ON THE METRIC THEORY OF DIOPHANTINE APPROXIMATION

Jeffrey D. Vaaler

A conjecture of Duffin and Schaeffer states that

$$
\sum_{n=2}^{\infty} \alpha_{n} \varphi(n) n^{-1}=+\infty
$$

is a necessary and sufficient condition that for almost all real x there are infinitely many positive integers n which satisfy $|x-a / n|<\alpha_{n} n^{-1}$ with $(a, n)=1$. The necessity of the condition is well known. We prove that the condition is also sufficient if $\alpha_{n}=O\left(n^{-1}\right)$.

1. Introduction. Let $\left\{\alpha_{n}\right\}, n=2,3,4, \cdots$, be a sequence of real numbers satisfying $0 \leqq \alpha_{n} \leqq 1 / 2$. We consider the problem of determining a sufficient condition on the sequence $\left\{\alpha_{n}\right\}$ so that for almost all real x the inequality

$$
\begin{equation*}
\left|x-\frac{a}{n}\right|<\frac{\alpha_{n}}{n} \tag{1.1}
\end{equation*}
$$

holds for infinitely many pairs of relatively prime integers a and n. We note that there is no loss of generality if we restrict x to the interval $I=[0,1]$. Let λ be Lebesgue measure on I and define

$$
E_{n}=\bigcup_{\substack{a=1 \\(a, n)=1}}^{n}\left(\frac{a-\alpha_{n}}{n}, \frac{a+\alpha_{n}}{n}\right)
$$

where (a, n) denotes the greatest common divisor of a and n. Then our problem is to determine a sufficient condition on $\left\{\alpha_{n}\right\}$ so that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \lambda\left\{\bigcup_{n=N}^{\infty} E_{n}\right\}=1 \tag{1.2}
\end{equation*}
$$

It is clear that $\lambda\left(E_{n}\right)=2 \alpha_{n} \varphi(n) / n$ where φ is Euler's function. Thus by the Borel-Cantelli lemma,

$$
\begin{equation*}
\sum_{n=2}^{\infty} \lambda\left(E_{n}\right)=2 \sum_{n=2}^{\infty} \frac{\alpha_{n} \varphi(n)}{n}=+\infty \tag{1.3}
\end{equation*}
$$

is a necessary condition for (1.2) It has been conjectured by Duffin and Schaeffer [4] that (1.3) is also a sufficient condition for (1.2), but this has never been proved. Khintchine [7] showed that if $n \alpha_{n}$ is a decreasing function of n then (1.3) implies (1.2). (Actually, Khintchine's result is usually stated in a different but equivalent
form.) Duffin and Schaeffer [4] improved Khintchine's theorem by showing that if

$$
\sum_{n=2}^{N} \frac{\alpha_{n} \varphi(n)}{n} \geqq c \sum_{n=2}^{N} \alpha_{n}
$$

for some constant $c>0$ and for arbitrarily large values of N then (1.3) implies (1.2). More recently Erdös [5] proved the following special case of the Duffin-Schaeffer conjecture:

Erdös' Theorem. If $\alpha_{n}=0$ or ε / n for all n and some $\varepsilon>0$, then (1.3) implies (1.2).

In the present paper we generalize Erdös' theorem by proving
Theorem 1. If $\alpha_{n}=O\left(n^{-1}\right)$ then (1.3) implies (1.2).
If the sets E_{n} were pairwise independent, that is if $\lambda\left(E_{n} \cap E_{m}\right)=$ $\lambda\left(E_{n}\right) \lambda\left(E_{m}\right)$ for all $n \neq m$, then (1.3) would imply (1.2) by the "divergence part" of the Borel-Cantelli lemma, (Chung [3], Theorem 4.3.2). In general the sets E_{n} are not pairwise independent. However, by using some weaker bound on $\lambda\left(E_{n} \cap E_{m}\right)$ we can still deduce the desired result. This is also the approach used in [4] and [5]. We give a simpler treatment of this part of the problem by employing a theorem of Gallagher. Let Z denote a finite subset of $\{2,3,4, \cdots\}$ and define $\Lambda(Z)$ by

$$
\begin{equation*}
\Lambda(Z)=\sum_{n \in Z} \lambda\left(E_{n}\right) \tag{1.5}
\end{equation*}
$$

Then we obtain Theorem 1 from

Theorem 2. Suppose there exists an integer $K \geqq 2$ and a real number $\eta>0$ such that the following condition holds: every finite subset Z of $\{K, K+1, K+2, \cdots\}$ with $0 \leqq \Lambda(Z) \leqq \eta$ also satisfies

$$
\sum_{n \in Z} \sum_{n \neq m} \sum_{n} \lambda\left(E_{n} \cap E_{m}\right) \leqq \Lambda(\boldsymbol{Z})
$$

Then (1.3) implies (1.2).
Proof. We assume that (1.3) holds. By a result of Gallagher [6], the value of $\lim _{N \rightarrow \infty} \lambda\left\{\bigcup_{n=N}^{\infty} E_{n}\right\}$ is either zero or one. We suppose that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \lambda\left\{\bigcup_{n=N}^{\infty} E_{n}\right\}=0 \tag{1.6}
\end{equation*}
$$

If $\lim \sup _{n \rightarrow \infty} \lambda\left(E_{n}\right)=\xi>0$ then $\lambda\left\{\bigcup_{n=N}^{\infty} E_{n}\right\} \geqq \xi$ for all N, which contradicts (1.6). Thus we may assume that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \lambda\left(E_{n}\right)=0 \tag{1.7}
\end{equation*}
$$

