is necessary and sufficient that there exist partitions I = A, U 4,,
[e, b) = B,U B,, (a, b] = C,UC,, with A= A,, such that (4,UB,UC,).CB;
and (4, UB,UC).cC, for 1 =1, 2.

The next proposition is for application in §6. Let @: X(<#)— 1
be the mapping (11); let 8 ~ B’ denote the equivalence relation defined
in X(22) by @(B) = 9(B') (that is, by B| &€ = B'| %), write 4: X(F#) —
X(Z)[~ for the quotient mapping, and equip X(<#Z)/~ with the
quotient topology. The equivalence classes for ~ are the sets &7 '({z}),
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zxel (cf. Cor. 2 of Th. 5). Let @': X(<#)/~ — I be the continuous
bijection derived from @ by passage to quotients (thus @ = @'04); it
follows from compactness that @’ is a homeomorphism [1, Ch. I, §9,
Cor. 2 of Th. 2]. Finally, if I': &# — & (X(<#2)) is the Gelfand iso-
morphism, then for every fe% = & (I), one has I'f = fo®@. {Proof:
For all BeX(F#), (I'N)B) = B(f) = B|ENSf) = s (f) =-F(OB)) =
(f o @)B).}

PROPOSITION 2. For a function u: X(#)— C, the following
conditions are equivalent:

(@) uw= fo® for some continuous f:I— C;

(b) w = I'g for some continuous g: I — C;

(¢) u s comtinuous, and is comstant on each of the sets @ '({x}),
x € I.

In the notations of (a) and (b), necessarily f = g.

Proof. The remark immediately preceding the proposition proves
the equivalence of (a) and (b), as well as the final assertion of the
proposition. It is obvious that (a) implies (¢).

(¢) = (@): Since w is constant on each set @ *({x}), there exists
a factorization u = fo® with f:I— C; from the continuity of u, we
are to infer the continuity of f. Since (fo®@')od = fo(@'od) = fo® =u
is continuous, and since X(<Z)/~ bears the quotient topology, it
follows that fo@' is continuous; but @' is a homeomorphism, there-
fore f is continuous.

4. The character spaces of #Z* and _#. The notations P, @,
N, B, * . have the same meanings as in §2,and X(#)=FUFUG
is the partition described in §3, Corollary 5 of Theorem 5. The
commutative C*-algebras .2, #; #* are related by the isomorphism
RB* = AB[|.4"; the relation between their character spaces is given
by the following general lemma [cf. 13, p. 193, Th. 4.2.4]:

LemMMA. If T is a compact space, S is a closed subset of T,
and 7 1is the tdeal of & (T) annihilating S, then & (T)/F = &(S)
and 7 =&(T — S), therefore X(&(T)]-#)=S and X(.7)=T — 8.

Proof. - Consider the mappings 27 (T) — & (S) and . — Z(T — S)
defined by f+— f|S and f+— f|T — S and cite, respectively, the
Tietze extension theorem and the Stone-Weierstrass theorem. {Here
% (T — S) denotes the algebra of continuous functions vanishing at
infinity on the locally compact space T — S.}

The ﬁrst assertion of the following theorem was proved by E.
Hewitt [7, p. 91, Th. 5.1]:
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THEOREM 6. X(#*) is homeomorphic to F U G; X(_4") is homeo-
morphic to E, that is, to I, (I equipped with the discrete topology).

Proof. Identifying .2 (via the Gelfand isomorphism) with
& (X(#)), 4" is the ideal of <2 annihilating the closed set FUG
(§2, Cor. 1 of Prop. 1). Cite the lemma. {It is easy to see that the
homeomorphisms E— X(_#"), FFU G — X(<#*) are effected by restric-
tion of characters. Note, incidentally, that §,|.2* = B,|.#* for
zela,d), and 7,| F* = B,| F#*.}

The same reasoning shows that X(*<#Z) is homeomorphic to F U G.
This reminds us that *<#Z and ZZ* are isomorphic; indeed, it follows
from the relations #* = P(&#)=P(*# + 4") = P(*<) that P
effects an isomorphism of *<Z onto <2*. In view of Theorem 6, the
message of §2, Corollary 8 of Proposition 1 is that .+~ = &(1,).

