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THE CHARACTER SPACE OF THE ALGEBRA OF
REGULATED FUNCTIONS

S. K. BERBERIAN

The character space of the algebra of regulated functions
on a closed interval is computed and is identified with the
character space of the algebra of functions of bounded vari-
ation. The dual space of the Banach space of regulated
functions is analyzed in terms of the character space.

l Introduction* The regulated complex functions on a compact
interval form a commutative C*-algebra with unity. The objective
of this paper is to explore the character space of this algebra, and
those of several related Banach algebras. E. Hewitt's computation of
the character space of one of the related algebras [7] is given a new
interpretation (§4). In pre-Banach algebra times, H. S. Kaltenborn
gave an elegant description of the dual space of the algebra of
regulated functions [10]; we re-examine his results from a Banach
algebra point of view, recasting slightly his formula for the con-
tinuous linear forms (§6).

Let I = [a, b] be a nondegenerate closed interval of the real line
R, fixed for the rest of the paper. A complex-valued function /
on I is said to be regulated if it possesses (finite) one-sided limits
at every point of I; that is, the limits

f(e + ) = lim /(a) , / ( * - ) = Km f(x)
x-*c,x>c x—*c,x<.c

exist in C for every c e [a, b) and every e e (a, 6], respectively. Every
regulated function on / is bounded. We write & = ^?(/) for the
set of all regulated functions / : I—* C. With the pointwise operations
and the norm | | / | L = supββ/l/(&)l, & is a commutative C*-algebra
with unity [16, p. 276, Def. 11.17]: completeness for the norm
metric follows at once from the "iterated limits theorem" [15, p. 149,
Th. 7.11]. To enlarge the perspective a bit, & is a closed *-subalgebra
of the commutative C*-algebra & = &(I) of all bounded complex
functions on I. In turn, the algebra ^ = ^ ( / ) of all continuous
complex functions on I is a closed subalgebra of &\ thus ^ c ^ 5 c

A complex function / on I is called a step function if there
exists a partition of I into finitely many subintervals (possibly de-
generate) on each of which / is constant. We write £f — Sf(J)
for the algebra of all step functions on /, and &T = &T(ΐ) for
the algebra of all complex functions on I of bounded variation. It
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is clear that S? c &Ψ* and that Sf is the linear span of the set of
characteristic functions ψj of subiήtervals / of I; and &Tc&
because, by the Jordan theorem, &T is the linear span of the
monotone functions (which are evidently regulated). Thus &'c
&Ta&\ since Sf is dense in & for the sup-norm topology [2,
Ch. II, §1, n° 3], & is the completion of both S? and &T for
this norm. {In particular, έ^ψ* is not complete for this norm. In
§5 we study έ%Y* as a Banach algebra relative to another norm.}

2* Some decompositions of regulated functions* Regulated
functions have a certain capacity for self-improvement:

PROPOSITION 1. Let / e ^ P . Define /*:!—>C by the formulas

(1) /*(*) = / ( * + ) for xe[a,b), /*(δ) = ../(&-) .

/ * e ^ ? . ikfore precisely: (i) /* is right-continuous on [α, δ);
(ii) /* is left-continuous at b; (iii) /*(& — ) = f(% — ) for all xe(a, δ];
(iv) ||/*||oo ^ | | / |U; (v) /*(») = /(a?) for all but denumerably many
values of x.

Proof. {The motivation for the definition of /*(&) is that, when
considering possible discontinuities of / at the endpoints α, δ, it is
convenient to extend / to the interval [a — 1, δ + 1] by defining
f(x) = /(α + ) on [α - 1, α) and /(a?) = / ( δ - ) on (δ, δ + 1]. The ex-
tended function will then have at most removable discontinuities at
α, δ, and /* is continuous at these points.}

(iv) is obvious, and (v) is immediate from the fact that / is
continuous at all but denumerably many points of / [2, Ch. II, §1,
Th. 3].

( i ) Let c 6 [a, δ), c < cn < δ, c^ —• c. For each n, choose xnf cn<
xn<b, such t h a t \f(xn) - f(cn+)\ < 1/n and \xn- cn\ <l/n; then

xn --> c, therefore f(xn) ->f(c + ), therefore | f(c+) - f(cn +) | —> 0.
(iii) is proved similarly, and implies (ii).

The mapping P: & —> & defined by

(2) P/ = /

is an algebra *-homomorphism, continuous for the sup-norm topology,
idempotent (P 2 = P) . We write

( 3 ) <£*?*

for the range of P, and
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( 4 ) Λ~ = ker P

for the kernel of P; thus ,A^ is a closed ideal of ^?, and <^* =
ker (1 — P) is a closed *-subalgebra of ^ that contains <&. {Remark:
It is easy to see that | | P | | = 1 and | |1 - P\\ = 2.} Every / e ^ T has
a unique decomposition f = g + h with # e ̂ ?* (that is, P# = #) and
h 6 ̂  (that is, Pft = 0), namely g = Pf, h = f - Pf.

COROLLARY 1. (ϊ) &* is the set of all ge& such that g is
right-continuous on [a, b) and left-continuous at b; (ii) ^Y* is the
set of all he& such that h(x + ) — 0 for all x e [a, &) and h{x — ) — 0
for all x e (α, δ].

Proof. This is clear from Proposition 1 and the definition of /*•

From (ii) of Corollary 1, one sees that for h e ̂ Y\ the set of
discontinuities of h is the set {x e I: h(x) Φ 0}.

COROLLARY 2. (i) %Ar is the closed linear span in & of the
characteristic functions φ{x], xel; (ii) &* is the closed linear span
in & of the characteristic functions φJf where J is a subinterval
of I such that either J = [c, d) with d < 6, or J = [c, δ]

Proof, (i) If / = <pj, J a subinterval of Z, then /* can differ
from / only at the endpoints of J; therefore if / is a step function,
then (1 — P)f = f — /* vanishes at all but finitely many points
(hence is a linear combination of functions φ{x}). Suppose he<yK
Choose a sequence of step functions fn such that fn—+h uniformly
in J; then (1 — P)fn —> (1 — P)h = h uniformly, whence (i).

(ii) Let ^f be the indicated set of subintervals of /; these
are the subintervals J of 7 such that ψj e ̂ ?* . Let ,^?0 be the closed
linear span of the φj9 Je ^\ evidently ^?0 c ^?*. If / is the charac-
teristic function of a subinterval of I with endpoints c, d, then /*
is the characteristic function of the interval in ^J? with endpoints
c, d; therefore /* 6 ̂ ?0 whenever / is a step function. Suppose g e
&*. Choose a sequence of step functions fn such that fn~+g uni-
formly in I; then ft—*g* — g uniformly, whence g6^?0.

