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ALGEBRAS WHICH SATISFY A SECOND ORDER
LINEAR PARTIAL DIFFERENTIAL EQUATION

H. S. BEAR AND G. N. HILE

Let A be an algebra of complex valued functions satisfying
a second order linear partial differential equation in a plane
domain. If the equation is hyperbolic or parabolic, the
functions of A are locally functions of only one variable. If the
equation is elliptic, there exists a unique complex function Λ such
that fx = Λ/y for each / in A, and after a change of variables each
function in A is analytic. If an algebra of functions satisfies the
maximum principle, and one nonconstant function and its
square satisfy an elliptic equation, then every function in the
algebra satisfies this equation.

1. Introduction. In this paper we study algebras of complex
valued functions defined on a plane domain, which satisfy some linear
second order partial differenital equation

(1) Lw = awxx + 2bwxy + cwyy + dwx + ewy = 0,

with real coefficients. We start with an example which turns out to be
typical of the significant cases.

Let L be a self-adjoint elliptic operator:

(2) Lw = — (a wx + bwy) + — (bwx + cwy),

where α, ft, c are C2 real functions on a simply connected domain,
satisfying the normalizing condition ac - b2 = 1. For each C2 function w
satisfying Lw = 0, we define (up to an additive constant) a conjugate
function υ by

(3) v(x,y) = I - (ftwx + cwy)<iΛ: 4- (ΛWX + buy)dy.

It is easy to check the following facts: Lv = 0; the conjugate of v is - u
the set of functions u -f- it; is an algebra; (u -f it;)"1 is in the algebra if

The functions u + iυ turn out to be analytic after the appropriate
change of variables. Moreover, the example illustrates the only way
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that the functions of an algebra can satisfy a linear second order elliptic
partial differential equation.

Suppose A is a function algebra (a Banach algebra of complex
continuous functions, with the sup norm) on the unit circle Γ = {z: \z\ =
1}. If Re A = Re Ao, where Ao is the disc algebra restricted to the circle,
then [4,5] A = A0°Φ for some homeomorphism Φ of Γ onto Γ. We
obtain a similar result for algebras defined on a domain rather than on its
boundary. Specifically, if A is an algebra of functions on a domain and
Re A consists of harmonic functions, then A or A consists of analytic
functions.

We also obtain a simple geometric characterization of functions
which are analytic functions of a homeomorphism (i.e., interior mappings
in the sense of Stoilow). Let w, υ be sufficiently smooth real functions
on a domain G. Then u + iυ O Γ M - iυ is analytic on G if and only if
Vw Vυ = 0 and | Vu | = | Vυ | on G. This result generalizes as
follows. We define a family of inner products "*", each with its norm
"|| | |". For each such inner product *, the equations Vu * Vυ = 0 and
||Vw || = || Vυ || characterize those functions u + iυ which are analytic after
a change of variables determined by *. The equations imply that Vw
and Vυ are nonparallel wherever they are nonzero. The converse is
essentially true. In particular, if Vw and Vυ never vanish and are never
parallel on a domain, then u + iυ is analytic after an appropriate change
of variables.

In the final section we apply our results to algebras which satisfy a
maximum principle on G, and obtain two extensions of results of Rudin
[7] for such function algebras.

2. The parabolic and hyperbolic cases. In this section
we consider algebras of complex C2 functions which satisfy (1), where L
is parabolic or hyperbolic. We show that no such algebra can separate
points, and in fact must consist essentially of functions of one variable.

We assume that the coefficients of L are real C2 functions on a
domain G in the (JC, y )-plane, and that α, b, c do not vanish
simultaneously. A solution of (1) is a real or complex C2 function which
satisfies (1) identically on G.

An "algebra of functions" on G will always be assumed to contain at
least one non-constant function.

