EXISTENCE OF A STRONG LIFTING COMMUTING WITH A COMPACT GROUP OF TRANSFORMATIONS

RUSSELL A. JOHNSON

Let G be a locally compact group with left Haar measure γ . The well-known "Theorem LCG" ([10]) states that there is a strong lifting of $M^{\infty}(G, \gamma)$ commuting with left translations. We will prove partial generalizations of this theorem in case G is *compact*. Thus, let (G, X) be a *free* (left) transformation group with G, X compact such that (I) G is abelian, or (II) G is Lie, or (III) X is a product $G \times Y$. Let ν_0 be a Radon measure on Y = X/G, and let μ be the Haar lift of ν_0 We will show that, if ρ_0 is a strong lifting of $M^{\infty}(Y,\nu_0)$, then there is a strong lifting $M^{\infty}(X,\mu)$ which extends ρ_0 and commutes with the action of G.

The proof is modeled on the proof of LCG in ([10]), and follows it closely in several places. The main difference is in the present use of the fact that, if (H, X) is a free transformation group with $H \ Lie$, then (H, X) admits local sections.

DEFINITIONS 1.1. Let X be a compact Hausdorff space. Let $M_+(X)$ denote the set of positive Radon measures on X of norm 1 with the vague topology. For measure theory, we rely on [2], [3], [4]. If $\eta \in M_+(X)$, let $M^{\infty}(X, \eta)$ be the set of all bounded η -measurable complex functions on X. If $f \in M^{\infty}(X, \eta)$, let $N_{\infty}(f)$ denote its essential supremum. Let $L^{\infty}(X, \eta)$ be the usual set of equivalence classes modulo null functions.

Define $L^p(X, \eta)$ in the usual way; let N_p be its norm $(1 \le p < \infty)$. Since X is compact, we can and will assume that

$$L_p(X,\eta) \subset L^r(X,\eta) \quad (1 \leq r \leq p \leq \infty) \;.$$

DEFINITIONS 1.2. Let W be a topological space, $f: X \to W$ a map. Say f is η -Lusin-measurable if there is a countable collection of pairwise disjoint compact sets K_i such that $X \setminus \bigcup_i K_i$ has η -measure zero and $f|_{K_i}$ is continuous $(i \ge 1)$.

DEFINITIONS, NOTATION 1.3. Let G be a compact Hausdorff topological group. The pair (G, X) is a *free* (left) *transformation* group (t.g.) if there is a jointly continuous map $G \times X \to X$: $(g, x) \to g \cdot x$ such that, if $g \cdot x = x$ for any $g \in G$ and $x \in X$, then g = idy, the

identity in G. If $\eta \in M_+(X)$ and $f \in M^{\infty}(X, \eta)$, let $(f \cdot g)(x) = f(g \cdot x)$; also define $(g \cdot \eta)(f) = \eta(f \cdot g)$ if $f \in C(X)$. Throughout the paper, we will let (i) γ be normalized Haar measure on G; (ii) Y = X/G (the quotient under identification of G-orbits) with canonical projection π_0 ; (iii) ν_0 be a fixed element of $M_+(Y)$ whose support is all of Y; (iv) μ be the G-Haar life of ν_0 (thus $\mu(f) = \int_Y \left(\int_G f(g \cdot x) d\gamma(g) \right) d\nu_0(y)$ for $f \in C(X)$).

DEFINITION 1.4. Let $\eta \in M_+(X)$. A map ρ of $M^{\infty}(X, \eta)$ to itself is a linear lifting of $M^{\infty}(X, \eta)$ if (i) $\rho(f) = f \ \eta$ -a.e.; (ii) $f_1 = f_2 \ \eta$ a.e. $\Rightarrow \rho(f_1) = \rho(f_2)$ everywhere; (iii) $\rho(1) = 1$; (iv) $f \ge 0 \Rightarrow \rho(f) \ge 0$; (v) $\rho(af_1 + bf_2) = a\rho(f_1) + b\rho(f_2)$ if a, b are constants. If, in addition, $\rho(f \cdot g) = \rho(f) \cdot \rho(g)$, then ρ is a lifting of $M^{\infty}(X, \eta)$. If (i)-(iv) hold (if (i)-(v) hold), and in addition $\rho(f) = f$ all $f \in C(X)$, then ρ is a strong linear lifting (strong lifting). See ([11], p. 34).

Terminology 1.5. Let H be a closed subgroup of G, $\pi: X \to X/H \equiv Z$ the canonical projection, $\overline{\gamma} = \pi(\eta)$. We can and will assume that $M^{\infty}(Z, \overline{\eta})$ is embedded in $M^{\infty}(X, \eta)$ via $f \to f \circ \pi$. Let $\overline{\rho}$ be a linear lifting of $M^{\infty}(X, \eta)$. A linear lifting ρ of $M^{\infty}(X, \mu)$ extends $\overline{\rho}$ if, for all $f \in M^{\infty}(Z, \overline{\eta})$, $\rho(f) = \overline{\rho}(f)$. Say ρ is H-invariant if $(f \cdot h) = \rho(f) \cdot h$ for all $h \in H$, $f \in M^{\infty}(X, \eta)$.