E. Hewitt studied the algebra of restrictions to [α, 6) of the
functions in ^?*; identifying the two algebras in the obvious way,
part (ii) of Corollary 2 corresponds to Theorem 4.5 of his paper [7,
p. 87]. Here are some useful characterizations of

COROLLARY 3. The following conditions on a function f:I—>C
are equivalent:
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(a) fe^Γ;
(b) fe&e,f(x + ) = O for all xe[a, 6);
(b') / e &, f{x~) = 0 /or all x e (α, 6];
(c) / e & and the set {x e I: f(x) Φ 0} is denumerable;
(d) / e & and the set {x e I: f(x) = 0} is dense in I;
(e) there exist a sequence cne I and a sequence rneC with rn—>0,

such that f(cn) = rn for all n and f(x) = 0 for all other x.

Proof, (a) => (b), (b') by Corollary 1.
(b) => (c), (b') => (c): Clear from the fact that every fe& is

continuous at all but denumerably many points of L
(c) ==> (d): Obvious.
(d) => (e): From (d), it is clear that (b), (b') hold, hence also (c).

To prove (e), it will suffice to show that, given any ε > 0, the set
{xel: \f(x)\ ^ ε} is finite. Assume to the contrary that \f(xn)\ ^ e
for a (faithfully indexed) infinite sequence xn. Passing to a subse-
quence, we can suppose that xn is convergent, say xn —> x, and that
either άn < x for all n or xn > x for all n; in either case, f(xn)—>0
by (b)'or (b'), contrary to \f(xn)\ ^ ε. ' -

(e)=>(a): In the notations of (e), let /» = Σί=if*9><efcϊ; ^
e n

11/ — Alloo—>0, therefore / e ^ by (i) of Corollary 2.

Dually, one can define, for each / e ^ , a function */ e ̂  by
the formulas

( 5 ) *f(x) = /(«.-) for a; 6 (α, 6] , */(α) = /(α + ) .

Defining Q: &-* & by

(6) Q/=*/ (/

one sees that Q has properties analogous to those of P; in view of
the symmetry in Corollary 3 of Proposition 1, the kernel of Q is
also ΛT\ we write *̂ g* = Q ( ^ ) , which is the set of all / e ^ 5 that
are left-continuous on {a, b] and right-continuous at a. In view of
Proposition 1 and its dual, inspection of the definitions yields the
formulas

( 7) PQ = P , QP=Q .

{We remark that if / 6 & is real-valued, then the upper and lower
semicontinuous_ regularizations of / [1, Ch. IV, §6, n° 2], namely
the functions / = lim sup f,f = lim inf /, are given by the formulas
/ = max {/, Pf, Qf), f = min {/, Pff Qf}, hence are obviously regulated.
Writing g = /, h = / — /, one obtains a decomposition / = g + h with
g 6 & upper semicontinuous and h e oΛ̂  (by criterion (c) of Corollary 3
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of Proposition 1). However, such decompositions are not unique, nor
do they possess the algebraic properties enjoyed by the decompositions
described earlier; they will play no role in the rest of the paper.}

3* The character space of έ%m A character of a commutative
Banach algebra J^ is an algebra epimorphism J^—*C. The set
X(*$f) of all characters of jzζ equipped with the topology of simple
convergence in *s$f, is a locally compact space, called the character
space of Jtf (this topology on X(jy) is called the Gelfand topology);
when Jϊf has a unity element, X(S%f) is compact [4, Ch. I, §3].
Since & is a commutative C* -algebra with unity, it is isomorphic
to the algebra r^{X(^)) of all continuous complex functions on the
compact space X(&) [4, Ch. I, §6, Th. 1]; our central objective is
to explore the space

THEOREM 1. X(&) is totally disconnected.

Proof. Let ^ be the family of all subintervals J of I. The
mapping ./9h-*GS(9v))/e^. is a continuous mapping of X(&) into a
cartesian product <%f of copies of the discrete space {0,1}; it is
injective because Sf is dense in &\ since X(&) is compact and
<%f is separated, the mapping is a homeomorphism of X(&) onto a
subspace of the totally disconnected space

THEOREM 2. X(&) does not have a denumerable base for opsn
sets (hence is not metrizable).

Proof Since ^(X(&)) is isomorphic to ^?, it suffices to prove
that the Banach algebra & is not separable [1, Ch. X, §3, Th. 1].
This is shown by the family of functions fx — φ{x], xel, which satisfies
| | Λ - Λ I U = 1 for xΦy.

The closed open sets of X(&) (there are lots of them, by Theorem
1) correspond, via the Gelfand isomorphism, to the idempotents in
the algebra ^ . The idempotents of & are all in 3f\

THEOREM 3. The idempotents of & are the characteristic func-
tions φA, where A is the union of finitely many subintervals of I.

Proof. Let / e & be idempotent, say / = φΛ, A a I. Let c e
[a, b) and consider open intervals Jal with left endpoint c; if one
had both J Π A Φ 0 and J Π (I — A) Φ 0 for every such J, then
/(c + ) would fail to exist, a contradiction. Thus, for every c e [a, 6),
there exists an open interval Jccl with left endpoint c, such that
either Jc c A or Jcal — A. Similarly, for each c e (α, δ], there exists
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an open interval Kcdl with right endpoint c, such that either Kc c A
or Kcczl — A. Defining

Ua = {a}\JJa9Ub = KbΌ{b},Ue = KeΌ{c}\JJβ f o r ce(a,b),

one has an open covering of the compact space I; say I = UXί U
i/β2 U U U.n; then A = (A n ΓT.JU U(A Π 17. J , and each A Π EΓβ<

is either an interval or the union of two intervals.

COROLLARY. In the lattice of closed open subsets of X(&), there
exists a denumerdble family that does not have a supremum.

Proof. Let cn be a sequence in I such that cγ < c2 < c3 <
and cn —> 6. Let J% = [cn, cn+1) and /n = φJn. Assuming that the
corollary is false, let / (resp. g) be the supremum of the fn for n
odd (resp. even). {Caution: We mean here supremum in the lattice
sense, which must be distinguished from the pointwise supremum.}
Say / = φAj g = <pB. For mΦ n one has fmfn = 0, thus /» ^ 1 — /„;
it follows that fg = 0, therefore A f] B — 0 . By Theorem 3, A is
the disjoint union of a finite number of intervals; since Ai)Jn for
all odd n, the rightmost nondegenerate interval in this representation
of A has right endpoint b (which it need not contain). Similarly,
B contains a nondegenerate interval with right endpoint 6. Then
Af) B contains a nondegenerate interval, contrary to A Π B = 0 .

