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A PRODUCT INTEGRAL REPRESENTATION
FOR THE GENERALIZED INVERSE

OF CLOSED OPERATORS

JAMES V. HEROD

Suppose that z is in a complete, normed linear space E
and that A is normally solvable - in the sense that A is a
closed, linear operator which is densely defined and which
has closed range. This paper is concerned with solving, in
some sense, the operator equation A(x) + z = 0.

If a? is a point in the domain of A and λ is a positive number
such that 1/λ is not in the spectrum of A, then x satisfies A(x) +
z = 0 only in case x solves x = [1 — \A]~\x + Xz). This suggests
that there is the possibility of getting such a solution x by the
following type of iteration process: Wo is in E and, if p is positive
integer, then Wp — [1 — XA^XWp^ + Xz). Another iteration which
is intrinsically connected with this one is: Mo is in E and, if p is a
positive integer, then Mp = [1 — \A\~ιMp^.

Studies by Martin [8], Groetsch [2], and Purdom [10] have
already shown that an appropriate context for the study of iteration
processes is the Stieltjes integral equation theory.

The papers of Martin and Groetsch were concerned with bounded
linear operators; Purdom's hypothesis on A was that it should be
linear, dissipative, and densely defined on a Banach space. Left
undone in this latter paper were conditions which would imply con-
vergence of the iteration scheme.

In what follows, and with the hypothesis that A is dissipative -
so that no positive number is in the spectrum of A - conditions are
given which imply that {Mp}^ and {Wp}^=19 as defined above, converge.

These results will use the following.

THEOREM [Purdom]. If g is a number valued, nonincreasing
function on a linearly ordered set {S, ^} and t ^ s in that ordering
then

(a) M(t, s)x = Π? [1 — dgA]~ιx exists for each x in E,

S s

dgA(M(t, )x), and
S t

dgM( , s) x is in D(A) and
t

M(t, s)x = x + A((L) J* dgM( , s)xj .

Moreover, if z is in E then
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(d) W(t, s)x = Π? [1 — dg(A + z)]~~ιx exists for each x in E, and

(e) W(t, s)x = M(t, s)x + (22) ΓdgM(t, )z.

DEFINITIONS AND REMARKS. (1) The summation integrals in
the above theorem are right or left Stieltjes integrals. Their de-
finition can be found in Purdom's paper, but the central role they
have held in the Stieltjes integral equation theory can be seen in an
address by J. S. Mac Nerney [7].

(2) The function (A + z) is an aίfine operator given by
(A + z)(x) = A(x) + z for each x in E. And, while the W generated
as in (d) satisfies a nonhomogeneous integral equation, it is the
variation of parameters formula in (e) that is important here.

(3) Identifying the linearly ordered set S as the nonnegative
integers and g as the number sequence g(p) = — ΣS=0\if where {λJΓ=0

is a sequence of nonnegative numbers, then the product integral
M(n, 0)x = Πi [1 — dgA\~\x) is the iteration process

MQ = x and Mn — [1 — %%A\~ιMn^

or, what is the same,

M —~ I I Γ I - "\ A I ^(/y»ι — Γ"l , "\ A I i . # Γ 1 , *\ A | i f i „ _ *\ A | •ΎΎ ^

P = l

In case λ̂  = λ for all p then M(n, 0) a? is [1 — λA]~w(x) and the
integral equation

M(n, 0)x = x + (R) \°dgA(M(n, -)x)

asserts that

Γ1 "x Λ~\-n(,γ\ — t i . V l i i Π "λ Δλ~P{vλ

Also, the product integral Π^ [1 ~ dg{A + z)]~\x) reduces to

[1 - MA + z)Y\x) .

