LINEAR OPERATORS FOR WHICH $T * T$ AND $T+T^{*}$ COMMUTE III

Stephen L. Campbell

Let Θ denote the set of all linear operators T acting on a separable Hilbert space \mathscr{C} for which $T^{*} T$ and $T+T^{*}$ commute. It will be shown that if $T \in \Theta$ and T^{*} is hyponormal, then T is normal. Also if $T \in \Theta$ and T is hyponormal, then T is subnormal.
I. Introduction. Operators in Θ need not be hyponormal [4], but have many hyponormal-like properties [1]-[4], [7], [8]. Therefore our first result is not surprising.

Theorem 1. If $T \in \Theta$ and T^{*} is hyponormal, then T is normal.
Let $(Q A)=\left\{T \mid T=Q+A,\left[Q, Q^{*} Q\right]=0, A=A^{*},[A ; Q]=0\right\}$ where $[X, Y]=X Y-Y X$. Then $(Q A) \subset \Theta$ [2] and all operators in (QA) are subnormal. In [4] an example of a hyponormal operator in Θ, that is not in (QA), is given. That operator is a block weighted shift. Given that it is much "easier" for a shift to be hyponormal instead of subnormal, our second result is, at least to us, surprising.

Theorem 2. If $T \in \Theta$ and T is hyponormal, then T is subnormal.
2. Proof. The proofs of Theorems 1 and 2 are closely related. If A is a positive linear operator with spectral resolution $A=$ $\int \lambda d E(\lambda)$, then A^{+}is defined by $A^{+}=\int \lambda^{+} d E(\lambda)$, where $\lambda^{+}=1 / \lambda$ if $\lambda \neq 0$ and $0^{+}=0$. Note that A^{+}, while possibly unbounded, is selfadjoint, and $\mathscr{D}\left(A^{+}\right)=R(A)$. Here \mathscr{D}, R denote domain and range. The null space is denoted N.

Proof of Theorem 2. Suppose $T \in \Theta$ and $\left[T^{*} T-T T^{*}\right] \geqq 0$. Without loss of generality assume $\|T\|<1$. Let $A=\left[T^{*} T-T T^{*}\right]^{1 / 2}$ be the positive square root of $\left[T^{*} T-T T^{*}\right]$. Then $T^{*} A^{2}=A^{2} T$ since $T \in$ Θ [1]. Thus $A^{+} T^{*} A^{2}=A T$. Hence, $A^{+} T^{*} A x=A T A^{+} x$ for all $x \in$ $\mathscr{D}\left(A^{+}\right)$. Let $B=A T A^{+}$. Since $A T$ is bounded, $B^{*}=A^{+} T^{*} A$, and $B \subseteq B^{*}$. But $\lambda-A^{+} T^{*} A=A^{+}\left(\lambda-T^{*}\right) A+\lambda\left(I-A^{+} A\right)$. Since $\left(i+T^{*}\right)$, $\left(i-T^{*}\right)$ are both invertible, both deficiency indices of B are zero. Thus $\bar{B}=B^{*}$ where \bar{B} is the closure of $B[5, \mathrm{p} .1230]$. Now on $\hat{\mathscr{C}}=\mathscr{\mathscr { C }} \oplus$ $\mathscr{H} \oplus \mathscr{H}$, define

$$
N=\left[\begin{array}{ccc}
T & A & 0 \\
0 & \vec{B} & A \\
0 & 0 & T^{*}
\end{array}\right]
$$

But for all $x \in \mathscr{D}(B)=\mathscr{D}\left(A^{+}\right), A B=T^{*} A$. Hence $A \bar{B}=T^{*} A$ for all $x \in(\bar{B})$. Since A, T^{*} are bounded, we also have $\bar{B}^{*} A=\bar{B} A=A T$. But then N is closed and $N^{*} N=N N^{*}$. Hence N is normal [5, 12581259] and

$$
\begin{equation*}
N x=\lim _{n \rightarrow \infty} \int_{|\lambda| \leq n} \lambda F(d \lambda) x, \quad x \in \mathscr{D}(N) \tag{1}
\end{equation*}
$$

for a resolution of the identity $F(\cdot)$ defined on the complex plane. $\mathscr{D}(N)$ is just those x for which the limit in (1) exists. Note that $N-N^{*}$ is bounded and hence the support of $F(\cdot)$ lies in a horizontal strip. Let $\Delta=\{\lambda\|\lambda \mid \leqq\| T \|\}$. We now wish to show that $F(\Delta) \mathscr{C}=$ \mathscr{H} when \mathscr{H} is imbedded into $\hat{\mathscr{H}}$ by $\mathscr{H} \rightarrow \mathscr{H} \oplus 0 \oplus 0$. But $x \in$ $R(F(\Delta))$ if and only if both
(i) $x \in \mathscr{D}\left(N^{m}\right)$ for all $m \geqq 0$
and
(ii) $\left\|N^{m} x\right\| /\|T\|^{m} \leqq\|x\|$ for all $m \geqq 0$.

