
PACIFIC JOURNAL OF MATHEMATICS

Vol. 75, No. 1, 1978

DUFFIN'S FUNCTION AND HADAMARD'S CONJECTURE

MITSURU NAKAI AND L E O SARIO

The purpose of the present paper is to apply our "beta
densities" to Hadamard's conjecture on the constant sign of the
biharmonic Green's function of a clamped plate. In particular,
we will examine in detail Duffin's function w from our view point
of beta densities. We will show that w is a potential of Δ2w ̂  0
with respect to the Green's kernel of a clamped plate. As a
consequence, the Green's function of the clamped infinite strip is
of nonconstant sign along with w. On the other hand, we show
using beta densities that the Green's function of any clamped
bounded subregion exhausting the strip tends to that of the
clamped strip and, therefore, takes on both positive and negative
values. Since the infinite strip can be exhausted by ellipses, we
have at once, without carrying out any numerical computations,
the Garabedian result: a sufficiently eccentric ellipse is a coun-
terexample to Hadamard's conjecture. Since the strip can also
be exhausted by rectangles, we can add a sufficiently long
rectangle to counterexamples to Hadamard's conjecture. If
this may be called a new example, then countless "new"
examples can be produced by exhausting the strip by "new"
subregions.

Hadamard made the following conjecture in his 1908 prize memoir
[3]: the deflection of a thin, flat, elastic plane plate, horizontally clamped
at its boundary, is of the same sign at all points of the plate if a
perpendicular force is applied at some point of the plate. The conjec-
ture is known to be correct if the plate is a disk. In the general case, the
problem remained open until Duffin [1] showed in 1949 that a solution of
a biharmonic Poisson equation with a nonnegative density on an infinite
strip clamped at the edges takes on both positive and negative
values. This work of Duffin contains rich physical intuition and skillful
though elementary calculation which produces surprisingly interesting
results and suggestions for further development. Obviously motivated
by this work, Loewner [5] and subsequently Szegό [9] constructed, by
means of conformal mapping techniques, finite but nonconvex analytic
Jordan regions as further counterexamples to Hadamard's
conjecture. The simplest counterexample, a sufficiently eccentric el-
lipse, was given by Garabedian [2], who used an eigenfunction expansion
approach.

We give here a rough description of the contents of the present
paper. First we give an outline of the definition and properties of beta
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densities on simply connected plane regions. We then consider, in
particular, the case of an infinite strip 5 and discuss the space H2(S) of
square integrable harmonic functions on it. For this space, the ideal
boundary of S is negligible. We show that, as a consequence, Dufϊin's
function is a biharmonic Green's potential. Using this result we discuss
in the final part of our study Hadamard's conjecture.

Last but not least, an acknowledgement is in order in this
introduction. The authors consider it quite helpful for the completion
of the present work that their younger colleagues, especially Professors
H. Imai and S. Segawa at Daido Institute of Technology, always showed
their keen interest in the authors' seminar lectures on this subject and
made valued comments.

Beta densities.
1. Since we will make essential use of beta densities [7], we start by

discussing those fundamentals of their theory that are pertinent in our
present setting. We denote by C the finite complex plane | z \ < °°, z =
x + iy, and by M a simply connected subregion, to be called a plate, of
C For convenience, we say that a plate M is smooth (or piecewise
smooth) if M is relatively compact and the relative boundary dM is a
smooth (i.e., C00) (or piecewise smooth) Jordan curve. Assume that M
is a smooth plate and set M = M U dM. It is well known that there
exists a unique function βM(z, ζ) on M x M such that

(1)

Δ2

2/3M(z, ζ) = Δ2(Δ2βM(z, ζ)) = δζ (zE M)

M{zy ζ) = η^βu{z, ζ) = 0 (z

where Δ2 = -(d2/dx2 + d2/dy2) is the Laplace-Beltrami operator, δζ the
Dirac delta at ζ E M, and d/dn the inner normal derivative at 3M with
respect to M. The function βM( , ζ), which is of class C00 on M - ζ
(e.g., Hόrmander [4]), is referred to as the (biharmonic) Green's function
of the clamped plate M with pole ζ.