And, the variation of parameters formula replaces the two iteration
processes:

[1 - MA + z)]-*(x) - [1 - XA]'n(x) + Σ λ[l - xA]~p(z) .
p=ί

(4) In this paper, as in [10], the statement that A is dissipa-
tive means that if c > 0 then the range of 1 — cA is all of E and,
if x is in D(A), then \x\ ^ |[1 - cA](x)\. Also N(A) and R{A) denote
the null space of A and the range of A.
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II* Results* In what follows, we assume that A is linear,
dissipative, and densely defined on the Banach space E, that S is a
linearly ordered set containing an element denoted by 0, that g is
nonincreasing and unbounded on S, and that M and W are defined
by M(t, s)x = Π? [1 — dgA]"^ and, if z is in E, then Wit, s)x =
Π? [1 - dg(A + z)]-1^ for t ^ 8 and a? in #.

THEOREM 1. Suppose that K < 0 αwd ίfeαί i/ c > 0 then [1 —
M ^ |[1 — 0ii]ίc| for each x in D(A). It follows that R(A) — E

and, if z is in R{A), then l i m ^ W{t, 0)x = — A"\z).

Indication of proof. If {ctp}%=1 is a sequence of negative numbers
then Π;=i [1 - aΛ ~ 1 ̂  -Σ5=i ^ Thus, for each t ^ 0 and x in £7,

|Af(ί,

and, hence, lim^oo ΛΓ(ί, O)aj = 0. It follows that R(A) = i? for, if a?
is in E, then

a? + A((L) \°tdgM( , 0)a?)| = |Λf(ί, 0)a?| .

To get the representation for A~\ let « be in R(A) and u be the
point such that Au = z. By the variation of parameters formula

W(t, 0)x = Λf(t, 0)a? + (R) \°dgM(t,

— u .

Thus I-A"1^) - W(t, 0)x\ ̂  (|a>| + \A~\z)\)/[l + (g(t) - g(O))K]. Since
g is unbounded on S, l i m ^ W(t, 0)x = — A~\z) for each x in E. Also,
the convergence is uniform in the operator topology.

COROLLARY 1. In addition to the supposition of the above theorem,
suppose that {λJ^U is a sequence of positive numbers such that
Σ?=i ^P— °° and z is in R(A). Then A~\z)~ — Σ?=i ^P Πf=i [1 —λ^]" 1^.

Indication of proof. If A(u) = z then

+ Σ λ, Π [1 - λ ^ lJ ) = l
u

- IΓ Σ λ l
i = l J "

LEMMA 1. If E is a reflexive Banach space then E = R(A) 0
N(A).
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Indication of proof. (An outline of this proof can be found in
[11, pages 215-218], see also [3, Lemma 4.2].) Each of the following

holds: N(A) = {x: lim t_ [l-tAY'x = x}, ΈΪA) = {x: limt_« [l-tAYιx - 0},
N(A) Π R(A) = 0, and, since bounded sequences have subsequences
that converge weakly in reflexive spaces, l i m ^ [1 — tA\~ιx exists for
each x in E and defines a norm 1 projection with R(P) = N(A) and
N(P) = Έ(A). Thus E = Έ(Aj 0 N(A).

REMARK. The above decomposition does not hold in a general
Banach space; see the example of [4, p. 520]. Rather, R(A) 0 N(A) =
{x: l i m ^ [1 — tA]~:x exists}.

LEMMA 2. Suppose that E is a Hubert space and that A has
closed range. There is a positive number m such that if y is in
D(A) Π R(A) and c > 0, then

|[1 - cA]y\ ^ VI + &m2 \y\ .

Indication of proof. If y is in D{A) then |[1 — cA]y\2 ̂  \y\2 +
c2|A(?/)|2. Also, A is one-to-one from D(A) f) R(A) onto iϋ(A). Since
A is closed, then the restriction of A to D(A) f] R(A) is closed, one-
to-one, and has range the closed set R{A). Hence, it has a bounded
inverse; and this provides a positive number m such that if ye
D(A) Π R{A) then \A(y)\ ̂ > m-\y\. This inequality, together with the
inequality in the first sentence of this argument, establishes the
lemma.