5. The character space of <% 7. It will be shown that <Z 7"
has the same character space as .&#; first, we see that <Z7" can be
normed to be a Banach algebra [13, p. 302]:

LEMMA. Fquipped with pointwise operations and the norm

(18) W =vef + 1flle,

BT is a4 commutative, involutive Banach algebra with unity.

Proof. Here V!f denotes the total variation of f in I [8, p. 266,
(17.14)]. Let f, g€ <Z7"; from the identity

(fo)x) — (fo)w) = f@)lg(x) — gl + Lf(®) — f(W)]gw)

one sees that Vi(fg) = || fll.Vig + ||gll. V.S (this shows, in particular,
that fg € <#7"); it follows that the norm (18) satisfies || fgll < I f]l llg]l-
Completeness for this norm is easily deduced from [9, p. 43, Th. 8.6].

THEOREM 7. The mapping X(2)— X(F9") defined by B
BB 18 @ homeomorphism.

Proof. The mapping is continuous (for the Gelfand topologies)
and injective (e.g., because <# 7" is dense in .&Z for the sup-norm
topology). It will suffice (by compactness) to show that it is surjective.
Let e € X(<#7") and suppose to the contrary that ¢ = 8|.ZF ¥, equi-
valently ker e ¢ ker G, for all Se X(<#). Arguing exactly as in the
proof of Theorem 5, one constructs k € ker ¢ such that % is bounded
away from zero in I. It is then immediate from the identity
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(1/k) (@) — (1/k)y) = [k(y) — k(x)]/k(x)k(y)
that 1/k € <& 7; whence 1 = (1/k)k € ker ¢, which is absurd.

It follows that the closure operation in X(<#7") is also given
by the formula in Corollary 7 of Theorem 5.

THEOREM 8. Z7 1is completely regular.

Proof. As is true for every commutative Banach algebra with
unity, X(<#7") is compact for the Gelfand topology and quasicompact
for the hull-kernel topology [4, Ch. I, §1, Prop. 4], and the Gelfand
topology is finer than the hull-kernel topology; to prove that the two
topologies coincide, it will suffice to show that the hull-kernel topology
is separated. To this end, it suffices [6, p. 111, TM] to show that
if ¢, ¢, are distinct characters of <#¥; then there exist functions
Jo i In ZZ7 such that ¢(f) =¢&(f,) =1 and f.f,=0. In view of
Theorem 7, one is reduced to the consideration of a small number
of cases. For example, suppose ¢, = B,|.Z 7" and ¢, =§,|Z7; if
r=vy, take fi= o, and f,= @u,.; if x>y, take f, = ¢, and
2 = Pu,m- The remaining cases are equally transparent. {We remark
that <Z 7" is not isomorphic (as an algebra) to a C*-algebra; for,
the spectral radius of fe.cZ7 is ||f|l., and .<#7" is not complete
for this norm.}

An example due to G. Silov [ef. 13, p. 302, A.2.5] fits into the
present circle of ideas. Let us write <2 7, for the subalgebra N
ZB7 of F 7. It is elementary that <Z 7, is closed in <Z 7" for the
norm (18), hence is a Banach algebra for this norm.

THEOREM 9 (éilov). X(Z 77) is homeomorphic to X(%) (that s,
to I).

Proof. Recall that X(¥) = {a,: v €I}, where a,(f) = f(x) for
fe&. The mapping X(&)— X(Z7;) defined by a—a|F 7, is
continuous and injective; to prove that it is a homeomorphism, it
suffices to show that it is surjective. Let e€ X(<#7;) and assume
to the contrary that ¢ = a,|<Z 7, for all z €I, that is, kere ¢ kera,
for all xel. Repeating a classical argument (simpler than that in
Theorem 5), one constructs a function %k € ker ¢ such that % vanishes
at no point of I; since %k is continuous, it is bounded away from zero;
therefore 1/k € <& 7;, whence 1 = (1/k)k € ker ¢, which is absurd. {In-
cidentally, by a simplification of the argument in Theorem 8, one
sees that <#7; is completely regular [13, p. 302]. (There is only
one case to consider: ¢, = ,| Z7;, ¢, = @,|.F 7, with z + y.)}
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Next, we study the decomposition f = Pf + (1 — P)f of §2 for
functions of bounded variation.