DEFINITIONS, RESULTS 1.6. Let $f: X \to E$ where E is a Banach space. Say $f \in M^{\infty}(X, E, \eta)$ if (i) $f(X) \subset E$ is weakly compact, (ii) $x \to \langle f(x), e \rangle \in M^{\infty}(X, \eta)$ for each continuous linear functional e' on E. If $f \in M^{\infty}(X, E, \eta)$ and ρ is a linear lifting of $M^{\infty}(X, \eta)$, one can (abusing notation) define a map $\rho(f): X \to E$ which satisfies

$$\langle
ho(f)(x), e'
angle =
ho \langle f(\bar{x}), e'
angle(x)$$

for each $x \in X$ and $e' \in E'$ = topological dual of E (on the right-hand side, we apply ρ to the map $\overline{x} \to \langle f(\overline{x}), e' \rangle$, then valuate at x). If E is separable, then (iii) $\rho(f) = f \eta$ -a.e. For arbitrary E, (iv) $f_1 = f_2 \eta$ -a.e. implies $\rho(f_1) = \rho(f_2)$ everywhere; (v) $||f(x)|| \leq M <$ $\propto \eta$ -a.e. implies $||\rho(f)(x)|| \leq M$ for all x. For a more general discussion and proofs, see ([11], Chapter 6, §§4 and 5).

DEFINITIONS, RESULTS 1.7. A D'-sequence in G([7]) is a sequence $(W_n)_{n=1}^{\infty}$ of γ -measurable subsets of G such that (i) $W_n \supset W_{n+1}$ $(n \ge 1)$; (ii) $0 < \gamma(W_n \cdot W_n^{-1}) < C \cdot \gamma(W_n)$ for some C > 0 and all n; (iii) every neighborhood of idy contains some W_n . Every Lie group has a D' sequence consisting of compact neighborhoods of idy (for a stronger statement, see [7], Theorem 2.9). If (W_n) is a D'-sequence in G, then the Main Derivation Theorem ([7], Theorem 2.5) states that, if $f \in L^{1}(G, \gamma)$, then

$$(\text{version 1}) \quad \lim_{n \to \infty} \frac{1}{\gamma(W_n)} \int_a f(g) \psi_{\overline{g} \cdot W_n}(g) d\gamma(g) = f(\overline{g}) \quad \text{for} \quad \gamma\text{-a.a. } \overline{g};$$

$$(\text{version } 2) \quad \lim_{n \to \infty} \frac{1}{\gamma(W_n)} \int_G f(g) \psi_{W_n \cdot \overline{g}}(g) d\gamma(g) = f(\overline{g}) \quad \text{for} \quad \gamma\text{-a.a. } \overline{g} ;$$

here ψ denotes characteristic function. (Version 1 is Theorem 2.5; version 2 follows because γ is a *right* Haar measure as well as a *left* Haar measure.) If $f \in C(G)$, then it is easily seen that the equalities hold for all \overline{g} in both versions.

2. A reduction.

NOTATION 2.1. Let X, G, μ , ν_0 , etc. be as in 1.3; ρ_0 will henceforth denote a fixed strong lifting of $M^{\infty}(Y, \nu_0)$. Recall Support $(\nu_0) = Y$; hence Support $(\mu) = X$.

THEOREM 2.2. Suppose (G, X) is a free left transformation group such that: (I) G is abelian, or (II) G is Lie, or (III) X is a product $G \times Y$. Then there is a strong lifting of $M^{\infty}(X, \mu)$ which extends ρ_0 and commutes with G.

The goal in $\S2$ is to show that 2.2 is a consequence of 2.7 below; 2.7 is then proved in $\S3$. We begin with the following result; it is proved in ([10], p. 85, Remark 2).

LEMMA 2.3. Let P be closed normal subgroup of G, $P \neq \{idy\}$. There exists a closed subgroup $K \subseteq P$ which is normal in G such that: (i) P/K = H is a Lie group; (ii) $(G/K)/H \cong G/P$ (here H is assumed embedded in G/K).

Discussion 2.4. Let P be as above; consider the free t.g. (G/P, X/P). Note that H acts on X/K; it is easily seen that $(X/K)/H \cong X/P$. That is, X/K is a free Lie group extension of X/P.

We fix more terminology.

Terminology 2.5. Let H be a closed normal Lie subgroup of G. Let Z = X/H, $\pi: X \to Z$ the projection, $\nu = \pi(\mu)$. Then (G/H, Z) is a free t.g. Let λ be normalized Haar measure on H.

Discussion 2.6. For $z \in Z$, let $\lambda_z \in M_+(X)$ be given by

$$\lambda_z(f) = \int_H f(h \cdot x) d\lambda(h)$$

for some (hence any) $x \in \pi^{-1}(z)(f \in C(X))$. The map $z \to \lambda_z$ is a disintegration of μ with respect to π ([4], p. 63); observe that the map $z \to \lambda_z$ is clearly vaguely continuous, hence ν -adequate. (See [3], Def. 1, p. 18; Prop. 2, p. 19.) Thus, if $f \in L^1(X, \mu)$ (in particular if f is the characteristic function ψ_A of a μ -measurable set A), then $z \to \lambda_z(f)$ is defined ν -a.e., is ν -measurable, and

$$\int_X f(x)d\mu(x) = \int_Z \lambda_z(f)d\nu(z)$$

(this follows from ν -adequacy; see [3], Thm. 1a, p. 26).

THEOREM 2.7. Let H, Z, ν, π be as in 2.5, and suppose there is a strong lifting δ of $M^{\infty}(Z, \nu)$ which commutes with G/H. Then there is a strong lifting ρ of $M^{\infty}(X, \mu)$ which commutes with G and extends δ .

Proof of 2.2, using 2.7. For each closed normal subgroup P of G, let $\pi_p: X \to X/P$ be the projection. Let J be the set of all pairs (P, β) , where β is strong lifting of $M^{\infty}(X/P, \pi_p(\mu))$ which commutes with G/P and extends ρ_0 . Note $J \neq \emptyset$, since $(G, \rho_0) \in J$. Order J as follows: $(P_1, \beta_1) \leq (P_2, \beta_2)$ if and only if $P_2 \subset P_1$ and β_2 extends β_1 . Then

$$(*)$$
 J is inductive for

The proof of (*) is a straightforward modification of the (lengthy and sophisticated) proof of Theorem 4(i) in ([10]); therefore we omit it.

