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POSITIVE OPERATORS AND THE ERGODIC
THEOREM

RYOTARO SATO

Let T be a positive linear operator on LX(X, ^ μ) sat-
isfying suρn II(IM) Σ?=o T̂ IL < oo, where (X, J^~, μ) is a finite
measure space. It will be proved that the two following
conditions are equivalent: (I) For every / in LJ.X, &~, μ) the
Cesaro averages of T*n/ converge almost everywhere on X.
(II) For every / in L^X, &~y μ) the Cesaro averages of Tnf
converge in the norm topology of L^X, &~, μ). As an ap-
plication of the result, a simple proof of a recent individual
ergodic theorem of the author is given.

Let (X, jβ^, μ) be a finite measure space and T a positive linear
operator on LX(X, J^ μ). If T is a contraction, then we denote by
C and D the conservative and dissipative parts of T, respectively
(cf. Foguel [4]). In [5] Helmberg proved that if T is a contraction
then the two following conditions are equivalent: (I) For every / e
Loo(X, ^ 7 μ) the Cesaro averages

1 n-l

—Σ r*y
n ί=o

converge a.e. on X. (II) limft T*nlD = 0 a.e. on X and there exists
a function 0 <; u 6 L^X, ^ μ) satisfying Tu = u and {u > 0} = C.
It is easily seen that condition (II) is equivalent to each of the fol-
lowing conditions. (Ill) For every u e LX(X, ^ μ) the Cesaro averages

•I n-ί

n *=°

converge in the norm topology of L^X, ^ μ). (IV) For every A
the Cesaro averages

converge. (Cf. Lin and Sine [6].)
The main purpose of this paper is to prove that the equivalence

of conditions (I), (III), and (IV) holds, even if T is not a contraction
but satisfies sup% \\(l/n)^~i T1]^ < oo. That is, we shall prove the

THEOREM 1. Let (X, ̂ 7 j") be a finite measure space and T a posi-
tive linear operator on Lλ{X, _^7 μ) satisfying supw |\(l/n) Σ^o1 Γ*||i< °°.
Then the three following conditions are equivalent:
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( I ) For every feLao(Xf^μ)f (1/n) Σ*?=o T**f converges a.e.
on X.

(III) For every u e LX{X9 ̂ 7 μ), (XI n) Σ?=o! T*u converges in the
norm topology of LX(X9 ̂  μ).

(IV) For every Ae^ (1/ri) Σ?=o YΓ^l^dμ converges.

Proof. (I) ==> (IV): Immediate from Lebesgue's bounded con-
vergence theorem.

(IV) => (III): The Vitali-Hahn-Saks theorem shows that the se-
quence

n i=o

converges weakly in L^X, ̂ 7 μ). By this and the fact that
lim^Kl/n)!7*!.!!! = 0, due to Derriennic and Lin [2], we see that
(1/w) Σ?«o T*l converges in the norm topology of LL(X, J^ μ) (cf.
Theorem VIΠ.5.1 in [3]). Thus (III) follows easily from a standard
approximation argument.

(Ill) => (I): Define a function 0 ̂  t e L^X, ^ μ) by the relation:

t{x) = limsup— Σ T**l(α?)
^i0

Since T*t ̂  t, if we set

s(x) = lim —n n

then we have

( 1 ) 8 = T*S .

Let us put

Y = {<? > 0} and Z = {s = 0} .

Then, by [2] and [7], we have:

u 6 LL(X, ^Γ, μ) and {u Φ 0} c ^ imply

(α> e X ) .

(xeX),

{TuΦθ}dZ and lim = 0 .

Using condition (III), take a function 0 ̂  heL^X, J?', μ) so that

lim \\h - (1/n) Σ 2"1 = 0 .

Since 27* = h, for all 0 ̂  / e ̂ ( X , j^7 /ι) we have



POSITIVE OPERATORS AND THE ERGODIC THEOREM 217

\(T*f)kdμ = \f{Th)dμ = ^fhdμ .

By this, T* may be regarded as a positive linear contraction on
^ 7 hdμ), and therefore for every f e L^X, ^ μ) ( c i ^ J ,
the limit

( 3 ) lim i g 2^/0*0 = lim β(a?) ξ

exists a.e. on {h > 0} Π F, by the Chacon-Ornstein theorem (cf. [4]).
To prove the almost everywhere existence of the limit (3), we

now define

and

f(x) = lim sup - ί Σ T^f(x) (x e X)

f{x) = lim inf i - Σ Γ**/(a?) (a? 6 X) .

Since T*f ^ / ^ / ^ Γ*/, if we set

/*(&) = l im-^Σ Γ*'/(»)
n % i=Q

Ux) = lim A g T**Ax) (xeX),
n n *=o —

and

then: 0 ^ /* - Λ 6 ̂ ( X , ^ ^) and Γ*(/* - /*) = /* - f*. This
and (2) imply /* — /* = 0 a.e. on Z, and thus f = f a.e. on {h > 0}.
Hence /* = /* a.e. on {h > 0}, because Γ*l{λ=0} = 0 a.e. on {h > 0}.
Consequently we have

\(f* ~ f*)dμ = J(^Σ^l)(/* ~ f*)dμ

= 0 ,

and so /* — /* a.e. on X. This completes the proof.

As an easy application of Theorem 1, we shall show the fol-
lowing individual ergodic theorem due to the author [8]. His argu-
ments given in [8] are rather long and complicated.

THEOREM 2. Let (X, j^~ί μ) be a finite measure space and T a
bounded {not necessarily positive) linear operator on LX(X, ^ 7 μ).
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Let τ denote the linear modulus of T in the sense of Chacon and
Krengel [1]. Assume the conditions:

(4)

(5)

sup

sup

n—1

(X/n) Σ T*
i=0

n-1

i=Q

fsLJ,X, ^~, μ), (1/n) Σ?=o 21'/ converges a.e. on X., /or

Proo/. Let / e ^ ( X , ^ 7 μ). Since | Γ /l ^ T" | /1 for each n^l,
we have lim, ||(l/w)Γ /IL ^ lim. ||(i/w)τ | / | |U = 0, and by (5), the set

T'f: n^

is weakly sequentially compact in LX(X, ^ 7 μ). Hence, a well-known
mean ergodic theorem (cf. Theorem VIII.5.1 in [3]) implies that
lim, || g - (1/n) Σ S Γ'/lk = 0 for some g e L,{X, jη μ) with Tg = g.
Condition (5) implies g e L^X, ^ 7 μ), and hence / — g e L^X, ^ μ).
It is easily seen that f—g belongs to the Li-norm closure of the
set {h — Th: h e L^X, J^ μ)}, because L^X, ^ 7 μ) is a dense sub-
space of LX(X, ^ 7 μ). So, given an ε > 0, we can choose an h e

) so that

Write k = (f - g) - (h- Th). Then

-ΣW-g)
n *=°

and

lim—(I ft I + τ% |ft|) = 0 a.e. on X,

because Theorem 1 implies that the Cesaro averages of τn\h\ con-
verge a.e. on X. Thus

lim sup -ΣΓΌf-i/)
n <=

and by Fatou's lemma,

Σ
i=0 1

Consequently we have
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lim (1/w) Σ T\f - g) = 0 a.e. on X,

and this establishes Theorem 2.

REMARK. It is known (cf. [2]) that Theorem 2 need not hold in
general if we replace feLoo(X9^μ) by / e L ^ I ^ j w ) . But the
author does not know whether, in Theorem 2, feL^XiJ^μ) can
be replaced by feLp(X, ^ μ) with 1 < p < oo.
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