LEMMA 1. If fe<ZY then Pfe #F7 and VYPS) ZVLf.

Proof. Let feZ7 and let a=a, <2, < +-- <2, =10 be any
subdivision of I; we are to show that >, |f*(x;,) — f*(x,_)| S VLS.
Choose points ¥, L <7 <% + 1, such that z,_, <y, <z, for 11
n—Lland @, , < Yp <Ynr <&, = b. Then Vif = 325 | f(y) — f(y.-);
the desired inequality results on letting y,—x,_, for 1 <7< # and
Yni— b,

It follows from Lemma 1 that P(Z7") = #* N & 7, and that
[Pl < ||f]| for all fe<Z7"; the restriction of P to &7 is an
algebra x-homomorphism P, Z7" — <& 7, continuous for the norm
I| ||, idempotent; therefore, in the Banach algebra (<Z 7; || ||), ker P, =
N NP7 is a closed ideal and P(F 7)) = F* N F7 is a closed
x-subalgebra. Passing to quotients, one has an isomorphism

BYNAN NBT) = B*NZT

it follows from Theorem 8 that the algebras .+ N <F 7" and &Z* N
B are also completely regular [13, p. 84, (2.7.2)]. {We remark
that the upper and lower semicontinuous regularizations of a real-
valued function in <& 7" are also in < 7"; this is immediate from
the formulas mentioned at the end of §2.} Here are some useful
characte:rizations of 4" NZFT:

LEMMA 2. The following conditions on a function f:I— C are
equivalent:

(a) fell(-[)’ that ’iS, ||f||1 = erllf(x)[ < + oo

b)) fetr NFT;

() feZ7 and the set {x € I: f(x) = 0} 1s denumerable;

d) feZ7 and the set {x€l: f(x) = 0} is dense in I.

For such a function f one has

(19) Wl =Vef 201 .

Proof. (a)=(b): If fel(l), it is obvious that Vif < 2||f], <
+ co, therefore fe F 7 .2, and the set {xel: f(x) # 0} is denu-
merable, thus f €.+ by §2, Corollary 3 of Proposition 1.

(b) = (¢) is immediate from §2, Corollary 3 of Proposition 1, and
(¢) = (d) is obvious.

(d)=(a): Let f € £ 7 and suppose that the set D= {x ¢ I: f(x) = 0}
is dense in I. Consider any finite subset of I, say o, < , < -+« < @,.
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Choose ¥, =+, ¥, €D such that y,e(x, ;) for L<i<n —2 and
Ty < Ynos < Yo < 2,; then

Vif 2 B 1F@) — F@)l + 1w — F@)| = B @],
thus f € (D) and || £, S V2F.

LEMMA 8. " N B 1is the closed linear span in B of the
functions ¢, x €1, for the norm (18).

Proof. Let .# be the linear span of the functions ¢, x<€l.
Since .+ N.Z 7 is closed for the norm || || (remarks following
Lemma 1), it contains the closure of .&. Conversely, suppose f €
A" N.Z7. By Lemma 2, there exists a sequence f,€.# such that
IIfo — Fll.—0, and Vi(f, — f)—0by (19); since||f, — fll. = [Ifa — fll,
it follows that ||f, — f||— 0.

THEOREM 10. (i) X(_4" N & Y") 18 homeomorphic to E, that s,
to I, (I with the discrete topology); (ii) X(#* N .F ") is homeomorphic
to FUG. :

Proof. (i) {To put it less obliquely, X(_+ N .Z7") is discrete
and consists of the point evaluations.} Suppose e X(4#" N FZ7);
by Lemma 3, there exists xze€l such that e(p.,)=1; for y # «,
1+ epw) = 8P + Puw) = &(Pr,w) is 0 or 1, therefore &(py,) = 0; it
follows from Lemma 3 that ¢ = B8,| .+ "N 7. Thus, the mapping
E—X(1+" NF7) defined by BB 4" N<ZF7 is bijective, and
X( " NZ7)is discrete by the proof of §3, Corollary 4 of Theorem 5.