A "change of variables" means a one-to-one transformation
(JC, y)—>(£, η) where ξ = ξ(x, y), η = η(x, y) are C2 functions and the
Jacobian ξxηy - ξyηx does not vanish. It follows that the inverse func-
tions x = x(ξ, η), y = y(ξ, η) are also C2. The equation (1) transforms
into the following equivalent equation in the ( £ η ) variables:
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(4) Vw = a'wH + 2b'w^ + c'wηη -f d'lVf + e'wη = 0,

where

b' = α&η, + bξxηy + &£,?/,

(5) c' = aη I + 2bηxηy 4- cη 2,

Clearly #', ft', c' are C1 functions, and d', e' are continuous.
If (1) is a parabolic equation (i.e., ac - b2 = 0 in G), then for each

point of G there is a neighborhood U, and a change of variables on U
onto [/' so that the equation takes the form

(6) L'w = wξξ + d'wξ + e'wη = 0

on U' [6, p. 63].
If (1) is hyperbolic (ac - Z>2<0 in G), then each point of/? has a

neighborhood U and a change of variables on U onto Uf so that the
equation takes the form

(7) L"w = ŵ η + d'w€ + e'wv = 0

on Ur [6, p. 58].
We first look at algebras which satisfy a parabolic or hyperbolic

equation in canonical form. To this end define the operators M and N
as follows (d and e are continuous functions):

(8) Mw = wxx 4- dwx 4- ewy,

(9) Nw = wxy 4- dwx + ewy.

THEOREM 1. Lei A be an algebra of complex C2 functions which
satisfy the parabolic equation Mf = 0. Then each f in A is a function ofy
only.

Proof. Let f=u+ivEA. Since /2EΛ, u2-v2 and uv also
satisfy Mw = 0. Setting M(uυ) = 0 and using Mu = Mv = 0 we con-
clude that uxvx = 0. Similarly, M(u2- v2) = 0 leads to w2 = t;2. Hence
M* = ϋ* = 0, and / is a function of y.
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COROLLARY. // A is an algebra of complex C2 functions which
satisfy the parabolic equation (1) on G, then each function of A is locally a
function of the same single variable after a change of coordinates.

Now we turn to the hyperbolic case.

LEMMA 2. Let A be an algebra of complex C2 functions on G such
that Nf = 0 for all f E A. If A contains some function f such that fx does
not vanish on G, then every function in A is a function of x
only. Similarly, if A contains a function g such that gy does not vanish on
G, then every function in A is a function of y only.

Proof. Let f = u + iv E A. Using the equations Nu = Nv =
N(uv) = N(u2- v2) = 0 we obtain

uxvy + uyvx = 0
(10)

UχUy ~ VyVχ = 0 .

Considered as equations in ux, vx, the determinant is - (u2

y+ v2

y). Hence
(ux, vx)7^ (0,0) implies (uy, vy) = (0,0). Similarly, (wy, vy)^ (0,0) implies
(wx, vx) = (0,0), and fXJ fy cannot both be nonzero at the same point. If fx

does not vanish in G, then fy = 0 in G, and / is a function of x. Similarly,
if gy does not vanish on G, then g is a function of y only. If fx does not
vanish on G, then gy = 0 for all g E A. Otherwise, if gy(x0, yo)^ 0, we
let h = f + g, and get the contradiction hx (x0, y0) = fx (xθ9 y0) / 0, and

THEOREM 3. Let A be an algebra of complex C2 functions on a
domain G, such that Lf - 0 for all f E A, where L is hyperbolic. If
fx (*o, yo) ̂  0 or fy (x0, y0) ̂  0 for some fEA and some (JC0, y0) E G, ί/ien
there is a neighborhood U of (xθ9 y0) and α change of variables
(x, y)-»(^, η)onU onto Uf such that every function in A is a function of ξ
on [/', or every function in A is a function of η on Uf.

Proof. We make a local change of variables so that Lf = 0 becomes
(7) on U'. Since fx = fξξx + fηηx, fy = fξξy + fηηy, either fξ or /, is nonzero
in a sufficiently small neighborhood of (ξ(x0, yo), η(xo, yo)) The result
then follows from Lemma 2.

The following example shows that when the functions of an algebra
satisfy a hyperbolic equation, these functions need not be globally
functions of the same variable. Let 5 = {(JC, y): | x \ < 1, | y | < 1} and let
G be S with the closed first quadrant removed. Let /(JC, y) = y3 in the
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second quadrant, /(JC, y) = 0 in the third quadrant, and /(JC, y) = JC3 in the
fourth quadrant. All polynomials in / satisfy the hyperbolic equation

wxy = 0.