THEOREM 2. Suppose that E is a Hilbert space, A has closed

S oo

(dg)2 = co. It follows that M(t, 0) converges uniformly
0

in the operator topology and has limit the projection onto N(A)
along R{A).

Indication of proof. If c > 0 then [1 — cA]~ιn — n for each n
in N(A). Also, since [1 — cA] maps D(A) Π iϋ(A) onto R(A)f then
[1 — cA]~λ is a bounded, linear function from R(A) onto Z)(A) Π R(A).
Since #(A) is closed then M(t, 0) = Π? [1 ~ ώ^A]"1 maps R(A) into
2ϋ(A). Furthermore, if m is as in the previous lemma, reR(A),
and £ = s0 ̂  8X ̂  ^ sn — 0 then

Π [1 - (g(89) - ^ ( ^
p = l

Π [1 + m\g{sp)
p=l

But,
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Π [1 + m\g(89) - g(sp^))2] ^ 1 + m 2 g ((</(*,) - flr(β,_i)))β

Thus

tf 0)r| ^ I

It follows that if z is in E, n is in N(A), r is in R(A), z = n + r,
and t > 0 then

)s - n\ ^ | r | / ^ l + m

COROLLARY 2. "PΓiίΛ tλe suppositions on E and A, let
be a sequence of positive numbers such that Σ?=i ^l — °°
Π?=i [1 ~ λpA]"1 is έfeβ projection of E onto N(A) along R(A).

REMARK. Since there are dissipative operators A for which

solutions of yf = Ay do not have asymptotic limits, one would not

expect to get the results of the previous theorem if the condition

(dgf= w is replaced by g is unbounded. In fact, if A=l ^ Q

J/l l/ϊ)' and Q = (</! ""ί/2) then ^ = <P -
[1 - λA]""1 = (1 - Xi)~Ψ + (1 + λi)"1© .

Then N(A) = {0} but, by [5, p. 27],

= 7π/(|P#|2 + |Q(x)|2)/sinh (π) .

REMARK. The next theorem is concerned with the condition that
lixnf-oo W(t, 0)x exists for each x in E. Purdom has shown in Theorem
7 of [10] that statement (c) of the following theorem implies that
E = R(AJ 0 N(A). Also, he shows that P{x) = l i m ^ M(t, 0)x defines
a norm one projection onto N(A) such that 1 — P is a projection Q
onto i2(ii). In the setting described here, the generalized inverse
is determined by the equations

A+Ax = x — Px , AA+Ax = Ax ,

AA+y = Qy, and A+AA+y = A+y

for all x in D(A) and 1/ in D(A+). See also [9].

THEOREM 3. Suppose that E is a Banach space and z is in E.
Any two of the following statements implies the third:

(a) z is in R{A),
(b) if x is in E, then l i m ^ W(t, 0)x exists, and
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(c) if x is in E, then l i m ^ M(t, 0)x exists.
Moreover, in case (a) and (b) hold and x is in E, then

lim W(t, 0)x = P(x) - A+(z) .
t—*oo

Indication of proof In case (c) holds, then the equivalence of
(a) and (b) is contained in Theorem 8 of [10]. The value of this
limit follows from the variation of parameters formula: If z is in
R(A) then z = AA+z and

W(t, 0)x = M(t, 0)x + M(t, 0)A+(s) - A+(z) .

Since PA+(z) = 0, then l i m ^ W(t, 0)x = P{x) - A+(z).
It remains only to show that (a) and (b) imply (c). To do this,

let u = A+{z). Then l i m ^ M(t, 0)u exists for

W(t, 0)(0) - M(t, 0)(0) + (R)

= M(t, 0)u - u .

By (b), lim^oo M(t, 0)u exists. Now let x be in E. Applying this
result and (b) again to the equation W(t, 0)x = M(t, 0)x + M(t, 0)u — u
establishes (c).