(ii) If ee X(A*N.ZF7") then ¢o Py X(<Z "), therefore (Theorem
7) there exists 8 € F UG such that 8|<# 7 = e¢o P,, whence B|.Z* N
B = e¢e. Thus, the continuous mapping F UG — X(#*N FT)
defined by restriction of characters is surjective; to show that it is
a homeomorphism, it suffices to show that it is injective. Let 8, 8, ¢
FUG, B, # B,; we seek fe#* N .Z7 such that B,(f) # B,(f). If
B, B, are induced by the same point = of I, say 8, =7, and 8, = 4,
then ¢ < z < b and we may take f = ¢, .. Suppose B, B, are induced
by distinct points z,y of I,z <y; if 8, =7, (and B, =7, or J,),
take f = @p,,.0; if B, =0, (and B, = 7, or §,), take f = ¢, ,, for any
7 such that z <» <.

6. The dual spaces of &, .#*, _+. The dual space %’ of #
has been calculated by H. S. Kaltenborn [10]; we review here his
formula for the continuous linear forms on <Z. To conform to his
notations, we write T for elements of &', y for elements of <Z7;
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and ¢ for elements of I'(I) (by §5, Lemma 2, these are the functions
in 4" N.ZF7). Each yec.Z7 defines T,c.#" by the formula

(20) 1.f=\ray tor rez,

where the right side is the ‘modified Stieltjes integral’ whose existence
was proved by B. Dushnik (see [10]): it is the limit, in the sense of
refinement of subdivisions @ = x, <2z, <---<w, = b of I, of the sums

3. @) — (@]

where &, is required to be a point of the open interval (z,.,, z,). On
the other hand, if ¢ €!*(I) then the formula

(21) Tof = 21 (@) — fle+)lgx) for fe#

defines T,e.#’. {Note that f(b+)= f(b—) by the convention per-
taining to the definition of f on (b, b+1]: see the remarks in the proof
of §2, Proposition 1.} Caution: The subscript on T determines the
formula of definition. The following lemma is readily verified:

Lemva. () If ye &7 then T4 =0 and ||T,|[= Vi =
T 2*|. (i) If ¢el'(I) then T,|.2* = 0, || Tl = 2||¢]l, and
| Tyl AN = Il

THEOREM 11 (Kaltenborn). Ewvery T ec.<Z' has a representation
T=T,+ T, wheré¢ e Z7 and ¢ €l(I); ¢ 1s unique and ) is unique
up to an additive comstant.

If, in Theorem 11, one requires that ye€.# %, (the functions in
ZY" that vanish at @), then 'y is uniquely determined by 7. Note
that Viy is a norm on Z 7;.

COROLLARY 1. (Z#*) = Z# ;.

Proof. If ye <z 7; then T,|.#*e(#*) and ||T,| #*|| =Viy by
the lemma. Conversely, if A€ (#*) then T = NnoPe.F# and T| 4+ =
0; therefore by Kaltenborn’s theorem there exists a unique ¥ € % 7,
such that T= T,, whence T,|#Z* =\. {In particular, 7] is a
Banach space for the norm Viy [8, p. 271, (17.85)].}

E. Hewitt has shown that (ZZ*) may be represented as the space
of all bounded, finitely additive measures defined on the ring of
subsets of I generated by the intervals of the form [¢, d),a ¢ <d < b
[7, p. 90, Th. 4.10].
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COROLLARY 2. 7 = I}(I).

Proof. If pel(I) then Ty| .+ €.+ and || Ts| +"|| = ||4]l,. Con-
versely, if pe _#"" then T = po(1 — P)e . #' and T|.#* = 0; therefore
by Kaltenborn’s theorem there exists a unique ¢el¥I) such that
T=1T,, whence T,|.+ = p. {Alternate proof: Since " = (1,
(§2, Cor. 8 of Prop. 1), it is elementary that .+~ = IXI).}

Thus, the structure of .22’ is as follows: given \e(<Z*) and
e 4", one forms T = NoP + po(1 — P); this is the general element
of . “#’. One can also deduce Theorem 5 from Kaltenborn’s formula;
the computations are tedious but thoroughly elementary (nothing so
fancy as the Gelfand theory is needed).

Since .2 is isomorphic to & (X(#)), &' may be identified with
the space _Z(X(<2)) of measures on X(<#Z). The rest of the paper
is devoted to the measure-theoretic description of .ZZ'.