 \leq

Let $(P_{\infty}, \beta_{\infty})$ be a maximal element of J, and suppose $P_{\infty} \neq \{idy\}$. By 2.3 and 2.4, we can find a free Lie group extension X/K of X/P_{∞} with $K \subseteq P_{\infty}$. By 2.7, there is a strong lifting β_K of $M^{\infty}(X/K, \pi_K(\mu))$ which commutes with G/K. Hence (K, β_K) is a strict majorant of $(P_{\infty}, \beta_{\infty})$, contradicting maximality. Thus $P_{\infty} = \{idy\}$, and 2.2 is true if 2.7 is.

REMARK 2.8. In case II (G is Lie group), we can and will assume that G = H in 2.5, 2.6, and 2.7. Hence $\nu_0 = \nu$, $\lambda = \gamma$, $\delta = \rho_0$, and Z = Y. In what follows, when case II is discussed, we will use the notation H, ν , λ , and Z, with the above identities taken for granted.

3. Proof of 2.7. Notation in §3 will be as in 1.3 and 2.5. In

addition, δ will always be a strong lifting of $M^{\infty}(Z, \nu)$ which commutes with G/H and extends ρ_0 .

The idea of the proof is simple. Suppose X is the product $H \times Z$, and $f \in M(X, \mu)$ (observe $\mu = \lambda \times \nu$). "Define" $\tilde{F}: Z \to L^{\infty}(H, \lambda)$: $\tilde{F}(z) = [f|_{\pi^{-1}(z)}]$ ([] denotes equivalence class). Let $F(z) = \delta(\tilde{F})(z)$ (see 1.6). Then, if β is a strong lifting of $M^{\infty}(H, \lambda)$ commuting with left translations, let $\rho(f)(h, z) = \beta(F(z))(h)$. The difficulties are obvious: is \tilde{F} ν -Lusin-measurable? If it is, is $\rho(f)$ measurable? These difficulties can be overcome. The local product structure of (H, X)will enable us to define an analogue of $\delta(\tilde{F})$ (3.5); we will then (basically) apply β to this analogue.

The following is an immediate consequence of ([12],Theorem 1, Sec. 5.4).

THEOREM 3.1. For each $x \in X$, there is a compact neighborhood V of x and a compact $F \subset V$ and that (i) $H \cdot F = V$; (ii) $\pi^{-1}(z) \cap F$ is a single point whenever $z \in \pi(V)$.

DEFINITION 3.2. A proper triple (V, \mathcal{O}, τ) at $z_0 \in Z$ is defined as follows. Pick $x \in \pi^{-1}(z_0)$, and let V, F be as in 3.1. Then $H \cdot V = V$. Let $\mathcal{O} \subset Z$ be an open set such that $\operatorname{cls} \mathcal{O} = \pi(V)$. Let $\tau: V \to H \times \pi(V)$ be "defined by F"; i.e., if $\pi(x) = z$ and $\pi^{-1}(z) \cap F = \{x_0\}$, then $\tau(x) = (h, z)$ where $h \cdot x_0 = x$.

Clearly τ is a homeomorphism, $\tau(h \cdot x) = h \cdot \tau(x)$ (define $h \cdot (\overline{h}, z) = (h\overline{h}, z)$), and $\tau(\mu|_{\nu}) = \lambda \otimes (\nu|_{\pi(\nu)})$.

In 3.3-3.7, fix $z_0 \in Z$.

3.3. Let $f \in M^{\infty}(X, \mu)$. Recall (1.1) that N_{∞} refers to essential supremum. Let (V, \mathcal{O}, τ) be a proper triple at z_0 . Let

$$f_z = f|_{\pi^{-1}(z)} (z \in Z)$$
.

For each $z \in \pi(V) = K$ such that $f_z \in M^{\infty}(X, \lambda_z)$ and $N_{\infty}(f_z) \leq N_{\infty}(f)$, define $b_p(z)$ to be the equivalence class in $L^p(H, \lambda)$ of the function

$$h \longrightarrow f_z \circ au^{-1}(h, z) (1 \leq p < \infty)$$
 .

Let $b_p(z) = 0$ if f_z does not satisfy the above conditions or if $z \notin K$. By 2.6, $b_p(z)$ equals the equivalence class of $f_z \circ \tau^{-1}$ for ν -a.a.z. We will regard $L^{\infty}(H, \lambda) \subset L^p(H, \lambda) \subset L^r(H, \lambda)$ $(p \ge r \ge 1)$; one then has $b_p(z) = b_r(z)$ for all p, r, z.

LEMMA 3.4. (a) For
$$1 \leq p < \infty$$
, $b_p \in M^{\infty}(Z, L^p(H, \lambda))$ (1.6).

(b) Let $B_p(z) = \delta(b_p)(z)$ $(1 \leq p < \infty)$. If $1 \leq p \leq r < \infty$, then $B_p(z) = B_r(z)$ for all z. (c) Let $B(z) = B_p(z)$ for one (hence all) $p \in [1, \infty)$. Then

$$N_{\infty}(B(z)) \leq N_{\infty}(f)$$

for all z.

Proof. (a) Note that f is a pointwise limit μ -a.e. of a sequence of bounded continuous functions f_n . Using 2.6 and the dominated convergence theorem, one shows that b_p is a pointwise limit ν -a.e. of maps $b^n: \mathbb{Z} \to L^p(H, \lambda)$ which are (i) continuous on $K = \pi(V)$; (ii) zero outside K. The maps b^n are therefore ν -Lusin-measurable (1.2); hence ([2], Thm. 2, p. 175) b_p is ν -Lusin-measurable. Now the norm $N_p(b_p(z))$ (see 1.1) is $\leq N_{\infty}(f)$ for all z. This implies that the range of b_p is bounded, hence weakly compact. We have shown that (i) and (ii) of 1.6 are satisfied, so $b_p \in M^{\infty}(\mathbb{Z}, L^p(H, \lambda))$.