2. On a smooth plate M, we call /ίM( , ζ) = ΔβM(-,ζ) the beta
density with pole ζ. Let gM( , ζ) be the harmonic Green's function on
M with the singularity -(l/2π)log|z - ζ \ at ζ. By (1), ΔHM( ,f) =
Δ2βM(,ζ)= δξ and a fortiori HM( ,ζ)-gM(-,ζ) belongs to the class
H(M) of harmonic functions on M. By the first boundary condition (1),

(2) βM(z, ζ) = I gM(s, z)HM(s, ζ)dpdq (s = p + iq).
JM
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If βM( -, ζ) is viewed as a potential with respect to the harmonic Green's
function, thei^ JτΓM( , ζ) is the density of βM( , ζ). Since HM{ , ζ) is of
class C2 on M - £, we have (e.g., Miranda [6])

^ A*(z, ζ) = \M J^S"(S> Z)HM(S, ζ)dpdq.

Multiply both sides by an ft E H(M) Π C{M) and integrate with respect
to the line element | dz | on dM. By the Fubini theorem and the Poisson
type representation of harmonic functions,

ί h(z)^-βM(zyζ)\dz\ = \ h(s)HM(s,ζ)dpdq.
JdM crnz JM

Therefore, the second condition (1) is equivalent to

(3) ί h(s)HM(s,ζ)dpdq=O.
JM

This relation is true for every h E H(M) Π C(M) if and only if it is true
for every h E H2(M) ^ H(M) Π L2(M\ since H(M) Π C(M) is dense in
H2(M) with respect to the L2 norm || || on M. In terms of the inner
product ( , ) on L2(M), we write (3) simply as
tfM( ,f)±H2(Λf). Since gM(-,ζ)-HM(-,ζ) belongs to H2(M), (2)
and (3) imply that

(4) βM(z,ζ) = (HM{ ,z),HM( ,ζ))= ί HM(s,z)HM(s,ζ)dpdq.
JM

3. We claim that the beta density HM( , ζ) is characterized by the
following properties:

(5) j HM(,ζ)<ΞL2(M)

I H M ( ,

That HM(,ζ) satisfies the first and third of these relations was explicitly
shown in No. 2. On setting z = ζ in (4) and observing that βM(ζ, ζ) =
limz-+ζβ(z,ζ)<(χ>, we conclude that the second relation (5) is satisfied.
Conversely, suppose a function H on M satisfies (5). Then, since
h = H - HM{ •, ζ)e H2(M), we have (h, H) = 0 and (ft, HM( J ) ) = 0
and a fortiori (ft, /ί - HM{ , £)) = IIΛ IP = 0. Hence ft = 0, and H is the
beta density on M.
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4. The importance of (5) lies in the fact that it contains no reference
to the boundary dM of the plate M. Therefore, we can define the beta
density HM( ,ζ), if it exists, even for a general plate M by
(5). Reversing the usual process, we subsequently define the (bihar-
monic) Green's function βM(z,ζ), or the Green's kernel, of a general
clamped plate by (4),

(6) βM(z,ζ)=ί HM(s,z)HM(s,ζ)dpdq
JM

on M x M. At this point the biharmonic classification theory must come
in: We classify plates into two categories, according as the beta density
does or does not exist, in analogy with Riemann's classification of plates
into hyperbolic and parabolic types. It would not be difficult to carry
out this classification; however, what we really need is not the mere
existence but detailed information on properties of (6). To this end, we
consider what we call a fundamental kernel K(z, ζ) on M characterized
by

) +

K(,ζ)<ΞL2(M)

Km\\K( ,ζ)-K( 9ζ0

. ζ~*ζo

5. Suppose there exists a fundamental kernel K(z, ζ) on M. We
claim that there then exists a beta density HM( , ζ) for every ζ E M
and a Green's kernel βM(z, ζ) of the clamped plate M with the following
properties: A2βM(*, ζ) = δζ βM e C(M x M) (joint continuity);
limt supFχF I βMt - βM I = 0, where {ML} is any directed set of plates Mt CM
exhausting M and F is any compact subset of M (consistency relation).