3. Elliptic case with Laplacian principal part. We
consider now the following elliptic equation:

(11) Low = wxx + wyy + dwx + ewy = 0,

where d and e are continuous real functions on a domain G. We show
that if A is an algebra of complex C 2 functions on G which satisfy (11),
then A or A consists of analytic functions, and d = e = 0.

The following theorem gives a very simple and appealing geometric
description of how the gradients of real functions u and υ must behave in
order for u + iv to be a conformal mapping. We say that u and v are
conjugate harmonic functions in a domain if either u + iv or u - iv is
analytic in that domain.

THEOREM 4. If u, υ are C2 functions on a domain G, then u and v
are conjugate harmonic functions in G if and only if

(12) Vu V u = 0 , |Viι| = |Vϋ|

hold identically in G.

Note, The result above was stated by Dzyadyk [3] for C 1 functions
but there appears to be a gap in the proof at the following point. Let φ
be continuous on a domain G, zero on a closed set Z contained in G, and
analytic on each component of G - Z. Then (?) G - Z has only one
component and φ is analytic in G. We do not know a proof of this
statement.1 However for our purposes we only require the result for C 2

functions, and for this case we furnish the elementary proof below.

Proof. If either / or / is analytic, then (12) follows from the
Cauchy-Riemann equations. We assume therefore that (12) holds. If
/ = u + iυ9 then (12) is equivalent to fl + f2

y

 = 0. Hence fx = 0 if and only
if fy = 0, and fx=± ifr Let Z = {(JC, y): ux = uy = vx = vy = 0}. Then
G - Z = Zc is open, and Z° U Z c is dense in G. Clearly u and v are
harmonic on Z°. Since fx=± ify with one sign holding on each
component of Z c , / or / is analytic on each component of Z c . Hence u

1 We are indebted to Walter Rudin for pointing out that this statement is a Theorem of Radό

(see, e.g. [8, Theorem 12.13]).
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and v are harmonic on Z° U Z c, and by the continuity of uxx + uyy,
vxx + Όyy, u and υ are harmonic on G. The functions g = ux - iuy and
h = vx - ivy are analytic in G, and hence have isolated zeros (unless u
and v are constant). Therefore Z consists of isolated points, Z° is
empty, and Z c is connected and dense. Jience / or / is analytic on all of
Zc. Since / is continuous on G, / or / is analytic on G.

DEFINITION. We say u and υ are square-conjugates for L if and
only if u or υ is nonconstant, and Lw = Lv = L(uv) = L(u2- υ2) = 0.
The last condition is of course equivalent to L(/) = L(/2) = 0, where
/ = u + i"ϋ.

THEOREM 5. // w, u are C2 functions in G which are square-
conjugate for Lo, then u and v are conjugate harmonic functions in G
moreover, d = e = 0, and Lo is the Laplacian.

Proof. We calculate as follows:

L0(uv)= uL0(υ) + vL0(u) + 2Vu Vi>,

L0(u2- v2) = 2uLo(u)-2υLo(v) + 2(\Vu \2-\Vv |2).

If u and i; are square-conjugates, then Vu Vi? = 0, and | Vu | =
|Vϋ|, and w, i; are harmonic conjugates by Theorem 4.

Since u and υ are harmonic and Lou = Lou = 0, we also have

dux + euy = 0,
(13)

dυx + eι;v = 0.L/y

Let / = w ±ίϋ (whichever is analytic in G). The determinant of the
system (13) is ± | / ' | 2 . Since u or υ is nonconstant, the determinant
vanishes at most at isolated points of G, and off this set d = e = 0. By
continuity, d = e = 0 on G.

The following theorem says in particular that function algebras
whose real parts are harmonic functions consist of analytic functions, or
consist of conjugates of analytic functions.

THEOREM 6. If A is an algebra of complex C2 functions on G, and
Lof = 0 for all f E A, then A or A consists of analytic functions, and Lo is
the Laplacian.

Proof. Let / = u + iυ be a nonconstant function in A. Then u and
υ are square-conjugates for Lo, / or / is analytic, and d = e = 0. We
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need only show that A cannot contain both a nonconstant analytic
function and the conjugate of a nonconstant analytic function. Suppose
on the contrary that g,h E A, with g and h analytic and nonconstant.
Then gh or gh is analytic. If, for example, gh is analytic, then h is
analytic except on the set of isolated points where g is zero. Since h is
continuous, h and h are both analytic, which is a contradiction.