We write β9 7, δ for generic elements of X(&)\ there are the
obvious characters

(8) &,(/) = /(*) for / 6 ^ ,

(9) «,(/) = / ( * + ) for / e ^ ? ,

(10) %,(/) = / ( * - ) for / e ^ ,

defined for a; 6 /, as 6 [a, 6) and x e (a, 6], respectively; we shall see in
Theorem 5 that there are no others.

THEOREM 4. Define Ψ: I-+X(&) by Ψ(x) = δx for x e [a, b) and
ψ(b)=zyb. Then Ψ is right-continuous on [α, b) and left-continuous at b.

Proof. Let fe&. For all x e I one has Ψ(x)(f) = /*(»), thus
the theorem is immediate from §2, Proposition 1.

THEOREM 5.

X(&) = {βx: x e [α, b]} U {§,: a? e [a, b)} U {7.: aj e (α, 6]} .

Proof. Let βeX(&) and assume to the contrary that /3 does
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not have one of the three indicated forms, equivalently, that ker/S
is not equal to (hence is not contained in) ker βxf ker 3X or ker Ύx,
for any x. For each x e I, choose fx e ker β with fx{x) Φ 0; replacing
/. by fxfχy we can suppose that fx ^ 0, fx(x) > 0. For each x e [a, b),
choose gr̂ e ker β with gx ^ 0 and gx(x + ) > 0; let Jxal be an open
interval with left endpoint x, such that gx is bounded away from
zero on Jx. Similarly, for each x e (α, 6], there exist hx e ker β, hx ^ 0,
and an open interval Kxal with right endpoint x, such that hx

is bounded away from zero on Kx. For x e {a, b) define

V. = K.\J {x} \JJ,, kx = hx + /. + gx ,

and define Va - {a} U Ja, K = Λ + Λ, ^ = JΓ* U {&}, kb = hb + fh. For
every «e /, Vx is a neighborhood of x in /, and kx is a positive
function, belonging to ker/S, such that kx is bounded away from zero
on Vx. Say I = VXl U U V^. Then the function k = kXl+ + fcXn

belongs to ker β and is bounded away from zero on I; it follows
that 1/fc is regulated, whence 1 = (l/k)k 6 ker /S, which is absurd.

COROLLARY 1. X(&) has the cardinality of the continuum.

We write a for generic elements of X(^), specifically ax(f) =
f{x) for a e ί , / e ^ ; the mapping I—* X(^) defined by x π α , is a
homeomorphism [4, Ch. I, §3, Cor. 2 of Prop. 1]. If βeX(&),
then β\^e X(^)f thus /3| ̂  = ax for a unique cc 6 I; defining Φ(β) =
x, we have a continuous surjection

(11) Φ:X(.<&) > I , aφ{β) = β\& toτ βeX(.&).

For the mapping !Γ of Theorem 4, one has Φ°f = id7; so to speak,
iF is a right-continuous cross-section for Φ. {No continuous cross-
section exists, since X(&) contains no connected subset with more
than one element.}

COROLLARY 2. Φ'\{a}) = {βa, δa}, Φ~\{b}) - {βh, Tj, and Φ~\{x}) =
ί A, ^,, «.} /or a? G (α, δ).

COROLLARY 3. If ξeX(&), there exists eel satisfying one of
the following three conditions: (i) £(/) = /(c) /or αiϊ / e & (ii)

/or αK / e ^ ; (iii) f(/) = /(c-) /or αίί / e . ^ .

Proo/. Let /S = ζ\& and cite Theorem 5.

Here is another perspective on Corollary 3. Regard Id (I with
the discrete topology) as a dense subspace of its Stone-Cech com-
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pactification X(έ%?). Every bounded function / : I~+C may be uniquely
extended to a continuous function / : X(&) —> C. The message of
Corollary 3: for each ζeX(&), there exists eel such that one of
the following three conditions holds: (i) f(ξ) = f(c) for all f e&; (ii)
f(ξ) = f(c+) for all f e ^ ; (in) /(£) = / ( c - ) for all / e ^ . {We
remark that all three cases occur, since the mapping X(&)-+X(&)
defined by restriction of characters is surjective [13, p. 126, (3.2.16)].}

COROLLARY 4. For every x e /, {βx} is an isolated point o

Proof. It is clear from Theorem 5 that

{βx} - {βeX(^)l \β(φ{x}) - βx(φ{x])

Theorem 2 is an obvious consequence of Corollary 4. The proof
of the next corollary employs the 'hull-kerneΓ characterization of
the topology of X(&). If ^f is any commutative Banach algebra,
the Gelfand topology on X(Jzf) is finer than the hull-kernel topology;
when the two topologies coincide, J^f is said to be completely re-
gular. Every commutative C*-algebra is completely regular [13,
p. 174, (3.7.2)]. In particular, & is completely regular; thus, if S
is any subset of X(&), the closure of S is given by the formula

(12) S = hk(S) = \ff e Z(.5T): ker βr => fl ker β
βeS

COROLLARY 5. Let X(&) = EΌ FUG be the partition o
defined by

(13) E = {βx: x e [α, 6]} , F= {δx: x e [α, 6)}, G = {Ύx: x e (α, 6]} ..

Tfeew E is a dense, open, discrete subspace of X(&), and

(14) F= G = F{JG= X(gg) - E

is a perfect subset of X(&) with empty interior.

Proof. That E is dense results from f[xeIkerβx = {0}, thus it is
clear from Corollary 4 that E has the properties claimed for it. Prom
§2, Corollary 3 of Proposition 1, one sees that k(F) = <yK - k(G),
therefore F = hk(F) = hk{G) = G; since FU G = %E is closed, it follows
that F U G = F U G = FUG = F = G. Evidently FaG and GaF,
therefore F U G is dense in itself. Since i*7 U G is disjoint from the
dense set E, its interior is empty.