For a proof we recall that H2(M) is a locally bounded Hubert space
and consider the functional kζ(u) = (w, K( , ζ)) on H2(M) for any fixed
ζ ELM. It is easily seen that kζ is bounded and thus kζ E H2(M). It is
also readily verified that limζ^ζo\\kζ - kζo\\ = 0. As a consequence,
JfM( , ζ) = K( -, ζ) - kζ is the beta density on M with pole ζEM. By
means of the properties of K( , ζ) and fc^ it is not difficult to ascertain
that βM(z,ζ) = (HM(- ,z),HM(- ,ζ)) is continuous on M x M. From
(HM ( , f) - //Mι (-, ζ), HMι ( , z)) = 0 we obtain on setting HMι ( , f) = 0 on
M-ML
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Using these relations we deduce limt \\HM( , ζ)- HMι(-, £)|| = 0 and, in
view of the continuity of | |HM( , ζ) - HML( , ζ)f = βM(ζ,ζ) - βMί(ζ, ζ) on
M, obtain the consistency relation. Taking the directed set {Ω} of
smooth plates Ω in M as {ML} and observing Δ2βΩ( , ζ) = δ̂  on Ω we see
that

(/8M( , ζ), ΔV) = Km (jBo( , ζ), ΔV)

(

for every <p G Co(M), and therefore Δ2/3M( , 0 = δζ on M.

6. An important special case is a plate M for which the iteration
g(2)(z,ζ) of the harmonic Green kernel g(z, ζ) on M can be defined:

(8) g(2)(z,ζ)= f g{s,z)g(s,ζ)dpdq.
JM

This is the case if and only if g( , ζ) E L2(M) for some and hence for
every ζ EM. The function g(2) is continuous on M x Aί,Δ2g(2)( , 0 =

Δg( , £) = δ̂  on M, and if a part γ of dM is an open smooth arc, then
g(2>( , ζ) E C\M U γ - ζ) and g(2)( , £) = 0 on γ. In this case g(z, f) is
a fundamental kernel on M and the result in No. 5 applies. Since
g(.,ζ)-HM(,ζ)EH2(M),

j M (z, ζ) = | M g(s, z)HM(s; ζ)dpdq

[ = | | H M ( , Oil 2^ k ( , Oil2 =

In view of | βM(zy ζ)\ ̂  (g®(z9 z))υ2(βM(ζ, ζ))1/2, βM{ , ζ) is continuous on
M U y and /3M( *, ζ) — 0 on γ. We remark that in the case in which g(2)

exists, the following sharpened form of the consistency relation is
valid. Suppose {Mt} is a directed set exhausting M such that 3Λίt

contains an open smooth arc γ on dM. Then by

= \\ g(s,zχHM(s,ζ)-HMχsyζ))dpdq\
JM

βMι(z, ζ) converges to βM(z, ζ) uniformly on F1 x F2, with F1 any compact
subset of M U γ, and F2 any compact subset of M.
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Infinite strip.
7. Having completed the preparatory part we proceed to our main

discussion. We consider, as our basic plate, the infinite strip

5 = {z = JC + iy - oo < x < oo? - l < y < l}.

The relative boundary dS consists of the lines y = ± 1. We denote by
g(z, ζ) the harmonic Green's kernel on S. Let Sm ={z ES;\x\<m}
and denote by gm(z,ζ) the harmonic Green's kernel on Sm(m =
1,2, ). Fix an arbitrary ζ E S, an n = l , 2 , , and then an m =
1,2, such that ζ E Sm and | R e z " n | E H(S - Sm). Let c0 (cl9 resp.) be
the supremum (infimum, resp.) of g( , £)( |Rez~" |,resρ.) on S Π dSm,
and set c = co/ci. Comparing boundary values of gm+*( >£) and
c | R e z ^ | on d(Sm+k-Sm), we have gm + k( , £) = c | R e z " n | on
Sm+k - Sm. On letting fc-^oowe see that g( , ζ) ̂  c |Rez~n | on 5 - Sm,
and conclude that

(10) χlimg(z,f)/|Rez-"| = O (n = l,2, ),

where JC = Rez and z E 5. In particular, g(- ,ζ)E: L2(S), and the result
in No. 6 applies to 5. We denote simply by H( , ζ) the beta density on
5 and by β(z,ζ) the Green's kernel of the clamped plate 5.