(b) and (c) We obtain (b) from 1.6 and the fact that, if p < r, then the dual space $L^{p}(H, \lambda)'$ may be identified with a subspace of $L^{r}(H, \lambda)'$. To prove (c), observe that $N_{p}(B(z)) = N_{p}(B_{p}(z)) \leq N_{\infty}(f)$ (use v) of (1.6). But $N_{\infty}(B(z)) = \lim_{p \to \infty} N_{p}(B(z))$.

Recall $z_0 \in Z$ was fixed through 3.7. Let $pr: H \times Z \rightarrow H: (h, z) \rightarrow h$.

DEFINITION 3.5. Let u be an element of the equivalence class $B(z) \in L^{\infty}(H, \lambda)$. Let $v(x) = \begin{cases} u \circ pr \circ \tau(x)(x \in \pi^{-1}(z)) \\ 0 & \text{otherwise} \end{cases}$. Let $R^{f}(z_{0})$ be the equivalence class in $L^{\infty}(X, \lambda_{z_{0}})$ of v.

One uses 1.6, 1.4, and the definition just made to prove the following; we omit details.

LEMMA 3.6. (a) $R^{a_f+b_g}(z_0) = aR^f(z_0) + bR^g(z_0)$ (a, $b \in C$). (b) $R^f(z_0) \ge 0$ if $f \ge 0$. (c) $R^1(z_0) = 1$.

In what follows, we will occasionally be sloppy, and think of $B(z_0)$, $R^f(z_0)$ as functions, not equivalence classes. We can write $R^f(z_0)(hx) = B(z_0)(h)$ if $\tau(x) = (idy, z_0)$.

PROPOSITION 3.7. $R^{f}(z_{0})$ is independent of the proper triple used in its definition.

Proof. We first make two observations.

(01) Let $\mathscr{O}^{\operatorname{open}} \subset K^{\operatorname{compact}} \subset Z$. Then $\mathscr{O} \subset \delta(\mathscr{O})(\equiv \delta(\psi_{\mathscr{O}})) \subset \delta(K) \subset K$ ([11], Thm 1, p. 105). Thus if $\varphi_1, \varphi_2 \in M^{\infty}(Z, \nu)$ and $\varphi_1 = \varphi_2$ for ν -a.a. $z \in K$, then $\delta(\varphi_1) = \delta(\varphi_2)$ on \mathscr{O} .

(02) Let u_{ij} $(1 \leq i, j \leq n)$ be coordinate functions on H defined by some irreducible unitary representation of H ([8], Sec. 27.5). Then $u_{ij}(h_1 \cdot h_2) = \sum_{r=1}^{n} u_{ir}(h_1) \cdot u_{rj}(h_2)(h_i \in H)$. From the Peter-Weyl theorem ([8], 27.40), the span of the set of all coordinate functions (defined by all irreducible unitary representations of H) is dense in $L^{p}(H, \lambda)(1 \leq p < \infty)$.

Let (V, \mathcal{O}, τ) , $(\tilde{V}, \tilde{\mathcal{O}}, \tilde{\tau})$ be proper triples at z_0 . Define b_p , \tilde{b}_p , B, \tilde{B} as in 3.3, 3.4. Let $K = \pi(V)$, $\tilde{K} = \pi(\tilde{V})$. On $\tilde{\tau}(V \cap \tilde{V})$, one has $\tau \circ \tilde{\tau}^{-1}(h, z) = (hh_z^{-1}, z)$, where $z \to h_z \colon K \cap \tilde{K} \to H$ is continuous. For fixed z, the map $h \to hh_z^{-1}$ induces a bounded linear operator A_z on $L^p(H, \lambda)$.

To prove 3.7, it suffices to show that $\widetilde{B}(z) = A_z(B(z))$ for all $z \in \mathscr{O} \cap \widetilde{\mathscr{O}}$ (observe that, for ν -a.a. $z \in K \cap K'$, one has $\widetilde{b}_p(z) = A_z(b_p(z))$). Thus we must show that, for some p,

$$\langle B(\pmb{z}),\,\pmb{\sigma}
angle = \langle A_{\pmb{z}}(B(\pmb{z})),\,\pmb{\sigma}
angle$$

for all σ in the dual $L^{p}(H, \lambda)'$. By (02), we may assume σ is integration against some u_{ij} (thus $\langle w, \sigma \rangle = \int_{H} w(h)u_{ij}(h)d\lambda(h)$). Extend each function $\eta_{rs}: z \to u_{rs}(h_z)$ continuously from $K \cap \widetilde{K}$ to Z, calling the extensions η_{rs} , also.

For $z \in Z$, let $\varphi_1(z) = \langle \tilde{b}_p(z), \sigma \rangle$. Define a linear-functional-valued map $\hat{\sigma}: Z \to L^p(H, \lambda)'$ by $\hat{\sigma}(z) = \sum_r u_{ir} \cdot \eta_{ri}(z)$ (view u_{ir} as a linear functional). Let $\varphi_2(z) = \langle b_p(z), \hat{\sigma}(z) \rangle =$ (use 02) $\langle A_z(b_p(z)), \sigma \rangle = \varphi_1(z)$ for ν -a.a. $z \in K \cap \tilde{K}$. Now, $\delta(\varphi_1)(z) = \langle \tilde{B}(z), \sigma \rangle$ (3.4), while $\delta(\varphi_2)(z) =$ (since δ is a strong lifting)

$$\sum_{r} \eta_{rj}(z) \cdot (\delta \langle b_p, u_{ir} \rangle)(z) = \int_{H} [B_p(z)(h)] [\sum_{r} u_{ir}(h) \eta_{rj}(z)] d\lambda(h)$$

= (if $z \in K \cap K') \int_{H} [B(z)(h)] u_{ij}(hh_z) d\lambda(h) = \langle A_z(B(z)), \sigma \rangle$

By (01) and (02), $\widetilde{B}(z) = A_z(B(z))$ for $z \in \mathscr{O} \cap \widetilde{\mathscr{O}}$.