From Corollaries 4 and 5, one sees that a subset of X(&) is
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dense if and only if it contains E, and that X(&) has 2C open subsets.
The second assertion of Corollary 5 is an instance of a theorem of
A. Pelczyinski and Z. Semadeni: a compact space T contains a non-
empty perfect subset if and only if there exists a continuous surjection
I 7 -* J ([12], [11, p. 29, Th. 2]). Incidentally, X(£P) is not the Stone-
Cech compactification of its dense open subspace E; for, the Stone-Cech
compactification of a discrete space is extremally disconnected [19,
p. 300], and X(&) is not extremally disconnected (by the corollary
of Theorem 3 [cf. 17, p. 185, Th. 14]). {Alternative proof: & has
c idempotents (Theorem 3), whereas & has 2C idempotents, thus &
and & are not isomorphic.} The fact that X(&) contains a dense
subspace E homeomorphic to Id (I with the discrete topology) was
predictable from [5, p. 225, Th. 1], since & contains the functions

ψ{χ}

An explicit formula for the closure operation in X(&). is given
in Corollary 7; the following notations prepare the way. For a subset
A of /, we write J^A for the kernel of the set {βx: x e A}, that is,

( 1 5 ) ^ = n k e r / 9 , - { / 6 ^ : f \ A = 0}.
xeA

We write A+ for the set of x e I for which there exists a sequence
xneA such that xn > x and xn —> x, thus

(16) 4 ; = {^J :xG(x,+oo)ni} ;

this is, so to speak, the 'right derived set' of A. Similarly, we write

(17) AL = {xel: a?e(-oo, x) n A) .

Then A+ U A'_ = A', the usual derived set of A. One has (A U B)+ =
A+ U JS;, (A U B)L = A'_ U BL. If Jis a subinterval of /with endpoints
c, d (c <£ d), then J'_ = [c, d) and J l = (c, d].

LEMMA 1. Let Aal, S = {βx: xeA},ceI. Then: (i) βc eS if
and only if ce A; (ii) δc e S if and only if ce A'+; (iii) ΎceS if and
only if ceA-.

Proof, (ii) Suppose δc e S (in particular, c < 6), that is, ker δc z)
k(S)=ι^. Assuming to the contrary that c £ A+, choose an open inter-
val Jdl with left endpoint c, such that Af)J— 0 ; then φj\A — 0 but
φJ(κc + ) = 1, contrary to the supposition that ^ c ker δc. Conversely,
suppose c 6 A'+ and choose a sequence cΛ 6 A such that cn> c and
c%—>c. For every fe&, f(cn) —>/(c+); if, moreover, / e ^ , then

= 0 for all w, whence /(c + ) = 0, / e k e r δc.
(iii) is proved similarly, and (i) is obvious.
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LEMMA 2. Let Ad, S = {βx: x e A}. Then S = S\J{dx:xe A+}U
{7x:xeA'J.

Proof. Immediate from Lemma 1 and Theorem 5.

COROLLARY 6. The closed open subsets of X(&) are the sets of
the form SA, where A is the union of finitely many subintervals of
I and SA = {βx:xeA}.

Proof The closed open sets in X(&) correspond to the idem-
potents of & via the Gelfand isomorphism. By Theorem 3, the
idempotents of & are the functions φA, A the union of finitely many
subintervals of /. For such an A, the closed open subset of X(&)
corresponding to φA is the set U(A) = {β e X(&)\ β(φA) = 1}; evidently
βx(φA) = 1 if and only if xe A; δz(φA) = 1 if and only if xeA'+; and
ΊJLΨA) = 1 if and only iί xeA'_; therefore

U(A) = {βx: xeA}[J {dx: x e A'+} U {Ύx: xeAi},

thus U(A) = SA by Lemma 2.

From Corollary 6 (or Theorem 3) one sees that X(&) has c
closed open sets; a closed open subset of X(&) either is a finite
subset of E or has cardinality c.

LEMMA 3. Let Bc[α, 6), S = {δ,: x6J5}. Then S n ί 7 = SU

Proof Let a; 6 [α, 6); the problem is to show that dxeS <=> xe
BUB'+.

Proof of =>: Suppose x 0 B U B'+. Since x <b and x$B'+ there
exists y, x < y <b, such that 2J Π 0», 2/) = 0 . Since # g J5, also
Bf\[x, y) = 0 . Let J = [^ y), f — ψj. If teB then ί < # or t ^ y,
and in either case f(t+) = 0; thus /ejΠίe^ker ^ = &(S). But
/(« + ) = 1, thus kerδx ^ &(S), that is, δx$S.

Proof of <=: Suppose x e B'+. Choose a sequence xn e B such that
xn> x and xn-+x. Then δ^ —> Sβ by Theorem 4, thus dxeS.

LEMMA 4. Le£ JSc[α, 6), S={δ/. x e B). Then S f] G={yx: x e BL}.

Proof. Let x e (a, 6]; the problem is to show that ΎxeS *=> xe Bi.

Proof of =>: Suppose xgBL. Then, since a < x, there exists
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V, a < y < Xf such that the interval / = [y, x) is disjoint from B.
Let f = φj. If t eB then t < y ort^x, and in either case /(£+)j= 0;
thus fek(S). But f(x-) = 1, thus ker7β 2> fe(S), that is, ΎX(S.

Proof of<=\ Suppose x e BL. Choose a sequence xn e B such that
xn < x, xn —> x. If / 6 Λ(S) then f(xn+) = 0 for all w; thus, in the
notation of §2, Proposition 1, one has /*(#») = 0 and 7x(f) — f(x—) =
/*(»-) - lim/*(a?J = 0. Thus ker Ύxz>k(S), that is, 7 α e S .

LEMMA 5. Leέ 5 c [α, 6), S = {δx: x e B). Then

S = S{J{dx:xeB'+}U{7x:xeBi} .

Proof. Since Scz F, one has S c F = F (J G, therefore S = (S n F) U
(S Π G); cite Lemmas 3 and 4.

By dual arguments one shows:

LEMMA 6. Let C c (α, b], S = {7*: a; e C). Then

S = SU {7X: x e CL) U R : ^ G C }̂ .

COROLLARY 7. Gΐvew α^̂ / set S c I ( J * ) ,

S = {βx: x 6 A} U R : ^6ΰ}U {7,,: OJ 6 C},

where A c [a, b], B c [a, 6), C c (a, δ]. Then

S - S U {«.: ̂ e ( i U 5 U C)ί} U {7,: ^ e ( i U 5 U C)L} .

J^ particular, S is closed if and only if (A\J Bl) C)+ c B and
(AUBUC)'-C: C.

Proof. This is immediate from Lemmas 2, 5, and 6, and the
'additίvity' of the derived set operations.