8. We study the class H2(S) and consider two subspaces
H2(S)k(k = 1,2) as follows. First let /f2(5)! be the subspace of H2(S)
consisting of the functions u E H2(S) with u E C°°(S), S = S U dS, and
«( , ± l ) E L 2 ( - ° 0 , 0 0 ) . We maintain that H2(S)i is dense in H2(S) in
the L2 norm, i.e.,

(11) H.iS), = H2(S).

To see this, let h be an arbitrary element in H2(S) and consider
hλ(z) = h(z/λ) on 5 with λ E (I, 0 0). By the Fubini theorem, since

£
we see that ψ(y)<co for almost every y E ( - 1 , 1 ) and a fortiori
/ιλ ( , ± 1) E L2( - oo? oo) for almost every λ E (1, oo). Thus we can choose
a decreasing sequence {λπ} converging to 1 such that Λπ( , ± l ) =
M , ± l ) E L 2 ( - o o , o o ) f O Γ n = l , 2 , . Since lim n^J/ιw - ft || = 0, as
can be easily seen, we conclude that ft E H2(S)i.

9. We next prove that the ideal boundary x = ±oo is negligible for
the class H2(S) in the sense that
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(12) {fc e H 2 ( S ) I ; Λ I as = 0} = {0}.

In the notation of the classification theory (e.g., [8]) this fact may be
expressed as S E SOH2. To prove (12) we choose an arbitrary h in

)i with h I dS = 0 and consider

/(*) = £/t(x,y)2<ίy

on (- 0 0 , 0 0 ). Keeping Δ/i = 0 in mind, we have

Since h(x, ± l ) = 0, integration by parts gives

£ Hx,yφh(x,y)dy = - £ (^h(x,y)Jdy.

Therefore,

so that f{x) is a nonnegative convex function on ( - °o, α>). On the other
hand, the relation

fj(x)dx = \\ h |p < oo

implies the existence of an increasing (decreasing, resp.) sequence {r+

n}
({r;}, resp.) converging to -fo° (-°°, resp.) such that limn̂ oo/{r̂ } =
0. By the convexity of /,

0 ^ sup /(x) = max(/(r+

n),/(r-π))

for every n and hence f(x) = 0 on (-°°, °°). Therefore, ||Λ|| = 0 and
h = 0 on 5.

10. We now prove a simple lemma which will play a decisive role in
our discussion. To state the lemma, it will be convenient to use the
notation
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= limsup[Λ](jc)

for each h EH2(S). We designate by H2(S)2 the subclass of H2(S)i
consisting of those h £ί/2(S)i for which [h]<°°. In view of (12), it
would seem reasonable to expect that [h ] < °° for all h E H2(S) or at least
for the majority of h in H2(S). This expectation is justified in the
following form:

FUNDAMENTAL LEMMA. The subspace H2(S)2 is dense in H2(S)i and
a fortiori in H2(S), i.e.,

(13)

The proof will be given in Nos. 11-12.

11. For any given h EH2(S) we have* to find a sequence {hn} in
H2(S)2 converging to h in the L2 norm. By (11) we may assume that
h E H2(S)i. We choose two sequences {ψj} and {φj} (j = 1,2, •) in
CX-o^oo) such that ψj(x)= h(x, 1) and ψ}(x)= h{x, -1) on | x | ^ / ;
<pj(x)= ψj(x) = 0 on | j c | g / + l; and

(14) lim(£ {Ψj{x)-h{xΛ)fdx

We denote by φy = $ψy and ψ; = ίFι/r; the Fourier transforms of φy and ψ, ,

Φi(p) = (&<P,)(p)= Γ e-*'φi(x)dx,
J-00

with p E ( - oo5 oo). Since φ] and ι/ί; are in the subspace Co( - °°, °°) of the
space ίf{ - oo, oo) of rapidly decreasing functions on ( - <*>, oo)? φί and ψj are
again in 5̂ ( - <», oo).