Since \mathscr{H} clearly satisfies both (i) and (ii), we have $F(\Delta) \mathscr{H}=\mathscr{C}$. But then $N F(\Delta)$ is a bounded normal extension of T and T is subnormal as desired.

Proof of Theorem 1. Suppose that $T \in \Theta$ and T^{*} is hyponormal. We shall first show that T^{*} is subnormal. Let $A=\left[T T^{*}-T^{*} T\right]^{1 / 2}$ be the positive square root of $\left[T T^{*}-T^{*} T\right]$. Again,
$T^{*} A^{2}=A^{2} T$. Define B, \bar{B} as in the proof of Theorem 2. This time let

$$
N=\left[\begin{array}{ccc}
T & 0 & 0 \\
A & \bar{B} & 0 \\
0 & A & T^{*}
\end{array}\right]
$$

Again N is a possibly unbounded normal operator, and one can argue that $N^{*} F(\Delta)$ is a normal extension of T^{*}. Hence T^{*} is subnormal. The remainder of the proof is a modification of the proof of Lemma 2 in [9].

Let $M=\left[\begin{array}{cc}T^{*} & C \\ 0 & B\end{array}\right]$ be the normal extension of T^{*}. Let $L=\left[\begin{array}{cc}D & 0 \\ 0 & 0\end{array}\right]$, where $D=\left[T T^{*}-T^{*} T\right] \geqq 0$. Then $M L=L M^{*}$ since $T \in \Theta$. Hence by the Fuglede-Putnam theorem $M^{*} L=L M$ and $L M=M^{*} L$. Thus

$$
\begin{aligned}
D T^{*} & =T D \\
D C & =0
\end{aligned}
$$

But $T^{*} D=D T$ since $T \in \Theta$. Hence

$$
D T T^{*}=T^{*} T D
$$

or equivalently,

$$
\left(T T^{*}-T^{*} T\right)\left(T T^{*}\right)=T^{*} T\left(T T^{*}-T^{*} T\right)
$$

Simplifying gives

$$
\left(T T^{*}\right)^{2}+\left(T^{*} T\right)^{2}=2\left(T^{*} T\right)\left(T T^{*}\right)
$$

Hence $\left[T^{*} T, T T^{*}\right]=0$. But $T \in \Theta$ and $\left[T^{*} T, T T^{*}\right]=0$ implies T is quasinormal [6]. Hence T is subnormal. But then T is normal since T and T^{*} are both subnormal.

It should be noted that one has to consider the extensions of B in the proofs since A^{+}may be unbounded. Examples can easily be constructed by taking direct sums of multiples of the block shift in [4].

References

1. S. L. Campbell, Operator valued inner functions analytic on the closed disc $I I$, Pacific J. Math., 61 (1975), 53-58.
2. Linear operators for which $T^{*} T$ and $T+T^{*}$ commute, Pacific J. Math., 61 (1975), 53-57.
3. S. L. Campbell and Ralph Gellar, Spectral properties of linear operators for which $T^{*} T$ and $T+T^{*}$ commute, Proc. Amer. Math. Soc., 60 (1976), 197-202.
4. -, Linear operators for which $T^{*} T$ and $T+T^{*}$ commute II, Trans. Amer. Math. Soc., 224 (1977), 305-319.
5. N. Dunford and J. Schwartz, Linear Operators, Part II, Interscience Publishers, New York, New York, 1963.
6. Mary Embry, Conditions implying normality in Hilbert space, Pacific J. Math., 18 (1966), 457-460.
7. V. I. Istratescu, A characterization of hermitian operators and related classes of operators I, preprint.
8.,$- A$ class of operators satisfying $\operatorname{Re} \sigma(T)=\sigma(\operatorname{Re} T)$, preprint.
8. H. Radjavi and P. Rosenthal, On roots of normal operators, J. Math. Anal. Appl., 34 (1971), 653-664.

Received March 21, 1977.
North Carolina State University
Raleigh, NC 27607