Here is an amusing consequence of Corollaries 6 and 7. Let
A a I. In order that A be the union of finitely many intervals, it
is necessary and sufficient that there exist partitions / = A1 U A2,
[α, 5) = B,UB2, (α, 6] = C, UC2, with A = Λ, such that (A*UJB,UCi)\c:Bi

and (Λ U £, U CJ1 c C, for i = 1, 2.
The next proposition is for application in § 6. Let Φ: X(&) —> I

be the mapping (11); let β ~ βf denote the equivalence relation defined
in X{&) by Φ{β) = Φ(^') (that is, by β\<ϊf = βr\rtf), write A: X{&t)~*
X{£&)l~ for the quotient mapping, and equip X{&)j~ with the
quotient topology. The equivalence classes for ~ are the sets Φ"\{x}),
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xel (cf. Cor. 2 of Th. 5). Let Φ':X{&)j >I be the continuous
bisection derived from Φ by passage to quotients (thus Φ = ΦΌA); it
follows from compactness that Φ' is a homeomorphism [1, Ch. I, §9,
Cor. 2 of Th. 2]. Finally, if Γ: & -> i f (X(J3?)) is the Gelfand iso-
morphism, then for every / e ^ = ί^(/), one has Γ/ = /oφ. {Proof:
For all β e X(&), (Γf)(β) = β(f) = (/31 <gf)(/) = «,<,>(/) =J(Φ(β)) =

PROPOSITION 2. jPor a function u: X(&) —> C, the following
conditions are equivalent:

(a) u — f oφ for some continuous f:I—>C;
(b) u = Γg for some continuous g: I-+C;
(c) u is continuous, and is constant on each of the sets Φ~\{x}),

xel.
In the notations of (a) and (b), necessarily f = g.

Proof. The remark immediately preceding the proposition proves
the equivalence of (a) and (b), as well as the final assertion of the
proposition. It is obvious that (a) implies (c).

(c) ==> (a): Since u is constant on each set Φ~\{x})9 there exists
a factorization u = f °Φ with f: I—+C; from the continuity of u, we
are to infer the continuity of /. Since (foφ')oA = fo(φΌA) = /©φ = w
is continuous, and since X(&)/~ bears the quotient topology, it
follows that foφf is continuous; but Φr is a homeomorphism, there-
fore / is continuous.

4* The character spaces of ^ * * and ^K The notations P, Q,
c^; t ^ * , * ^ h a v e the same meanings as in § 2, and X ( ^ ) = E\J FUG
is the partition described in §3, Corollary 5 of Theorem 5. The
commutative (7*-algebras ,^?, ̂ V] &* are related by the isomorphism
^ * = ^ / ^ the relation between their character spaces is given
by the following general lemma [cf. 13, p. 193, Th. 4.2.4]:

LEMMA. If T is a compact space, S is a closed subset of T,
and J? is the ideal of C^{T) annihilating S, then C^{T)\^ = ^(S)
and J? = <έ?0(T - S), therefore X(5?{T)\J?) = S and X(^) = T - S.

Proof. Consider the mappings <g*(T) -* &(S) and J? — ^ 0 ( Γ - S)
defined by f\-*f\S and f \-> f\T — S and cite, respectively, the
Tietze extension theorem and the Stone-Weierstrass theorem. (Here
&IT — S) denotes the algebra of continuous functions vanishing at
infinity on the locally compact space T — S.}

The first assertion of the following theorem was proved by E.
Hewitt [7, p. 91, Th. 5.1]:
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THEOREM 6. X(&*) is homeomorphic to FU G; X{^V) is homeo-
morphic to E, that is, to Id (I equipped with the discrete topology).

Proof. Identifying <% (via the Gelfand isomorphism) with
£f (X(̂ g>)), ̂ T is the ideal of & annihilating the closed set Fl)G
(§2, Cor. 1 of Prop. 1). Cite the lemma. {It is easy to see that the
homeomorphisms E~+ X(^V), FU G—>X(&*) are effected by restric-
tion of characters. Note, incidentally, that δx\&* = βx\&* for
xe[a,b), and

The same reasoning shows that X(*&) is homeomorphic to F\J G.
This reminds us that *<̂ ? and ̂ ?* are isomorphic; indeed, it follows
from the relations ^ * = P(£B) = P ( * ^ + ΛT) = P(*ό2) that P
effects an isomorphism of *^? onto ^?* . In view of Theorem 6, the
message of §2, Corollary 3 of Proposition 1 is that

5. The character space of & T. . It will be shown that
has the same character space as ^ ? ; first, we see that &Y* can be
normed to be a Banach algebra [13, p. 302]:

LEMMA. Equipped with pointwise operations and the norm

a s ) ii/ii = y j / + i i / i u ,

is a commutative, involutive Banach algebra with unity.

Proof. Here Vb

af denotes the total variation of / in / [8, p. 266,
(17.14)]. Let /, ge.^T; from the identity

(fg)(χ) - (fg)(v) - f(χ)[g(χ) - g(y)] + L/(α?) - f(y)]g(y)

one sees that Vb

a{fg) <i \\f\\ooVb

ag + \\g\\coVb

af (this shows, in particular,
t h a t / ^ e ^ ^ ) ; it follows that the norm (18) satisfies \\fg\\ ^ | |/| | \\g\\.
Completeness for this norm is easily deduced from [9, p. 43, Th. 8.6].

THEOREM 7. The mapping X(&)-+X(.<^T) defined by
is a homeomorphism.

Proof. The mapping is continuous (for the Gelfand topologies)
and injective (e.g., because ^?V* is dense in & for the sup-norm
topology). It will suffice (by compactness) to show that it is surjective.
Let εeX{^T) and suppose to the contrary that ε φ β\^T, equi-
valently ker ε <£ ker β, for all β e X(&). Arguing exactly as in the
proof of Theorem 5, one constructs k e ker ε such that k is bounded
away from zero in I. It is then immediate from the identity
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(l/k)(x) - (1/AOO0 = WV) - k(x)]/k(x)k(y)

that 1/ke^Ti whence 1 = (l/ifc)fcekerε, which is absurd.

It follows that the closure operation in X(.^?T*) is also given
by the formula in Corollary 7 of Theorem 5.

THEOREM 8. ^Y* is completely regular.

Proof. As is true for every commutative Banach algebra with
unity, X(&y") is compact for the Gelfand topology and quasicompact
for the hull-kernel topology [4, Ch. I, §1, Prop. 4], and the Gelf and
topology is finer than the hull-kernel topology; to prove that the two
topologies coincide, it will suffice to show that the hull-kernel topology
is separated. To this end, it suffices [6, p. I l l , 7M] to show that
if εlf ε2 are distinct characters of &Ύ] then there exist functions
flf f2 in &T such that ex{fd = e,(/t) = 1 and ff2 = 0. In view of
Theorem 7, one is reduced to the consideration of a small number
of cases. For example, suppose εx — β^&Y* and ε2 — hy\&Ψ%\ if
x ^ V, take f = φ{x} and f2 = φ(Vtb); if x > y, take ft = φ{x] and
Λ = Ψίy,*)- The remaining cases are equally transparent. {We remark
that &7Γ is not isomorphic (as an algebra) to a C*-algebra; for,
the spectral radius of f e.^T is H/IU, and .^T is not complete
for this norm.}

An example due to G. Silov [cf. 13, p. 302, A.2.5] fits into the
present circle of ideas. Let us write έ%Ψl for the subalgebra ^ Π
&T of &τ. It is elementary that &TC is closed in &T for the
norm (18), hence is a Banach algebra for this norm.