The next theorem and corollary provide a connection with recent
work of Lovelady in [6]. Suppose E is a Banach space and let T
be the semigroup generated by A and given by the formula

T(t)(x) = Π [1 - dξA]-\x) .

THEOREM 4. These are equivalent:

(a) E=RζA)®N(A),
(b) if x is in E, then l i m ^ [1 — tA\~\x) exists, and

(c) if x is in E, then l i m ^ 1/t \ T(ξ)xdξ exists.

Indication of proof. The equivalence of (a) and (b) uses the
techniques of Lemma 1. The sets N(A) and R(A) are characterized
by {x: l i m ^ [1 — tA]~\x) — x) and {x: lim^oo [1 — tA]~xx = 0}, respec-
tively. If (a) holds and x is in E, then let n be in N(A), r be in

R(A), and x = n + r. Thus l i m ^ [1 — tA\~\x) exists and is n. And
(a) implies (b). On the other hand, suppose (b) holds and P{x)
is defined by l i m ^ [1 — tA]~\x). Then P is a projection with

E(P) = N(A) and N(P) = RζA). Hence, E = SζAJ®N(A).
To establish the equivalence of (a) and (c), we first suppose (a)

holds. Let n be in N(A) and c > 0. Then [1 — cA]~*n = n and
T(c)w = n, so that
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limΓ— [ T(ξ)ndξ\ = n .
ί->°° L t Jθ J

r - A(u)\ + —\T(t)u - u\ .

Now let r be in R(A) and u be in D(A). Then

(*)

Hence,

limΓ—Γ T(ξ)rdf\ = 0 .
ί-oo L t Jo J

Thus lim^oo 1/t I T(ξ)xdξ exists for each x in E and we have that

(c) holds.
To show that (c) implies (a), suppose (c) holds and P(x) =

lim^oo 1/t \ T(ξ)xdξ for each x in E. Lovelady shows in [6,
L Jo J

Theorem 2] that P is a projection. It is clear that N(A) lies in
R(P). Also, since, for t > 0,

1

— Γ7Ύ/W ΎΛ
1 JL \OJtl/ «Λ/J

and since A is closed, then A(P(x)) — 0. Thus P is a projection onto
N(A). It remains to see that N(P) = R(A). By the inequality (*)
above, we have R(A) c N(P). For any x in E, Lovelady shows in
[6, p. 156] that

ί Jo

is in D(A) and

- i Γ ξT(t ~ ξ)%dξ) = -M*
ί Jo / t Jo

x -

Thus, if a? is in N(P) then a? is in R(A). This completes the argu-
ment that N(P) = ΈζA) and R{P) = N(A). Hence, E = RζA) 0 N(A).

COROLLARY 3. If E = R(A) φ iSΓ(A), « is in R(A), and x is in
E then each of the following limits exists and is P{x) — A+(z):

lim ([1 - tAY'x + t[l - tA]~ιz)
ί->oo

and

lim (-ί \ T(ξ)xdξ + M* ξT(jt -
ί->oo \ t JO ί JO
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Indication of proof. Using the previous theorem and Theorems
5 and 6 of [6], we have that each of the limits exists. The previous
theorem shows that each of l i m ^ [1 — tA]~\x) and

HmΓ-M* T(ξ)xdξ
t->°° L t Jo

is P(x) (where, as before, P is the projection onto N(A)). But if z
is in R(A) then AA+(z) = z and

t[l - tA]~'AA+z = [1 - tAl-'A+ίz) - A+(z) .

Thus

lim (ί[l - tA]'ιz) = - A+(z) .

To get the value of the final limit, it remains only to evaluate

lim^oo Γl/t Γ ξT{t - ξ)zdf\. The calculus gives

έ Jo t Jo

= -M* (Γ T(σ)AA+(z)dσ)dξ = M* [T{ξ)A+(z) - A+(z)]dξ
t Jo \Jo / t Jo

= -f Γ Γ(ί)A+(^)df - A+(z) .
t Jot Jo

Again, this has limit PA+(z) - A+(z) = -A+(s;).