By measure we mean complex (Radon) measure |3, Ch. III, §1,
Def. 2] (equivalently, complex regular Borel measure). The measures
on I are the Lebesgue-Stieltjes measures induced by functions of
bounded variation ([8, p. 331, (19.48)], [14, p. 263]). The mapping
0. X(=#) — I described in formula (11) will figure in the following
results. If g is a measure on X(<Z), the image of p under @ is the
measure v = @(y) on I defined by v(f) = u(f - @) for f €%. For every
measure v on I, there exist measures g on X(<2) such that &(y¢) = v,
and if v is positive then g can be chosen to be positive [3, Ch. IX,
p. 33, Lemma 1]. Thus, the mapping . #Z (X(#))— .#(I) defined by
p— O(p) is surjective; it is linear, positive and contractive; in view
of §3, Proposition 2, its kernel is the subspace I'(&)‘, consisting
of all measures g on X(<2) that are zero on the image of & = (1)
under the Gelfand isomorphism [': & — & (X(<#)). We remark that
the quotient mapping . Z(X(#2))/[(&)* — .# (I) is isometric. {Proof:
Identify # with & (X(#)) via I'; the mapping p¢ — @(x) then becomes
the mapping &' — %’ defined by p+ pt|%’, with kernel °*. The
quotient mapping #'/&*— &' is an isometric vector space iso-
morphism [16, p. 91, Th. 4.9].}

THEOREM 12. (i) X(<#Z) admits monzero diffuse measures. (ii)
The support of every diffuse measure on X(#) is contained in
FyUG. (iii) A positive measure p on X(#) s diffuse of and only
if () is diffuse.

Proof. A measure on a space is said to be diffuse if every one-
point subset of the space is negligible. The support of a measure
is the complement of the largest negligible open set in the space.
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(iii) Let g be a positive measure on X(<#) and let v = &(p).
For every x €I, one has p(@ '({x})) = v({«}) [3, Ch. V, §6, Cor. 1 of
Proof. 2]. Since the @7'({x}) form a covering of X(<#2), it is clear
that the diffuseness of v implies that of p; since the sets @7'({x}) are
finite (§3, Cor. 2 of Th. 5), the converse is also true. {The diffuse
measures on I are the Lebesgue-Stieltjes measures induced by con-
tinuous functions of bounded variation [8, p. 332, (19.52)].}

(i) Let v be a nonzero, diffuse positive measure on I (for
instance, Lebesgue measure), let ¢ be a positive measure on X(#)
such that @(y) = v, and cite (iii). {In view of §3, Corollary 5 of
Theorem 5, this is a manifestation of a general theorem of A. Pelezynski
and Z. Semadeni: a compact space admits a nonzero diffuse measure
if and only if it has a nonempty perfect subset ([12, p. 214], [11,
p. 52, Th. 10]).}

(ii) Let ¢ be a diffuse measure on X(<Z). Replacing u by ||,
we can suppose that z is positive. Since the set E in Corollary 5 of
Theorem 5 is open, one has p(&) = sup {{(K): KC E, K compact} [3,
Ch. IV, §4, Cor. 4 of Th. 4]; every compact subset K of the discrete
space E is finite, hence is negligible by the hypothesis on g; there-
fore u(HE) = 0, thus E [ Supp p.

To each T €.’ there corresponds a unique measure f, on X(2)
such that Tf = p(I'f) for all fe (" the Gelfand isomorphism);
T+ p is an isometric, positivity-preserving vector space isomorphism
B — (X (RP)) = (X(#))Y. If, in particular, T'= T, for ye
Z7" (resp. T = T, for ¢ cl'(I)), we write p, (resp. ;) for t.

LEMMA 1. O(yy) = T| % for all Te H#.

Proof. Let Te<#',v= O(p). For all fe&(I) one has v(f) =
)ur(f°¢) = ﬂz'(['f) = Tf-

LEmMMA 2. (i) For every ¢el(I), D(yy) = 0; (ii) for every xe
B Y; O(p,) is the Stieltjes integral (‘ummodified’) induced by .

Proof. (i) T,|Z = 0 (lemma to Theorem 11).

(ii) For few, Tuf = Sbfdx is the limit, in the sense of refine-

ment of subdivisions, of the aRiemann-Stieltjes sums >, f(&)x(x:) —
x(x;_,)], where, since f is continuous, & can be any point of the
closed interval [z,_,, z,].