Consider the function

g2p_g-2p

It is easy to see that uy G C"(S), u,( , y) ε ϊf{ - «, oo); and
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limw,(p, y) = <p,(p), lim w.(p,y)= ιft(p) (p E(-°°,°°)),
y-»l y-»-l ^

where c is a universal constant. Take the inverse Fourier transform

of M;( , y). By the definition of w, and (15), we have ft, E H2{S\ with
boundary values

Λ,(χ, 1) = (&φj)(x) = ψ®Ψi){x) = Ψ,{x)

^ § = ψ,(x)

on ( - oo, oo). From the Plancherel theorem, the definition of uh and (15),
we obtain

Ih,(x,y)~ hi+k(x, y)\2dx=\ \ u,(p, y) - ui+k(p, y)\2dp = α,,k(y)
J -00 J-00

and

Therefore, ||Λy - hj+k ||2 = /i1 a,k{y)dy ^2ti},k9 and by (14),

In view of the completeness of H2(S), there exists an h* E H2(S) such that
{/ιy} converges to hx in L2 norm. By the local boundedness of H2(S) and
the fact that Λ; (JC, ± 1) — hj+k (x, ± 1) = 0 on | x | ̂  /, the convergence of {ft,}
to ft x is also pointwise and uniform on each compact subset of 5. In
particular, ΛOO(JC, ± 1) = ft (JC, ± 1) on ( - oo, oo) and ft. G H2(S) Π CX(S). The
function i; = ft - hxE H2(S) has vanishing boundary values on dS and
υ G //2(S)!. By (12), we have v = 0 on 5 and

lim||ft ;-ft|| = 0 (hjGH.iS),).

12. It remains to show that {hj}CH2(S)2, i.e., [ft;]<°° for every
= 1,2 , . By (15) and the fact that φj and ψy belong to Sf{ - oo, oo),
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(\φi(p)\ + \φ,(p)])dp =

Similarly,

eixpipui(p,y)dp

J-co

since pψ}{p) and pψj(p) belong to ^(-00,00) along with φ} and ψy. We
conclude that [fty] ̂  c, + cj < ». The proof of the Fundamental Lemma
is complete.

DuffirΓs function.
13. Consider the function

(16)v 7
1 5 sinh sy - (sinh 5 + 5 cosh s)cosh sy

54(s + cosh 5 sinh5)

with (5, y) E C x [ - 1,1]. Observe that 5 = 0 is a removable singularity
and D(p, y) is a real-valued C00 function of (p, y) E 5. Take an arbitrary
nonnegative function p (x) belonging to the class CZ{ - 00,00) and denote
by pip) the Fourier transform of p(x). Since p has compact support, p
can be continued analytically to C. In view of p E SP( - » , 00), the
function

(17) ,y)=w,(x,y)= Γ

to be referred to as Duffin's function with density p(x), is well defined on
S. We extend p to S by p(z) = p(x), and readily obtain the following
properties of w:

(18)

c-(S)

(zes)

(z e dS)

Less obvious is the following result: If p^O, then
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(19) infw(z)<0.

Definitions (16) and (17) as well as properties (18) and (19) are due to
Duffin [1].

For the convenience of the reader we sketch Duffin's proof of
(19). In the (p,g)-plane, consider the strip T: \p\ <*>,0<q <c =
3τr/4. The function eixsD(s, y)ρ(s), as_ a function of the complex
variable 5 = p + iq, is holomorphic on T except for two simple poles
a - a + ib (a,b> 0) and - a = - a + ib on T which are nonzero roots
of s + cosh s sinh s = 0 on T. We denote by Tn the finite strip \p\<
n, 0 < q < c, for n = 1,2 , . By the residue theorem,

[ ebaD(s,y)β(s)ds = R9
JdTn

where n > a and JR is the 2τri-fold sum of the residues of eixsD(s, y)β(s)
at a and - ά. Since β E ίf{ - oo, oo) and D(s,y) is bounded on T - Γπ,

lim [ eixsD(s,y)β(s)ds=0.
n^0OJT(ΛdTn

Therefore,

w(z) = R+ ί eixsD(s,y)β(s)ds.
Jlms=c

Here the last term is dominated by e~cx/-=o| D(p + ic, y )β{p -I- ic)\ dp, with
the integral bounded for \y \ < 1. Computing 1? explicitly we obtain

fcx cos (ax

where A(y) and B(y) are functions of y only, and A ( y ) ^ 0 for some
I y I < 1. In view of 0 < b < c, we conclude on letting x -> oo that (19) is
valid.