From now on, we assume $R^{f}(z)$ defined as in 3.5 for all $z \in Z$.

LEMMA 3.8. (a) For ν -a.a. z, $R^{f}(z)$ is (the equivalence class of) $f_{z} \equiv f|_{\pi^{-1}(z)}$ in $L^{\infty}(X, \lambda_{z})$.

(b) If f is continuous, the above holds for all $z \in Z$.

(c) If $f \in M^{\infty}(X/H, \nu)$, then $R^{f}(z)$ is (the equivalence class of) the constant $\delta(f)(z)$ in $L^{\infty}(X, \lambda_z)$.

Proof. (a) and (b). Fix a proper triple (V, \mathcal{O}, τ) (the point z_0 doesn't matter), and fix p. As remarked in 3.3, $b_p(z) = f_z \circ \tau^{-1}$ for ν -a.a. $z \in K = \pi(V)$. Since $L^p(H, \lambda)$ is separable, 1.6 (iv) implies that $B(z) = f_z \circ \tau^{-1}$ for ν -a.a. $z \in K \supset \mathcal{O}$. Hence (3.5) $R^f(z) = f_z$ for ν -a.a. $z \in \mathcal{O}$. Since finitely many \mathcal{O} 's cover Z, (a) is proved. If f is continuous, then b_p is continuous on K. Use the method of ([1]) to extend $b_p|K$ to a continuous map $\tilde{b}_p: Z \to L^p(H, \lambda)$. Observe now that

(*) if $w \in M^{\infty}(Z, \nu)$ and $b \in M^{\infty}(Z, L^{p}(H, \lambda))$, then $\delta(w \cdot b)(z) = [\delta(w)(z)][\delta(b)(z)]$ (see [11], p. 76, equation (5)).

Using (*) and (01) in 3.7, we obtain, for $z \in \mathcal{O}$, $B(z) = \delta(\psi_K \cdot b_p)(z) = \delta(\psi_K \cdot \tilde{b}_p)(z) = (\text{since } \delta \text{ is strong}) \ \tilde{b}_p(z) = f_z \circ \tau^{-1}$, and (b) follows.

(c) Pick z_0 and let (V, \mathcal{O}, τ) be a proper triple at z_0 . For ν -a.a. $z \in K = \pi(V)$, one has $b_p(z) =$ the constant f(z) in $L^p(H, \lambda)$. Let $\tilde{b}(z) = 1 \in L^p(H, \lambda)$ for all $z \in Z$; then $b_p(z) = f(z) \cdot \tilde{b}(z)$ ν -a.e. on K. Using (*) just above and (01) in 3.7, one obtains

$$B(z) = [\delta(f)(z)] \cdot \widetilde{b}(z)(z \in \mathscr{O})$$
 ,

which implies that $R^{f}(z_{0}) = \delta(f)(z_{0}) \in L^{\infty}(X, \lambda_{z}).$

The next result will allow us to show that our still-to-be constructed lifting ρ is G-invariant. To motivate it, observe that $(f \cdot g)|_{\pi^{-1}(z)}(hx_0) = f|_{\pi^{-1}(gz)}(ghx_0) = f|_{\pi^{-1}(gz)}(ghg^{-1} \cdot gx_0)$ if $f \in M^{\infty}(X, \mu)$; here and below we write $g \cdot z$ for $(gH) \cdot z(g \in G, z \in Z)$.

PROPOSITION 3.9. Fix $z_0 \in Z$, $g \in G$, and $x_0 \in \pi^{-1}(z_0)$. Then

$$R^{f \cdot g}(z_{\scriptscriptstyle 0})(hx_{\scriptscriptstyle 0}) = R^f(gz_{\scriptscriptstyle 0})(ghg^{-1} \cdot gx) \quad for \ \lambda ext{-a.a.} \ h \in H$$
 .

Proof. Let (V, \mathcal{O}, τ) be a proper triple at z_0 . Then $(g \cdot V, g \cdot \mathcal{O}, \tilde{\tau})$ is a triple at $g \cdot z_0$, where $\tilde{\tau}(gx) = (ghg^{-1}, gz)$ if (and only if) $\tau(x) = (h, z)(x \in V)$. The map $h \to ghg^{-1}$ preserves λ ([8], 28.72e), hence induces a linear map $A_g: L^p(H, \lambda) \to L^p(H, \lambda)$. Define $b_p^{f \cdot g}$, $B^{f \cdot g}$ using the first triple, b_p^f , B^f using the second. We claim that 3.9 is implied by

$$(\ ^{st}\) \qquad \qquad B^{f\cdot g}(z)=A_g(B^f(g\cdot z))(z\in \mathscr{O})$$
 .