LEmMMA 8. For Te.<#', the following conditions are equivalent:
(a) Supp g, c FUG; (b) T= T, with Y€ Z7:

Proof. (a)=(b): By hypothesis, the open set E is contained
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in [ Supp- p,, therefore p,|E = 0. Thus, if ge&(X(#)) with
Supp g E (in other words, if ¢ is a finite linear combination of char-
acteristic.functions @ ,), then p(9) = 0. In particular, for all x el
one has 0 = p(pp,) = tr(l'py,) = Ty, therefore T =0 on 4+ (§2,
Cor. 2 of Prop. 1). Thus, writing 7'= T, + T, as in Theorem 11,
one has 0=T| 4" = Ty| N+ T;| 4" = T4|_+; whence ¢ =0, T = T,.

(b)=(a): If T=1Ty, yc<#F7, then for all xe€l one has 0=
Tp = tr(Ps,); reversing the preceding argument, we conclude that
Ur|E =0, thus Supp ¢, C FUG.

LEMMA 4. For Te.ZZ', the following conditions are equivalent:
(a) pr ts diffuse; (b) T = T, with ye Z#7..

Proof. (a)=(b): Write ¢ = ¢, and suppose p is diffuse. Let
t=t — My + i, — i, be the canonical decomposition of g, where
the p, are positive measures [3, Ch. III, §1, Th. 3]. The g, are also
diffuse, therefore Supp ¢, C FFUG by Theorem 12. Say g, = p,
T,e #'. By Lemma 3, one has T, = T,, with y,e#7; thus g, =
.. We can suppose X, (@) = 0; then, since g, = 0, equivalently T, = 0,
it follows that y;, is an increasing real-valued function = 0. By
Lemma 1, Ty,|% = Ti|€ = ®(¢r,) = @(tt;), which is diffuse (Theorem
12), therefore y, is continuous. Finally, T = Ty, where ¥ = %, — X» +
i)Yy — %), is continuous and of bounded variation.

(b) = (a): Suppose T = T, with x €. 7;; one can suppose, by
linearity, that y is real-valued, increasing and continuous.. Then
O(py) = Ty| ¥ is a diffuse measure on I [8, p. 332, (19.52)], therefore
Yy is diffuse (Theorem 12).

If ¢cl(I), a suggestive notation for T, is Di,.; s(x)}B, — 0,)
(with the convention that §, = 7,); since ||8, — 0,|| = 2, the sum is
convergent for the norm of .<2’. In the same way, one can form
‘weighted sums’ of arbitrary families in X(<#), indexed by I, with
‘weight function’ ¢ € I(1).

THEOREM 13. Every T e .2’ has a representation
T=Ty+ 3 6@8+ 3 6@h. + 3 6@,
where € B Y, and ¢, ¢, ¢ € U'(I).

Proof. In view of Theorem 11, it suffices to consider the case
that T = T, with y € <#7; and by linearity one can suppose that %
is real-valued and increasing. Decomposing ¥ as the sum of an
increasing continuous function 4 and an increasing ‘saltus’ function
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[18, p. 92, 2.4.2], we are reduced to the case that y is a saltus
function (positive and increasing). Then ¥ = >'w.X., a uniformly
convergent series, where ¥, is an increasing step function with a
single discontinuity c,, say X, = Un@(, + (WU + U2)P.,51, and where
> s, >, ., are convergent positive term series. Since, for each n,
L— i = Duksa X 18 an increasing function +,, it follows that
Vet — Sk t) = ¥u () — 4,(a)— 0 — 0, therefore Tyf = 37, Ty, f
for all fe<Z. Since Ty f = unf(c,—) + usf(c,+) for all f e .52, one
has Ty, = u,Y., + %.0.,, therefore T, = 3} u.,Y., + 3 u,0,,.

With notation as in Theorem 13, let S = T — Ty; then p, = ¢y +
Us, where py is diffuse (Lemma 4) and g is atomic; such a decom-
position of a measure is unique [3, Ch. V, §5, Prop. 15], thus the
representation of Theorem 13 is unique: the ¢, are unique and « is
unique up to an additive constant. One can also write S in the
form S =3, ¢(8)-B, where ¢: X(Z)— C and 3; |¢(B)| < + .
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