4. The general elliptic case. We now consider an elliptic
equation of the form

(14) Lw = awxx + 2bwxy + cwyy + dwx + ewy = 0.

We will make standard assumptions on the coefficients in terms of the
following definitions.

DEFINITION. A function / is Holder continuous in G if for every
compact subset K of G there are positive constants c, a, with 0 < a ^ 1,
such that | / (z i )- f(z2)\ ^ c | z x - z2\

a for all zu z2E:K. A function/ is in
the class Hm(G) if / and its partial derivatives up to order m are Holder
continuous in G.

DEFINITION. We will say that the operator L of (14) is a regular
elliptic operator in G if α, b, c E Hχ(G)9 d, e are continuous on G, and the
two normalizing conditions hold: ac - b2= 1, α > 0 .

LEMMA 7. // u, i; satisfy (14), tfien L(MU) = 0 if and only if

(15) Vw*Vϋ = 0 ,

and L ( w 2 - ϋ 2) = 0 if and only if

(16) |[Viι|| = ||Vf>||

where

VM * Vw = awxϋx + buxvy + 2>uyt;x + cuyι>y

||Vw||2 = Vw *Vw = a « 2 + 2ftwxwy.+ cw2.

If f = u + iv, then (15) and (16) together are equivalent to the complex
form

(17) afl + 2bfxfy+cf2

y = 0.
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Proof. The results are easily verified by computation, and do not
depend on the ellipticity of L.

We now let L be the regular elliptic operator of (14), and consider
the following Beltrami system associated with L:

ηx = bξx + cξy

(18)
Ύ]y = - aξx - bξy.

Solving for ξx and ξy gives the equivalent system

ξx = - bηx - cηy

(19)
ξy = aηx + bηy.

Because of the hypotheses on a, b, c, we can invoke a known result which
says that there is a global homeomorphism (x, y)—> (ξ, η) from G onto
G' such that ξ and η satisfy (18) and (19), and the Jacobian ξxηy - ξyηx

does not vanish on G. (See [2, p. 160], and for a more general result see
[1].) There is no restriction on the domain G. Functions satisfying
(18), (19) are necessarily in the class H2(G) [9, Theorem 2.4, p. 87], and in
particular are C2 functions on G. It follows from (4), (5), (18) that (14)
becomes

(20) a \wH + wηv ) 4- ( L £ K + (Lη )wη = 0

in the (ξ,η) variables (cf. [2], p. 159).

THEOREM 8. There is a square-conjugate pair of functions u, v for
the regular elliptic operator L if and only if

(21) d = ax + by e = bx + cy.

If (21) holds, and ξ, η are a change of variables satisfying (18), (19), then
(20) is Laplace's equation, and ξ, η are square-conjugates for
L. Functions w, v are square-conjugates for L if and only if u + iv or
u - iv is an analytic function of ξ + iη in Gr.

Note. The equations (21) are just the conditions that L be self-
adjoint:

(22) Lw = (awx + bwy)x + (bwx + cwy)y.
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Without the assumption that (14) is normalized (ac - b2= 1), (21)
becomes

(23) Kd = (Ka )x + (Kb )y, Ke = (Kb )x + (Kc )y,

where K = (ac - b2)112.

Proof. Assume that u, v are square-conjugates for L, so that w, v,
uυ, and u 2 - t?2 all satisfy (20) when considered as functions of ξ and η in
G'. Because αc - b2>0, the coefficient a' of (20) (cf. (5)) only vanishes
when ξx = ξy = 0. Hence a' / 0 on G since £xτjy - £yηx ̂  0. By
Theorem 5, Lξ = Lη = 0 and (20) is Laplace's equation. Since ξ and 77
are obviously square-conjugates for Laplace's equation wξξ + wηη = 0, ξ
and η are square-conjugates for L. We set ηx y = ηyx in (18) and get

(24) (aξx + bξ,)x+(bξx+cξy)y=O.