THEOREM 9 (Silov). X(^T<) is homeomorphic to X{c^) {that is,
to I).

Proof. Recall that X(<af) = {ax: x e /}, where ax(f) = f(x) for
feίf. The mapping X{<^) -> X{0T^) defined by av->a\^Tc is
continuous and injective; to prove that it is a homeomorphism, it
suffices to show that it is surjective. Let seX(^?T<) and assume
to the contrary that eΦ ax\&3Γ0 for all xel, that is, kerε ςt keτax

for all xel. Repeating a classical argument (simpler than that in
Theorem 5), one constructs a function k e ker ε such that k vanishes
at no point of I; since k is continuous, it is bounded away from zero;
therefore l/ke^T^y whence 1 = (l/k)k e ker ε, which is absurd. {In-
cidentally, by a simplification of the argument in Theorem 8, one
sees that &TC is completely regular [13, p. 302]. (There is only
one case to consider: ε1 = ax\&Tc, ε2 = ay\&Tc with x Φ y.)}
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Next, we study the decomposition / = Pf + (1 - P)f of §2 for
functions of bounded variation.

LEMMA 1. If f s ^T then Pf e <&r and Vb

a(Pf) ^ Vlf.

Proof. Let / e &T and let a = x0 < xλ < < xn = b be any
subdivision of I; we are to show that Σ?=i l/*G»i) - /*0»<-i)l ^VhJ.
Choose points yi9l^*i^n + l, such that xi__1 < yt < xi for 1 <̂  i <;
n - 1 and a?,.., < yn < yn+1 <xn = b. Then Vlf ^ Σ ?£1/(»<) - /(v<-i) I;
the desired inequality results on letting #< —+ #<_! for 1 <£ ΐ ^ w and

It follows from Lemma 1 that P(0T) = &* Π ̂ ^ 7 and that
IIP/11 ^ | | / | | for all fs&T\ the restriction of P to ^ ^ is an
algebra *-homomorphism P o : ^ ^ ^ > ^ ^ 7 continuous for the norm
|| ||, idempotent; therefore, in the Banach algebra ( ^ ^ 7 || ||), ker Po =
Λ/" Π &T is a closed ideal and P10T) = &* Π ̂ ^ " is a closed
*-subalgebra. Passing to quotients, one has an isomorphism

&τi{Λ~ n &τ) = &* n ^ 3 ^

it follows from Theorem 8 that the algebras Λ* Π &T and ^ * Π
έ^Y* are also completely regular [13, p. 84, (2.7.2)]. {We remark
that the upper and lower semicontinuous regularizations of a real-
valued function in .^Y* are also in ^ 3 ^ * ; this is immediate from
the formulas mentioned at the end of §2.} Here are some useful
characterizations of ^V

LEMMA 2. The following conditions on a function f:I—*Care
equivalent:

(a) felXQ, that is, H/IL = Σ.βz l/(&)|< + °°;
(b) /e^n f̂;
(c) / 6 έ&Ψ* and the set {x e I: f(x) Φ 0} is denumerable;
(d) / e &*JΓ and the set {x e I: f{x) = 0} is dense in I.
For such a function f one has

(19) | |/lli^TΊ/^211/11,'.

Proof, (a) => (b): If / 6 l\I), it is obvious that VhJ ^ 2\\f\\ί <
+ oo, therefore f e^T a&, and the set {xeI:f(x)Φθ} is denu-
merable, thus feΛ^ by §2, Corollary 3 of Proposition 1.

(b)=>(c) is immediate from §2, Corollary 3 of Proposition 1, and
(c) => (d) is obvious.

(d) => (a): Let / e &T and suppose that the set D = {xel: f(x) = 0}
is dense in I. Consider any finite subset of I, say xι < x2 < <xn.
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Choose yί9 , yne D such that yt e (xt, xi+ί) for 1 <Ξ i ^ n — 2 and

Xn-l < Vn-1 <Vn < %n; thβΠ

VIf ^

thus fel\I) and

LEMMA 3. *sK Π . ^ 3 ^ ΐs £fcβ closed linear span in &Y* of the
functions φ{x}, xel, for the norm (18).

Proof. Let J^~ be the linear span of the functions φ{x], x e I.
Since Λ^D&Y* is closed for the norm || || (remarks following
Lemma 1), it contains the closure of JF\ Conversely, suppose fe
Λ~ Π &Y*. By Lemma 2, there exists a sequence fn^^ such that
HΛ - /I l i -O, and Vl{fn - ' / ) ^ 0 * y (19); since||Λ —/IU ύ H/.-/IU
it follows that ||/» - / | | ->0.

THEOREM 10. (i) X(^Γ Π &TΓ) is homeomorphic to E, that is,
to Id (I with the discrete topology); (ii) X(&* Π &Y*) is homeomorphic
to F U G .

Proof, (i) {To put it less obliquely, X(Λ" ΓΊ &T) is discrete
and consists of the point evaluations.} Suppose ε e X{^V Π ^ ^ ) ;
by Lemma 3, there exists x e l such that e(φ{x}) = 1; for y Φ x,
1 + e(?>{if>).= ^{.} + £>{*/}) = ε(^{.,i/}) is 0 or 1, therefore ε(^ { y } ) = 0; i t

follows from Lemma 3 that ε = βx\<yΓ ^\^T. Thus, the mapping
(λ&T) defined by β H->/2|^//" n &T is bijective, and

) is discrete by the proof of §3, Corollary 4 of Theorem 5.
(ii) If ε e X ( ^ * n ̂ T) then εoP0 e X(.^T), therefore (Theorem

7) there exists βeFuG such that β\^T = £oP0, whence / 3 | ^ * n
&T = ε. Thus, the continuous mapping .PU G—>X(^* Π &T)
defined by restriction of characters is surjective; to show that it is
a homeomorphism, it suffices to show that it is injective. Let β19 β2 e
F{jG,β,Φ β2; we seek / e ̂ * n ̂ T such that βtf) Φ &>(/). If
βί9 β2 are induced by the same point x of /, say βx = Ύx and /32 = δx,
then α < a; < b and we may take / = φίa,x). Suppose βίf β2 are induced
by distinct points x, y of 7, x < T/; if & = 7̂  (and & = Ίy or §„),
take / = <Piaf*)m, if /3i = dx (and /32 =. Ίy or δy), take / = φίXtr) for any
r such that x < r < y.