This is clear: if (*) holds, then (assuming $\tau(x_0) = (idy, z_0)$) one has $R^{f \cdot g}(z_0)(hx_0) = B^{f \cdot g}(z_0)(h) = B^f(gz)(ghg^{-1}) = (\text{definitions of } R^f \text{ and } \tilde{\tau})$ $R^f(gz)(g \cdot hx_0) = R^f(gz)(ghg^{-1} \cdot gx_0) \text{ for } \lambda\text{-a.a. } h.$

We prove (*). Using the definitions of b_p^f and $b_p^{f\cdot g}$ together with the fact that the map $z \to g \cdot z$ preserves ν , one sees that $b_p^{f\cdot g}(z) = A_g(b_p^f(z))$ for ν -a.a. z. Let $\sigma \in L^p(H, \lambda)'$. Then $\langle B^{f\cdot g}(z_0), \sigma \rangle = \delta \langle b_p^{f\cdot g}, \sigma \rangle(z_0) = (\delta \langle A_g(b_p^f(gz)), \sigma \rangle)(z_0) = (\delta \langle b_p^f(gz), A_g^* \sigma \rangle)(z_0) = (\text{since } \delta \text{ commutes with } G/H) \langle B^f(gz_0), A_g^* \sigma \rangle = \langle A_g(B^f(gz_0)), \sigma \rangle; 3.9 \text{ is proved.}$ 3.10. New let (W_n) be a D' sequence in H consisting of compact neighborhoods of idy (1.7). For $f \in M^{\infty}(X, \mu)$, we define functions T_n^f $(n \ge 1)$ on X as follows.

Case I. If G is abelian,
$$x_0 \in X$$
, $z_0 = \pi(x)$, let

$$T^f_n(x_{\scriptscriptstyle 0}) = rac{1}{\lambda(W_n)}\int_X R^f(z)(ar x)\psi_{{}^{W_n\cdot x_{\scriptscriptstyle 0}}}(ar x) = rac{1}{\lambda(W_n)}\int_H R^f(z)(hx_{\scriptscriptstyle 0})\psi_{{}^{W_n}}(h)d\lambda(h)\;.$$

Case II. Suppose G = H is Lie (see 2.8); let $x_0 \in X$, $z_0 = \pi(x_0)$. Pick proper triples $(V_i, \mathcal{O}_i, \tau_i)_{i=1}^l$ such that $\bigcup_{i=1}^l \mathcal{O}_i = Z$. Pick any *i* such that $z_0 \in \mathcal{O}_i$. Letting $\tau_i(x_0) = (h_0, z_0)$, let

$$X riangle V_n = au_i^{-1} \{(h, \, oldsymbol{z}_{\scriptscriptstyle 0}) \, | \, h \in h_{\scriptscriptstyle 0} {f \cdot W_n} \}$$
 .

Define

$$Q^{f}_{i,n}(x_{\scriptscriptstyle 0}) = rac{1}{\lambda(W_n)}\int_{\mathbb{X}}R^{f}(z_{\scriptscriptstyle 0})(ar{x})\psi_{{\scriptscriptstyle V}_n}(ar{x})d\lambda_{z_{\scriptscriptstyle 0}}(ar{x})\;.$$

Letting $\tau_i(x_i) = (idy, z_0)$, we also have

$$Q^f_{i,n}(x_{\scriptscriptstyle 0}) = rac{1}{\lambda(W_n)}\int_H R^f(z_{\scriptscriptstyle 0})(hx_i)\psi_{h_{\scriptscriptstyle 0}\cdot W_n}(h)d\lambda(h)\;.$$

Finally, let $(\alpha_i)_{i=1}^l$ be a partition of unity subordinate to $(\mathscr{O}_i)_{i=1}^l$, and $T_n^f(x_0) = \sum_{i=1}^l \alpha_i(x_0) Q_{i,n}^f(x_0)$.

Case III. If $X = G \times Y$ and $x_0 \in X$, $z_0 = \pi(x_0)$, write $x_0 = (g_0, y_0)$, let $V_n = \{(g, y_0) | g \in g_0 \cdot W_n\}$, and define

$$T^f_n(x_{\scriptscriptstyle 0}) = rac{1}{\lambda(W_n)}\int_x R^f(z_{\scriptscriptstyle 0})(ar x)\psi_{{\scriptscriptstyle V}\,n}(ar x)d\lambda_{z_{\scriptscriptstyle 0}}(ar x)\;.$$

PROPOSITION 3.11. In all three cases, $T_n^{f \cdot g}(x_0) = T_n^f(g \cdot x_0)$ $(g \in G, x_0 \in X)$.

Proof of Case I. Let $z_0 = \pi(x_0)$. One has

$$\begin{split} &\int_{H} R^{f \cdot g}(z_0)(hx_0)\psi_{W_n}(h)d\lambda(h) = (\text{by } 3.9) \\ &\int_{H} R^{f}(gz_0)(ghg^{-1} \cdot gx_0)\psi_{W_n}(h)d\lambda(h) = (\text{since } G \text{ is abelian}) \\ &\int_{H} R^{f}(gz_0)(h \cdot gx_0)\psi_{W_n}(h)d\lambda(h) \text{ .} \end{split}$$

Hence $T_n^{f \cdot g}(x_0) = T_n^f(g \cdot x_0)$.

REMARK. The proof just completed would work when G is non-

abelian if one could replace $(W_n)_{n=1}^{\infty}$ by a *D'*-sequence $(V_n)_{n=1}^{\infty}$ satisfying $g^{-1}V_ng = V_n$ $(n \ge 1, g \in G)$. If one defines $V_n = \bigcap_{g \in G} g^{-1}W_ng$, then V_n is a compact neighborhood of the identity. However, it is not clear that the inequalities $\lambda(V_n V_n^{-1}) < C\lambda(V_n)$ can be arranged.