14. In addition to (18) and (19), Duffin's function has the following
properties, important from our point of view:

f AwEL2(S)
(20) }

I Δwl// 2(S).

For the proof, observe that β E 5̂ ( - oo, oo) implies the existence of a

τe5P(-oo,α>) such that \(p2D(p,y)- d2D(p,y)/dy2)β(p)\^τ(p) on
( - oo, oo). By the Plancherel theorem,
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£
= ί r(p)2dp=k <oo.

Therefore, \\^f = P-λΓ-AΔw{x,y)\2dxdy^k\ dy <°°, i.e., the first

relation (20) is valid.
To prove the second relation (20), we have to show that (ft, Δ w) = 0

for every ft G H2(S). By (13), it suffices to establish this for every
ft G H2(S)2. Let Sn = {z = xj- iy \x \ < n, |y \ < 1} (n = 1,2, ). Since
/z and w are in the class C°°(5), the Green's formula can be applied to h
and w on Sn:

I
Js

(h(z)Δw(z)-w(z)Ah(z))dxdy

By (18), we have in the notation in No. 10,

Since ft and Δw belong to L2(5), |(/ι,Δw)| = limn_oo|(/ι,Δw)Sn | and
therefore,

From this and (18), we conclude that (ft,Δw) = 0.

15. We recall the notation //(z, ̂ ) and β(z, ζ) for the beta density
and the biharmonic Green's kernel of the clamped plate S in No. 7. Let
p be as in No. 13 and denote by 5P the support of p in 5. By (9),
Ij8(z, 01 is dominated by β(z, z)1/2g(2)(£ if2 ^ kβ(z, z)m on S x Sp, with
fc = suρSpg

(2)(^, ^)1/2<°°. Therefore, the biharmonic Green's potential

(21) β(z;p) = jsβ(z,ζ)p(ζ)dξdη, ζ = £ + iη,

is well defined on S and | β (z p) | ^ k )8 (z, z )1/2 supSp p meas(5p). We
claim:
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ίA2β(z;p) = p(z) (zES)

(22) j Aβ(-;p)EL2(S)

For the proof, consider the auxiliary function

(23) υ(z) = υp(z) = £ H(z, ζ)P(ζ)dξdV.

By (9) and the Fubini theorem,

s \H(z,ζ)lp(ζ)dξdηJdxdy ^\\pf\s (js Hfrζfdxdyjdξdη

β(ζ,ζ)dξdη
Sp

Similarly, (Aφ,υ) = ((Aφ,H( ,ζ)),p)ζ = (φ,p) for any φ E CRS), i.e.,
Av = p in the sense of distributions, and by p E C%(S) and v E L2(S), in
the genuine sense on 5:

(vE L2(S) Π CT(S)
( 2 4 )

 ( Δ » ( 2 ) = P ( Z ) ( z e s ) .

By (21), the relation β(z, ζ) = (g( , z), H( , ζ)}, and the Fubini theorem,
we have

(25) β(z;p)=ί g(s,z)v(s)dpdq
JS

on 5. Hence Δ/3(z ;p)= v(z) on 5, and (24) implies the first two
relations (22). To prove the third, take an arbitrary h in H2(S) and
observe that

{h, Aβ(-;P)) = (h, v) = ((h, H( , ζ)), p)ζ = 0.

16. A comparison of properties (18) and (20) of Duffin's function
w = wp with properties (22) of β ( p) suggests that w = β ( , p)
on 5. We will prove that this is indeed the case. Observe that
Δ(Δw - Δβ( p)) = 0, that is, Δw - Δβ( p) belongs to H(S) and, in
fact, to H2(S) since both Δw and Δβ( p) belong to L2(5). On the
other hand, both Δw and Δβ( - p) are orthogonal to H2(5) and a fortiori
Δw - Δ/3( p) is orthogonal to H2(S) and at the same time belongs to
H2(S). Therefore,
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(26) Δw(z) = Δ/3(z;p) (z G S).