6. The dual spaces of ^ , ^ * , ̂ K The dual space \ ^ ' of &
has been calculated by H. S. Kaltenborn [10]; we review here his
formula for the continuous linear forms on &. To conform to his
notations, we write T for elements of &\ χ for elements of
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and φ for elements of l\I) (by § 5, Lemma 2, these are the functions
in ^ n ^ Γ ) . Each χe.<^T defines T χ e ^ ? ' by the formula

for fe&,(20) T
χ
f= [fdχ

Ja

where the right side is the 'modified Stieltjes integral' whose existence
was proved by B. Dushnik (see [10]): it is the limit, in the sense of
refinement of subdivisions a = xQ < x1 < < xn = b of /, of the sums

where ξt is required to be a point of the open interval (x^ly xt). On
the other hand, if φ e l\I) then the formula

(21) TΦf = Σ*lΛx) ~ f(x + Mx) for
l

xel

defines Tφe&'. {Note that f(b + ) — f(b — ) by the convention per-
taining to the definition of / o n (&, & + 1]: see the remarks in the proof
of §2, Proposition 1.} Caution: The subscript on T determines the
formula of definition. The following lemma is readily verified:

LEMMA, (i)

(ϋ)
Tf γ p c

If Φel
^T then
1 (I) then

τχTφ
= 0

= o,
and
II Γ Λ II

11̂ 11 = ̂  =
= 2\\φ\\ι and

THEOREM 11 (Kaltenborn). Every T e &' has a representation
T — Tχ + Tφ, where χ e ^T^ and φ e l\I); Φ is unique and χ is unique
up to an additive constant.

If, in Theorem 11, one requires that χe^?% (the functions in
that vanish at a), then χ is uniquely determined by T. Note

that Vlχ is a norm on .^T,:

COROLLARY 1. C^*)' = &T*.

Proof. If χ e ^% then Tχ \ ^ * 6 (^?*y and || Tχ \ &* \\ = Vb

aχ by
the lemma. Conversely, if λ e (,$?*)' then T = X ° P e &' and T\ <yΓ =
0; therefore by Kaltenborn's theorem there exists a unique χ e ^ J ^
such that Γ = Tχ, whence Tx\&* = λ. {In particular, &T0 is a
Banach space for the norm Vb

aχ [8, p. 271, (17.35)].}

E. Hewitt has shown that ( ^ * ) ' may be represented as the space
of all bounded, finitely additive measures defined on the ring of
subsets of I generated by the intervals of the form [c, d), a ^ c < d ^ b
[7, p. 90, Th. 4.10].
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COROLLARY 2. Λ"' = l\ΐ).

Proof. Ίίφel\I) then TΦ \^r e ̂ r' and | | T , | ^ | | = \\φ\l. Con-
versely, if μ e ̂ T ' then T = μ o (1 - p) e ̂ ' and T\ &* = 0; therefore
by Kaltenborn's theorem there exists a unique ^ 6 l\I) such that
T=TΦ, whence TΦ\^Γ = μ. {Alternate proof: Since .^r = <gfo(Jd)
(§2, Cor. 3 of Prop. 1), it is elementary that ^V' = ί̂ /).}

Thus, the structure of ,^?' is as follows: given λ e ( ^ * ) ' and
μ e <_x̂ ', one forms Γ = λ o P + μo(l — p); this is the general element
of ^ ? \ One can also deduce Theorem 5 from Kaltenborn's formula;
the computations are tedious but thoroughly elementary (nothing so
fancy as the Gelfand theory is needed).

Since & is isomorphic to (^?{X{^))9 &' may be identified with
the space ^(X{&)) of measures on X(&). The rest of the paper
is devoted to the measure-theoretic description of &'.

By measure we mean complex (Radon) measure [3, Ch. Ill, §1,
Def. 2] (equivalently, complex regular Borel measure). The measures
on I are the Lebesgue-Stieltjes measures induced by functions of
bounded variation ([8, p. 331, (19.48)], [14, p. 263]). The mapping
Φ: X{&) —> I described in formula (11) will figure in the following
results. If μ is a measure on X(&), the image of μ under Φ is the
measure v = Φ(μ) on I defined by v(f) = μ(f o φ) for / 6 ̂ . For every
measure v on /, there exist measures μ on X(&) such that Φ(μ) = vf

and if v is positive then μ can be chosen to be positive [3, Ch. IX,
p. 33, Lemma 1]. Thus, the mapping ^(X(&)) —> ^f(I) defined by
μ \-+ Φ(μ) is surjective; it is linear, positive and contractive; in view
of §3, Proposition 2, its kernel is the subspace Γ ( ^ ) 1 , consisting
of all measures μ on X(&) that are zero on the image of ^ = ^(1)
under the Gelfand isomorphism Γ: & —> ^ ( X ( ^ ) ) . We remark that
the quotient mapping ^C(X(^))/Γ(^) X —>^£{T) is isometric. {Proof:
Identify & with <g*(X(&)) via Γ; the mapping μ ι-> Φ(/£) then becomes
the mapping ^ ' - > ^ ' defined by μ^μ\<ϊf, with kernel (Sf1. The
quotient mapping ^\^L —> ^ ' is an isometric vector space iso-
morphism [16, p. 91, Th. 4.9].}

THEOREM 12. (i) X(&) admits nonzero diffuse measures, (ii)
The support of every diffuse measure on X{&) is contained in
F U G. (iii) A positive measure μ on X(&) is diffuse if and only
if Φ(μ) is diffuse.