III. Applications. In what follows, the results and techniques
of what has come before are used to obtain a generalized inverse
in a Hubert space for a densely defined, closed, linear operator B
having closed range. This generalized inverse is determined by these
equations: BB+B = B, B+BB+ = B+, BB+ = Q, and B+B = l-P where
Q is the orthogonal projection onto JB(JB) and P is the orthogonal
projection onto N(B). The essence of the first theorem is the simple
realization that if A = —B*B, then a result of von Neumann [11,
p. 200] gives that A is dissipative. But, for such an A, not so much
will be required for g; compare the following with Lemma 2.

LEMMA 3. Suppose that E is a Hubert space, and B is a
densely defined, closed, linear operator with closed range. There is
a positive number m such that if y is in D(B*B) Π R(B*) then
|[1 + cB*B]y\ ̂  (1 + cm)\y\, for each positive number c.

Indication of proof. If y is in D{B*B), then |[1 + cB*B]y\2 ^



GENERALIZED INVERSES 59

\y\2 + 2c]By\2 + c2\B*By\\ Also, B is one-to-one from D(B) f] R(B*)
onto R(B). Since B is closed, then the restriction of B to D(B) Π
R(B*) has a bounded inverse and this provides a number m1 such
that if 7/ is in D{B)(\R(B*) then |J3(j/)| ^mx\y\. Now, £*£ is a
self adjoint operator and, thus, a closed, linear operator with dense
domain. Also, R(B*B) — R(B*) and this is closed. So, the method
for obtaining m1 for B is applicable for B*B. Thus, there is a posi-
tive number m2 such that if y is in D(B*B) Π R{B*) then \B*B(y)\ ^
m2 |?/|.

Finally, if m = min {m̂ , m2} and y is in D(B*B) Γ) #(£*) then
^ (1 + cm)

THEOREM 5. Suppose that E is a Hubert space, z is in E, g
is nonincreasing and unbounded and

W(t, 0)χ - Π [1 + dg(B*B + z)\-*%
t

for each t ^ 0 and x in E. Then these are equivalent:
( a) z is in R(B*), and
(b) if x is in E, then l i m ^ W(t, 0)x exists.

Moreover, in case (b) holds and x is in E, then lim^oo W(t, 0)x =
P(x) + B+(u) where z = B*(u).

Indication of proof If t > 0 and x is in E, let M(t, 0)x =
Π? [1 + dgB*B]~1x. As in Theorem 2, one can show that l i m ^ M(t, 0)x
exists. In fact, if z is in E, n is in N(B), r is in R(B*), z — n + r,
m is as in Lemma 3, and t > 0 then

\M(t, 0)s - w| ^ |r|/[l + m(g(0) - βf(ί))] .

The equivalence of (a) and (b) now follows as a corollary to Theorem
3.

To evaluate the limit, let z = £*(w) = B*BB+(u). If x is in #,
then

W(t, ΰ)x - Λf(t, 0)α? - (R) ̂ dgM{t, )B*BB+(u)

= AΓ(ί, 0)a? - Λf(t, 0)5+(^) + B+(u) .

As in Theorem 3, this has limit P(x) + B+{u).
Each of the following corollaries holds in case E is a Hubert

space.

COROLLARY 3. // u is in D(B*) and λ > 0 then
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B+(u) = λ Σ [ l + xB*B]->B*(u) .
p = l

COROLLARY 4. If {λp}p=1 is a positive number sequence,
Σp = i λp = oo, z — B*(u), and {Xp}™^ is given by the iteration: x0 is
in E and xn = [l + XnB*B]~\xn^ + Xnz) then l i m ^ xn = P(xQ) + B+(u).

COROLLARY 5 [1, p. 24]. Let y be a solution ofy'(t) + B*B(y(t)) ==
B*(u). Then l i m ^ y(t) = P(»(0)) + B+(u).
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