Case II. Suppose $\pi(x_0) = z_0 \in \mathcal{O}_i$ for some $i, 1 \leq i \leq l$. Observe that, since G = H, $g \cdot z_0 = z_0$. As in 3.10, let $\tau_i(x_i) = (idy, z_0)$, and let $\tau_i(x_0) = (h_0, z_0)$. Then $\int_H R^{f \cdot g}(z_0)(hx_i)\psi_{h_0 \cdot W_n}(h)d\lambda(h) = (by 3.9, noting that <math>ghg^{-1} \cdot g = gh)$

$$egin{aligned} &\int_{H} R^f(g \cdot z_{\scriptscriptstyle 0})(ghx_i) \psi_{h_{\scriptscriptstyle 0} \cdot w_n}(h) d\lambda(h) &= \int_{H} R^f(z_{\scriptscriptstyle 0})(hx_i) \psi_{h_{\scriptscriptstyle 0} \cdot w_n}(g^{-1}h) d\lambda(h) \ &= \int_{H} R^f(z_{\scriptscriptstyle 0})(hx_i) \psi_{g \cdot h_{\scriptscriptstyle 0} W_n}(h) d\lambda(h) \;. \end{aligned}$$

Comparing the first and last terms, we obtain $Q_{i,n}^{f\cdot g}(x_0) = Q_{i,n}^{f}(gx_0)$. Hence

(3.10)
$$T_n^{f \cdot g}(x_0) = T_n^f(g \cdot x_0)$$
.

Case III. A rehash of methods used in Cases I and II.

3.12. We now define functions S_n^f $(n \ge 1)$ as follows.

Case I. If G is abelian, let

$$S_n^f(x) = \frac{1}{\lambda(W_n)} \int_X f(\bar{x}) \psi_{W_n \cdot x}(\bar{x}) d\lambda_z(\bar{x}) \ (\boldsymbol{z} = \pi(x))$$

for all x such that

$$(**) f_z \in L^\infty(X,\,\lambda_z) \quad \text{and} \quad N_\infty(f_z) \leq N_\infty(f) \;.$$

Let $S_n^f(x) = 0$ for all other x. By (3.8a), $S_n^f(x) = T_n^f(x)$ for μ -a.a. x.

Case II. If G is a Lie group, let

$$P_{i,n}(x) = rac{1}{\lambda(W_n)} \int_x f(\overline{x}) \psi_{V_n}(\overline{x}) d\lambda_z(\overline{x})$$

 $(z = \pi(x); V_n \text{ is as in 3.10})$ for all $x \in \mathcal{O}_i$ satisfying (**). Then define $S_n^f(x) = \sum_{i=1}^l \alpha_i(z) P_{i,n}(x)$ for all such x. Let $S_n^f(x) = 0$ if x does not satisfy (**). By (3.8a), $S_n^f(x) = T_n^f(x) \mu$ -a.e.

Case III. If $X = G \times Y$ and x satisfies (**), let

$$S_n^f(x) = rac{1}{\lambda(W_n)} \int_x f(ar x) \psi_{V_n}(ar x) d\lambda_z(ar x)$$

 $(V_n \text{ is as in 3.10})$. Otherwise let $S_n^f(x) = 0$.

PROPOSITION 3.13. For each n, S_n^f , and hence T_n^f , is μ -measurable.

Proof. We prove this in Case I; the other cases are handled similarly. Let f_j be a bounded sequence of continuous functions such that $f_j \rightarrow f \mu$ -a.e. Let

$$S_j(x) = rac{1}{\lambda(W_n)} \int_{\mathcal{X}} f_j(\overline{x}) \psi_{W_n \cdot x}(\overline{x}) d\lambda_z(\overline{x}) = rac{1}{\lambda(W_n)} \int_{H} f_j(hx) \psi_{W_n}(h) d\lambda(h) \, .$$

Then S_j is continuous (use uniform continuity of f_j and equicontinuity ([7]) of the transformation group (H, X)). Now, for z in a set $C \subset Z$ of ν -measure 1, $f_j|_{\pi^{-1}(z)} \to f_z \ \lambda_z$ -a.e. (2.6). Consider the set $C_1 = \{z \in C \mid (*^*) \text{ holds for } f_z\}$. By dominated convergence, $S_j(z) \leftarrow S_n^f(x)$ for all $x \in \pi^{-1}(C_1)$. But $\mu(\pi^{-1}(C_1)) = 1$; hence 3.13 is proved.

PROPOSITION 3.14. In Case I, II, and III:

- (a) $\lim_{n\to\infty} T_n^f(x) = f(x) \ \mu$ -a.e. $(f \in M^{\infty}(X, \mu));$
- (b) if f is continuous, then $\lim_{n\to\infty} T_n^f(x) = f(x)$ everywhere;
- (c) if $f \in M^{\infty}(X/H, \nu)$, then $\lim_{n\to\infty} T_n^f(x) = \delta(f)(\pi(x))$ for all x.

Proof. (a) Case I. It is sufficient to show that $S_n^j(x) \to f(x)$ μ -a.e. By version 2 of the Main Derivation Theorem (1.7), one has, for $g \in L^1(H, \lambda)$, $1/\lambda(W_n) \int_H g(\tilde{h})\psi_{W_n \cdot h}(\tilde{h})d\lambda(\tilde{h}) \to g(h) \lambda$ -a.e. Consider the set $C = \{z \in Z \mid (**) \text{ of } 3.12 \text{ is satisfied}\}$. Note $\nu(C) = 1$. Fix $z \in C$ and $x_0 \in \pi^{-1}(z)$. Then if $x = hx_0$, one has

$$\begin{split} (S_n^f x) &= \frac{1}{\lambda(W_n)} \int_H f(\tilde{h} x_0) \psi_{Wn \cdot h x_0}(\tilde{h}) \\ &= \frac{1}{\lambda(W_n)} \int_H f(\tilde{h} x_0) \psi_{W_n \cdot h}(\tilde{h}) d\lambda(\tilde{h}) \longrightarrow f(h x_0) = f(x) \end{split}$$

for λ -a.a. h; i.e., for λ_z -a.a. x.