Subtracting Lξ = 0 from (24) gives

(25) (ax 4- ί>y - </)£ + (fcx + cy - e)ξy = 0.

Similarly, from (19) and Lη = 0 we get

(26) (αx + by - d)ηx + (bx + cy - e)ηy = 0.

Since the Jacobian £xηy - £yηx / 0, we conclude that d = ax + by and
e = bx + cy.

Now assume that (21) holds; i.e., that L is the self-adjoint operator
(22). It follows immediately from (18) and (19) that Lξ = Lη = 0. Hence
(20) is Laplace's equation and ξy η are square-conjugates for L.

The square-conjugate pairs u, v for L in G correspond to the
square-conjugate pairs for Laplace's equation in G\ Hence by
Theorem 5 the square-conjugate pairs w, v for L coincide with the
analytic functions u + iυ of ξ + iη in G\

COROLLARY 1. If A is an algebra of complex C2 functions on G
such that Lf = 0 for some regular elliptic operator and all f E A, then there
is a change of variables ζ = ξ + iηonG onto G' such thatf°ζ~1 is analytic
on G' for all / E A.

Proof _As in Theorem 6, A or A consists of analytic functions of
ξ + iη. If / is an analytic function of ξ + iη, f is an analytic function of
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We know that if (ξ, η) is a change of variables on G and ξ, η satisfy
the Beltrami system (18), then ξ and η are square-conjugates for L. We
show next that the Beltrami equations characterize square-conjugacy in
general; i.e., without assuming the mapping (x,y)-*(ξ,η) is one-to-
one. In fact, the Beltrami systems are simply the Cauchy-Riemann
equations after a change of variable.

We consider the following two Beltrami systems, which are the same
as (18) and its negative. We continue to assume that α,b,c E Hλ(G).

vx = bux + cuy

(27)
vy = - αux - buy

vx = - bux - cuy

(28)
υy = αux + buy.

LEMMA 9. // (JC, y)^>(ξ,η) is α change of variables on G onto G1

such that ξ and η satisfy (18), (19), then (27) is equivalent to uξ = vηy

uη = - vξ, and (28) is equivalent to uξ = - vη, uη = υξ.

Proof We write the first equation of (27) in terms of ξ and r/, using
(18) and (19):

vξξx + vηηx = b(uξξx + uvηx) + c(uξξy + uvηy)

+ cξy)+uv(bηx + cηy)

- uvξx.

In the same way, the second equation in (27) yields

Vξξy + vηηy = Uξηy - uηξy.

Hence we have the following system representing (27) in the (ξ, η)
variables:

Vξξx + Vηηx = Uξηx - Uvξx

(29)
= uξηy - uηξr

Since ξxηy - ξyηx ^ 0, we can solve for vξ and υη, and we get

(30) vξ = - uv, vη = uξ.



ALGEBRAS SATISFYING A DIFFERENTIAL EQUATION 31

Of course (30) is equivalent to (29) and (27), and similarly (28) is
equivalent to

(31) vξ = uη, vη = - u
ξ.

THEOREM 10. IfL is a self-adjoint regular elliptic operator, and u, υ
are C2 functions on G, then the following are equivalent:

(a) w, v are square-conjugates for L in G
(b) M, v satisfy one of the Beltrami systems (27), (28) throughout G
(c) u, v satisfy (15), (16) in G.

Proof Let ξ and η be a change of variables on G onto G' such that
(18) and (19) hold. Then by Theorem 8, Lw = 0 becomes Laplace's
equation in the (ξ,η) variables.

Assume (a) holds. Then u and v are square-conjugates for Lap-
lace's equation in G'. Hence u and v are conjugate harmonic functions
of ξ and η i.e., (30) or (31) holds, and therefore (27) or (28) holds.

To show that (b) implies (a), we assume that u and v satisfy (27) or
(28), and hence that u and υ are conjugate harmonic functions of ξ and η
in G'. Hence u and v are square-conjugates for Laplace's equation in
G', and therefore square-conjugates for L in G.

We have already shown (Lemma 7) that (a) implies (c), so assume (c)
holds. Let / = u + iv, so that (17) holds:

Substituting fx = fξξx + fηηx, fy = fξξy + fηηy we get

(32) f](aξl + 2bξxξy+cξl) + fl(aηl+2bηxηy + cη2

y) = 0.