Proof. A measure on a space is said to be diffuse if every one-
point subset of the space is negligible. The support of a measure
is the complement of the largest negligible open set in the space.
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(iii) Let μ be a positive measure on X{&) and let v = Φ(μ).
For every xel, one has μ(Φ~X{x})) = v({x}) [3, Ch. V, §6, Cor. 1 of
Proof. 2]. Since the Φ~\{x}) form a covering of X{&), it is clear
that the diίfuseness of v implies that of μ; since the sets Φ~\{x}) are
finite (§3, Cor. 2 of Th. 5), the converse is also true. {The diffuse
measures on I are the Lebesgue-Stieltjes measures induced by con-
tinuous functions of bounded variation [8, p. 332, (19.52)].}

( i ) Let v be a nonzero, diffuse positive measure on / (for
instance, Lebesgue measure), let μ be a positive measure on X{&)
such that Φ(μ) — v, and cite (iii). {In view of §3, Corollary 5 of
Theorem 5, this is a manifestation of a general theorem of A. Pelczynski
and Z. Semadeni: a compact space admits a nonzero diffuse measure
if and only if it has a nonempty perfect subset ([12, p. 214], [11,
p. 52, Th. 10]).}

(ii) Let μ be a diffuse measure on X{&). Replacing μ by \μ\9

we can suppose that μ is positive. Since the set E in Corollary 5 of
Theorem 5 is open, one has μ(E) = sup{μ(if): KaE, K compact} [3,
Ch. IV, §4, Cor. 4 of Th. 4]; every compact subset K of the discrete
space E is finite, hence is negligible by the hypothesis on μ; there-
fore μ(E) = 0, thus E a C Supp μ.

To each T e &' there corresponds a unique measure μτ on
such that Tf = μτ(Γf) for all / e &(Γ the Gelfand isomorphism);
T H* μτ is an isometric, positivity-preserving vector space isomorphism
£e'-+^f(X(&e)) = &(X(έP)Y. If, in particular, Γ = Tx for χe

(resp. T = TΦ for φ e l\I))t we write μx (resp. μ,) for μτ.

LEMMA 1. Φ(^) = T\c^ for all

Proo/. Let T e &£\ v = Φ(μΓ). For all / 6 9f (JΓ) one has
= Tf.

LEMMA 2. (i) For every φ e ί^I), Φ(μΦ) = 0; (ii) /or ever?/ χ e
is the Stieltjes integral ('unmodified') induced by χ.

Proof, (i) ϊVI'ir = 0 (lemma to Theorem 11).

S 6

fdχ is the limit, in the sense of refine-
α

ment of subdivisions, of the Riemann-Stieltjes sums Σ i /(ίi)[%(^i) —
Z(*i-i)]> where, since / is continuous, ζt can be any point of the
closed interval [Xi-lf #*].

LEMMA 3. For T e &', the following conditions are equivalent:
(a) Supp μτ(zFUG; (b) Γ = Tz with χ

Proof (a) =^ (b): By hypothesis, the open set E is contained
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in C Supp . μτ, therefore μτ\E = 0. Thus, if gerέ?(X(&)) with

Supp gaE (in other words, if g is a finite linear combination of char-

acteristic functions φ{βχ))f then μτ{g) = 0. In part icular, for all xel

one has 0 = μτ(φ\βx}) = μτ(Γφ{9)) = Tφ{x], therefore Γ = 0 on Λ" (§2,
Gor. 2 of Prop. 1). Thus, writing T = Tχ + TΦ as in Theorem 11,
one has 0= T\JT = Tχ\^T + TΦ\^T = TΦ\'^T9 whence 0 = 0, Γ = Γ*.

(b)=>(a): If Γ = Tx,χe^T, then for all # 6 / one has 0 =
ZV{β} = μτ(φ{βχ}); reversing the preceding argument, we conclude that
μτ IE = 0, thus Supp μτaFΌG.

LEMMA 4. .For T e ,^?', £fce following conditions are equivalent:
(a) /£Γ is diffuse; (b) Γ = T* with χ

Proof, (a) => (b): Write μ — μτ and suppose μ is diffuse. Let
jtβ = _ jtβj. — /£a -+- iμ3 — iμ4 be the canonical decomposition oί μ, where
the μt are positive measures [3, Ch. Ill, §1, Th. 3]. The μt are also
diffuse, therefore Supp ^ c f U G by Theorem 12. Say μi — μTi,
TiZ^g'. By Lemma 3, one has T, = Tχ. with XiS&T, thus μt =
μz<. We can suppose χ^α) = 0; then, since μt ^ 0, equivalently Tx ̂  0,
it follows that χ, is an increasing real-valued function 2£ 0. By
Lemma 1, Γχ. | ̂  = Tt \

 r#: = Φ(^Γ<) = Φ(^), which is diffuse (Theorem
12), therefore χt is continuous. Finally, T = Tχ, where χ — χx — χ2 +
iχ3 — iχ4 is continuous and of bounded variation.

(b)=>(a): Suppose T = Tχ with χe&T^', one can suppose, by
linearity, that χ is real-valued, increasing and continuous. Then
Φ(μχ) = Tχ]^ is a diffuse measure on I [8, p. 332, (19.52)], therefore
μχ is diffuse (Theorem 12).

If φel\I), a suggestive notation for Tφ is ^jxeiΦ(x)(βχ — Sx)
(with the convention that db = Ύb); since ||̂ Sβ — δβ | | ̂  2, the sum is
convergent for the norm of ^ ' . In the same way, one can form
'weighted sums' of arbitrary families in X(&), indexed by I, with
'weight function' φ e l\I).

THEOREM 13. Every Te&' has a representation

Γ = 2V + Σ Φ£χ)β* + Σ &(aθδ, + Σ
a;e[α,6] a;6[α,6) ie(α,6]

Tc and φί9 φ2, φs e l\I).

Proof. In view of Theorem 11, it suffices to consider the case
that T = Tx with χe&T, and by linearity one can suppose that χ
is real-valued and increasing. Decomposing χ as the sum of an
increasing continuous function ψ and an increasing 'saltus' function
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[18, p. 92, 2.4.2], we are reduced to the case that χ is a saltus
function (positive and increasing). Then χ = ΣSU Xn> a uniformly-
convergent series, where χn is an increasing step function with a
single discontinuity cn9 say χn = u'%φ{Cn} + « + <V<β».H> a n d where
Σ K, Σ K' are convergent positive term series. Since, for each n,
X — ΣLi Xk = Έik>n Xk is an increasing function ψn9 it follows that
Vl(χ - ΣLi fc) = f.(δ) - ψ.(α) - 0 - 0, therefore T χ/ - ΣϊU T1%f
for all /6^T. Since TχJ = u'J(cn~) + <f{cn + ) for all / e ^ , one
has TXn = u'nΎCn + u':δCn, therefore Tx = Σ < % . + Σ O β . .

With notation as in Theorem 13, let S = T — Tψ; then μτ = ^ +
^ , where ^ is diffuse (Lemma 4) and μs is atomic; such a decom-
position of a measure is unique [3, Ch. V, §5, Prop. 15], thus the
representation of Theorem 13 is unique: the φt are unique and ψ is
unique up to an additive constant. One can also write S in the
form S = Σ^ Φ(β)' βf where φ: X(&) — C and Σ^ I Φ(β) I < + c o .
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