Now if $A = \{x \in X | \lim_{n \to \infty} S_n^f(x) \text{ exists and equals } f(x)\}$, then A is μ -measurable. We have just shown that, for ν -a.a. z, A intersects $\pi^{-1}(z)$ in a set of λ_z -measure 1. Hence (2.6) A has μ -measure 1. So $S_n^f(x)$, and therefore $T_n^f(x)$, converges to f(x) μ -a.e.

Case II. We use the notation of 3.12. Observe that, if $x \in \pi^{-1}(\mathcal{O}_i)$, $\pi(x)$ satisfies (**), $\tau_i(x) = (h, z)$, and $\tau_i(x_i) = (idy, z)$, then

$$P_{i,n}(x) = rac{1}{\lambda(W_n)} \int_H f(\widetilde{h}x_i) \psi_{h \cdot W_n}(\widetilde{h}) d\lambda(\widetilde{h}) \; .$$

By version 1 of 1.7, the right-hand side tends to $f(hx_i) = f(x)$ for

 λ -a.a. h; i.e., for λ_z -a.a. x. Let $A_i = \{x \in \pi^{-1}(\mathcal{O}_i) | P_{i,m}(x) \to f(x)\}$. Arguing as in Case I, we find that $\mu(A_i) = \mu(\pi^{-1}(\mathcal{O}_i))$. Let $A = \{x \mid S_n^f(x) \to f(x)\}$. Let z satisfy (**). Then $A \cap \pi^{-1}(z)$ has λ_z -measure 1. For, let i_i, \dots, i_k $(1 \leq k \leq l)$ be those indices i such that $z \in \mathcal{O}_i$. Then $\pi^{-1}(z) \cap A_{i_j}$ $(1 \leq j \leq k)$ has λ_z -measure 1, since $P_{i,n}(x) \to f(x) \ \lambda_z$ -a.e. The definition of S_n^f now implies that $\lambda_z(A \cap \pi^{-1}(z)) = 1$. Again argue as in Case I to obtain $\mu(A) = 1$.

Case III. The proof contains nothing new, hence we omit it.

(b) Case I, II, III. By 3.8b, $R^{f}(z) = f_{z}$ for all z. The Main Derivation Theorem for continuous functions gives convergence everywhere (as noted in 1.7, this is a simple observation). Combining these two facts with the definition(s) of T_{π}^{f} yields the result.

(c) Case I, II, III. Use 3.8c and the definition(s) of T_n^f . We are ready prove 2.7.

3.15. Proof of 2.7. Let U be an ultrafilter on $N = \{1, 2, 3, \dots\}$ finer than the Fréchet filter (see [5], and [10], p. 83). Since $|T'_n(x)| \leq N_{\infty}(f)$ for all x (3.4c and 3.5), we may define $T'(x) = \lim_{U} T'_n$. Let $\rho(f)(x) = T'(x)(x \in X, f \in M^{\infty}(X, \mu))$. By choice of U and 3.14a, $\rho(f) = f$ μ -a.e. Hence (i) of 1.4 is satisfied. By 3.6, (iii), (iv), and (v) are also satisfied. If f = 0 μ -a.e., then $|T'_n(x)| = 0$ for all n, x, and this together with linearity shows that 1.4 (ii) holds. Combining these facts with 3.14b, c shows that ρ is a strong linear lifting which extends δ .

By 3.12, ρ commutes with G. Now, the group G of self-mappings of X satisfies the condition of Theorem 1 of ([9]). Hence we may apply the method of Remark 2 following ([9], Theorem 1) to obtain a lifting $\bar{\rho}$ commuting with G. By the proof of $(j) \Rightarrow (jj)$ in ([11], Theorem 2, p. 105), $\bar{\rho}$ is strong. By the proof of ([11], Theorem 2, p. 39), $\bar{\rho}$ extends δ . So $\bar{\rho}$ has all the necessary properties.

REMARK 3.16. It should be emphasized that the only point in the proof which requires special assumptions on G occurs in the proof of 3.11. If one could assume $g^{-1}W_ng = W_n$ $(g \in G)$, Theorem 2.2 would hold for any compact G.

References

^{1.} R. Arens, Extensions of functions on fully normal spaces, Pacific J. Math., 2 (1952), 11-22.

^{2.} N. Bourbaki, Intégration, 2nd ed., Chapters I-IV, Hermann, Paris 1965.

^{3.} ____, Intégration, 2nd ed., Chapter V, Hermann, Paris, 1967.

^{4.} ____, Intégration, 1st ed., Chapter VI, Hermann, Paris 1959.

^{5.} J. Dieudonné, Sur le théorème de Lebesgue-Nikodym (IV), J. Indian Math. Soc., 15 (1951), 77-86.

6. R. Edwards and E. Hewitt, Pointwise limits for sequences of convolution operators, Acta Math., **113** (1965), 181-218.

7. R. Ellis, Lectures on Topological Dynamics, Benjamin, New York, 1969.

8. E. Hewitt and K. Ross, *Abstract Harmonic Analysis*, Vol. II, Springer-Verlag, New York, Heidelberg, Berlin, 1970.

 A. Jonescu-Tulcea, On the lifting property (V), Ann. Math. Stat., 36 (1965), 819-828.
 A. and C. Jonescu-Tulcea, On the existence of a lifting...locally compact group, Proc. Fifth Berk. Symp. Math. Stat. and Prob., vol. 2 part 1, pp. 63-97.

11. ____, Topics in the Theory of Lifting, Springer-Verlag, New York, 1969.

12. D. Montgomery and L. Zippin, Topological Transformation Groups, Interscience, New York, 1955.

Received September 23, 1977. Research partially supported by NSF Grant No. MCS76-07195.

UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES, CA 90007