Here we used the fact that

aξxηx + bξxηy + bξyηx + cξyηy = 0,

which follows from (18). The coefficients of f] and f\ are equal and
nonzero. Hence / | + /η = 0, which is equivalent to

uηvη = 0
(33)

u]+u2

v=v]+v

By Theorem 4, u and v are conjugate harmonic functions on G', and
hence square-conjugates for L.
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COROLLARY 1. If u, v is any square-conjugate pair for L, then
j = Uχυy - uyvx is nonzero on any open subset of G on which f = u + iv is
one-to-one. The zeros of J and fx and fy are isolated.

Note. This result is proved for solutions of Beltrami systems in [9,
p. 91]. We include a brief proof here for the reader's convenience.

Proof To be specific, assume w, V satisfy the Beltrami system
(27). Let ξ, η be new variables such that u + iv is an analytic function of
ξ + iη, with uξ = vη and uη = - vξ. Then

j _ d(u,v) d(ξ,η)
" d(ξ,η)d(x,y)

= (uξvη - uηvξ)(ξxηy - ξyηx)

The zeros of /' are isolated, and /' is not zero on any open set on which /
is one-to-one.

COROLLARY 2. If A is an algebra of complex C2 functions on G
which satisfy (14), where L is a regular elliptic operator, then L is
self-adjoint and (27) or (28) holds for every u + iv in A.

Proof Either every / is an analytic function of ξ + iη or every / is
an analytic function of ξ + iη by Theorem 6.

Next we characterize those pairs M, V of H2(G) functions which are
square-conjugates for some regular elliptic operator L. We show there
is at most one such L for any pair w, v. We also give a simple geometric
condition on u and v which characterizes the fact that u + iv is an
analytic function composed with a homeomorphism.

THEOREM 11. Let f be a nonconstant function in H2(G). If f
satisfies

(34)

for some regular elliptic operator L on G, then f satisfies

(35) fx=λf,
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for some complex function λ E Hλ(G) with Im λ ̂  0, and λ is determined
up to complex conjugation by the coefficients of L.

Conversely, iff satisfies (35) in G for a complex function λ in HX(G),
with Imλ^ 0, then there is a unique regular elliptic operator L such that

Proof If L(f) = L(f2) = 0, then by Lemma 7 we have

(36) afl

The zeros of fx and fy are isolated by Corollary 1 of Theorem 10, so the
quadratic equation (36) gives

(37) fx=(-b/a±i/a)fy,

with λ=-b/a±i/a uniquely determined except for the sign of
Im λ. Since a never vanishes and fy vanishes at most at isolated points,
the sign of Imλ is constant in G.

Now assume that (35) holds, with Im λ > 0 to be specific. We let

(38) a = 1/Im λ, b = - Re A /Im λ, c = \λ |2/Im λ.

Then ac - b2 = 1, a > 0, and a,b,cE Hλ{G). It is easy to check that
(36) holds, so L(/) = L(/2) = 0 by (c) of Theorem 10. Equation (37)
shows that L is uniquely determined by λ, given that ac - b2- 1 and
a > 0 .

COROLLARY 1. If L is a regular elliptic operator and L (/) = L (f2) =
0, then L(φ°f) = 0 for every φ analytic on f(G).

Proof If g = φ of then gx = {φ'°f)fx and gy = (φ'°/)/ y, so gx = λgy

if Λ = λ/y.

COROLLARY 2. /// E H2(G), and f is nonconstant, there is at most
one regular elliptic operator LonG such that L(f) = L (f2) = 0, and there is
at most one A E HX(G) with Imλ ^ 0 such that fx = λfy.

COROLLARY 3. If f = u + iv E H2(G) and J = uxvy - uyvx does not
vanish on G, then there is a unique regular elliptic operator L on G such

Proof If J ^ 0 , then / y ^ 0 , and if λ=/ x // y , then Imλ =
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The Cauchy-Riemann equations can be written fx = - ify, where
/ = u + iv. The following can therefore be considered a generalization
of the Cauchy-Riemann characterization of analyticity:

THEOREM 12. If f E H2(G) and fx = λfy for some A E HX(G) with

Im λ 7̂  0, then f = φ°ζ where ζ E H2(G) is a homeomorphism of G, and φ

is analytic on ζ(G).