Denote by gn (z, ζ) the harmonic Green's kernel on Sn = {z | x \ < n, | y \ <
1} (n = 1,2 , ). Let hn G H (Sn) Π C{Sn) such that ftn 1Sn Π dS = 0 and
hn\SΠdSn = w. Note that |fcn | ^siax([w](n),[w](-n)) on 5Sn and,
therefore, on Sn. By (18),

(27) limsup|/ιn(z)| = 0.

Since w(z)-(gπ( ,z), Δw)Sn is harmonic on Sn with boundary values
w = hn on dSn, we have w(z) - (gn( , z), Δw)Sn = hn on Sn. In view of
(27), we conclude on letting n —> oo that

on 5. Using (23), (25), (26), and the Fubini theorem, we obtain

We have established the following

MAIN THEOREM. Duffin's function w with the density p is a bihar-
monic Green's potential of the density p:

(28) w(z)=ί β(z,ζ)p(ζ)dξdη.
J s

Hadamard's conjecture.
17. Consider a plate M with a continuous and consistent Green's

kernel βM(z,ζ) = (/ίM( ,z),//M( , ζ)) (cf. No. 5), which satisfies the
clamping conditions βM( , ζ) = dβM{ , ζ)/dn = 0 on dM if M is a smooth
plate (cf. No. 2). Let μ and v be any (signed) Radon measures on M
and set

(HMμ)(s)=ί HM(s,z)dμ(z).
JM

The beta mutual energy βM[μ, v] is given by

(29) ft,[μ, ^] = ί )8M(z, ζ)dμ(z)dv(ζ) = (HMμ,HMv).
JMxM
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Therefore, the biharmonic Green's kernel βM satisfies the energy principle
(strict definiteness):

(30) βM[μ,μ]^0

and the equality holds if and only if μ = 0. The mere positiveness is
clear from (29). Suppose βM[μ, μ] = 0. Then HMμ = 0 on M, and the
distribution identity Δ//Mμ = μ implies that μ - 0. As a special case of
(30), we obtain the relation

(31) βM(z,z) = βM[δz,δz]

which, in fact, we have repeatedly used.

18. The biharmonic Green's kernel βM(z,ζ) certainly takes on
positive values on M: βM(z, z ) > 0 . That βM(z,ζ) cannot take on any
negative values is known as Hadamard's conjecture [3]. By (19) and
(28), the relation p έ O implies that βs(z, ζ) takes on negative values on
S x S. Thus we have the following counterexample to Hadamard's
conjecture:

EXAMPLE (Duffin). The biharmonic Green's function βs(',ζ) of
the clamped infinite strip 5 : | x | < o°, | y | < 1 takes on both positive and
negative values for a suitable choice of the pole ζ in 5.

19. Let {Ωt} be a directed set of subregions of S such that
U tΩt = 5. By the consistency relation (cf. No. 5), {βa} converges to βs

uniformly on each compact subset of S x S. Therefore, inf /3Ωι < 0 along
with βs if Ωt is sufficiently close to 5. We have here a good example of
the importance and effectiveness of discussing potential theory on
noncompact carriers even for the study of compact carriers. As an
example, consider in S the ellipse

whose eccentricity tends to & with n. Since {En} is increasing and
exhausts 5, {βEn} converges to βs uniformly on each compact subset and
hence inf jβEn < 0 for all sufficiently large n. Thus we have a new
noncomputational proof for the following

EXAMPLE. (Garabedian). The biharmonic Green's function
βE( ,ζ) of a clamped sufficiently eccentric ellipse E takes on both
positive and negative values on E for a suitable choice of the pole ζ in 5.
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20. Actually, we can produce as many regions as we wish as
counterexamples to Hadamard's conjecture by the above method of
exhausting Duffin's infinite strip 5. We add only one more example, the
incentive of which was Duffin's [1] suggestion made without proof, that a
quadrilateral close to a rectangle be a counterexample. Let Sn =
{z I x I < n, | y | < 1}. Then {βSn} converges to βs as n -> oo uniformly on
each compact subset of S (cf. No. 6). We thus obtain the following
"new" counterexample:

EXAMPLE. The biharmonic Green's function βR ( , ζ) of a clamped
sufficiently elongated rectangle R takes on both positive and negative
values on R for a suitable choice of the pole ζ in R.
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