Proof We know that / or / is an analytic function of ζ = ξ + iη,
where ξ + iη is a homeomorphism and ξ, η satisfy (18), and ζ E H2{G)
by [9, Theorem 2.4, p. 87]. If / is an analytic function of ζ9 then / is an
analytic function of ζ.

A geometric interpretation of the condition fx = λ/y, Im λ ̂  0, can be
given as follows. If the complex quantities fx and fy are considered as
vectors in two-space, the condition implies that these vectors are
nonparallel whenever they are nonzero. But fx and fy are nonzero and
nonparallel at the same time that Vw and Vv are nonzero and nonparal-
lel, as can be seen by considering the 2 x 2 matrix whose rows are Vw and
Vv and whose columns are fx and fy. Thus for the case when Vw and Vv
do not vanish, the hypothesis of Theorem 12 is simply that Vu and Vv are
nonparallel and w, v E H2(G).

5. Algebras satisfying a maximum principle. In this
section we use the results of §4 to describe certain algebras which satisfy a
maximum principle. These results extend those of Rudin [7].

DEFINITION. We will say that an algebra of continuous complex
functions on G satisfies the maximum principle on G if for every
compact subset K of G and every / £ A , max{\f(z)\: z E K} =
max{\f(z)\:zEdK}.

THEOREM 13. Let A be an algebra of complex functions in H2(G)
which satisfies the maximum principle. If

(39) L(/) = L(f) = 0

for some nonconstant f E A and some regular elliptic operator L, then (39)
holds for all fEA. If

(40) /x = λfy

for some nonconstant fEA and some A EHX(G) with Imλ/0, then
every function in A satisfies (40).
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Proof. Let / be a nonconstant function in A which satisfies
(39). By Theorem 8, there is a change of variables (x, y)—> (£ η) such
that (39) becomes Laplace's equation, and / is an analytic function of
ζ = £ + Ir? (Replace f with ζ if / is analytic.) Rudin has shown [7,
Theorem 2] that, in an algebra satisfying the maximum principle, if one
nonconstant function is analytic then every function is analytic. Thus
every g EA is an analytic function of ζ. Again using Theorem 8, we
conclude that every g E A satisfies (39). If / is nonconstant and satisfies
(40), then by Theorem 12, / = φ °ζ where ζ E H2(G) is a homeomor-
phism of G, and φ is analytic on ζ(G). Since fx - λfy = 0 =
(φ'°ζ)(ζx - Hy) and the zeros of φ' are isolated, ζx — λζy. Again by
Rudin's result, every g E A is an analytic function of ζ. It follows that

gx = λgy.
We next give a local criterion that an algebra satisfying the max-

imum principle consists of analytic functions after a change of variables.

THEOREM 14. Let A be an algebra of functions in H2(G) which
satisfies the maximum principle. Suppose that at each point z in G there
exists an open sphere Sz CG centered at z and a function kz E Hλ(Sz) with
Imλ / 0 , and a function fz in A, nonconstant in Sz, such that

(41) ψ=κψ
v y dx dy

in Sz. Then there is a change of variables ζ = ξ + iη from G onto G' such
that ζEH2(G) and foζ'1 is analytic on G1 for all f E A.

(Note that if at every point z E G the algebra contains a function
with non-vanishing Jacobian at z then the conditions of the theorem are
satisfied, by Corollary 3 to Theorem 11.)

Proof. It is sufficient to show that there exists λ E HX(G), Im λ ̂  0,
such that fx = λfy for all f EL A. The result will then follow from
Theorem 11 and Corollary 1 to Theorem 8. By applying Theorem 13 to
each domain Sz, we conclude that fx = λzfy in Sz for every / E A,
z EG. We will show that if two spheres SZ1 and SZ2 overlap, then λzi = λZ2

in the intersection, and hence λ is defined globally. But in SZ1 Π S22, the
function fzi satisfies (41) and the corresponding equation with λzi replaced
by λZ2. Since the zeros of dfz/dy are isolated in 5Z (Corollary 1 to
Theorem 10), we must have A21 = λZ2 in the intersection.
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