Now choose M so large that

$$
\lambda\left\{\bigcup_{n=M}^{\infty} E_{n}\right\} \leqq \frac{1}{4} \eta .
$$

Let $J=\max \{K, M\}$. From (1.3) and (1.7) it follows that there exists a finite subset Z of $\{J, J+1, J+2, \cdots\}$ such that

$$
\frac{2}{3} \eta \leqq \Lambda(Z) \leqq \eta
$$

But then by a simple sieve argument

$$
\begin{aligned}
\frac{1}{4} \eta & \geqq \lambda\left\{\bigcup_{n \in Z} E_{n}\right\} \\
& \geqq \sum_{n \in Z} \lambda\left(E_{n}\right)-\frac{1}{2} \sum_{\substack{n \in Z \\
n \neq m}} \sum_{\substack{ \\
n}} \lambda\left(E_{n} \cap E_{m}\right) \\
& \geqq \Lambda(Z)-\frac{1}{2} \Lambda(Z) \\
& \geqq \frac{1}{3} \eta
\end{aligned}
$$

which is impossible.
The remainder of our paper will consist of showing that if $\alpha_{n}=O\left(n^{-1}\right)$ then the hypotheses in Theorem 2 are satisfied. In fact we will prove the following result, which gives a stronger estimate than we require.

Theorem 3. If $\alpha_{n} \leqq C n^{-1}$ for all n and some $C>0$ then there exists a real number $\eta_{0}>0$ such that the following condition holds: if Z is a finite subset of $\{2,3,4, \cdots\}$ with $0<\Lambda(Z) \leqq \eta_{0}$, then

$$
\begin{align*}
& \sum_{\substack{n \in Z \\
n \neq m}} \sum_{n \in Z} \lambda\left(E_{n} \cap E_{m}\right) \tag{1.8}\\
& \quad \ll \Lambda(Z)^{2}\left(\log \log \left\{\Lambda(Z)^{-1}\right\}\right)^{2} .
\end{align*}
$$

Here, and elsewhere in this paper, the constant implied by \ll is absolute.

Our proof of Theorem 3 is modeled after Erdös' proof in [5]. In $\S 2$ we give several lemmas for later use. We then split the sum
on the left of (1.8) into three parts which are estimated in $\S \S 3$ and 4. It is in $\S 4$ that the main difficulty occurs. Indeed it is only there that we require the hypothesis $\alpha_{n} \leqq C n^{-1}$.

We remark that Catlin [1, 2] has recently found a connection between (1.1) and the problem of approximating almost all x by fractions a / n which are not necessarily reduced. Thus our results also have implications for this problem. We note, however, that the proof of Theorem 3 in [1] contains a serious error.
2. Preliminary lemmas. Throughout the remainder of this paper p will denote a prime. Thus $\sum_{p \mid n}$ is a sum over prime divisors of n and $\pi(x)=\sum_{p \leqq x} 1$ is the number of primes not exceeding x. For each integer $n \geqq 2$ we define $g(n)$ to be the smallest positive integer v such that

$$
\sum_{\substack{p, n \\ p>v}} \frac{1}{p}<1
$$

If $g(n)=v$ then

$$
\begin{align*}
\prod_{\substack{p, n \\
p \leqq v}}\left(1-\frac{1}{p}\right) & =\frac{\varphi(n)}{n} \prod_{\substack{p \not n \\
p>v}}\left(1-\frac{1}{p}\right)^{-1} \\
& \leqq \frac{\varphi(n)}{n} \exp \left\{\sum_{\substack{p \nmid \\
p>v}} \frac{1}{p}+\sum_{p} \sum_{j=2}^{\infty} j^{-1} p^{-j}\right\} \tag{2.1}\\
& \ll \frac{\varphi(n)}{n}
\end{align*}
$$

It follows from the theorem of Mertens that

$$
\begin{equation*}
1 \ll \frac{\varphi(n)}{n} \log (1+v) \tag{2.2}
\end{equation*}
$$

Next let $\xi>0, x>0$ and let v be a positive integer. We define $N(\xi, v, x)$ to be the number of integers $n \leqq x$ which satisfy

$$
\begin{equation*}
\sum_{\substack{p \nmid n \\ p \geqq v}} \frac{1}{p} \geqq \xi \text {. } \tag{2.3}
\end{equation*}
$$

We then have the following estimate of Erdös [5].
Lemma 4. For any $\varepsilon>0$ and $\xi>0$ there exists a positive integer $v_{0}=v_{0}(\xi, \varepsilon)$ such that for all $x>0$ and all $v \geqq v_{0}$,

$$
\begin{equation*}
N(\xi, v, x) \leqq x \exp \left\{-v^{\beta(1-\varepsilon)}\right\} \tag{2.4}
\end{equation*}
$$

where $\log \beta=\xi$.

Proof. We may assume that $0<\varepsilon<\left(1-e^{-\xi}\right)$. Let

$$
p_{1}<p_{2}<\cdots<p_{M}
$$

be the set of all primes in $[v, w]$, where $w=v^{\beta(1-\varepsilon / 3)}$. If v is sufficiently large then $M \geqq \pi(w)-\pi(v) \geqq v^{\beta(1-2 \varepsilon / 3)}$.

We split the integers $n \leqq x$ which satisfy (2.3) into two classes. In the first class are integers n with M prime factors in the interval [$v, \exp (w)$]. The number of such integers is clearly less than

$$
x\left(\sum_{v \leqq p \leqq \exp (w)} \frac{1}{p}\right)^{M} / M!\leqq x\left(c_{1} \log w\right)^{M} / M!
$$

for some constant $c_{1}>0$. Using Stirling's formula this is easily seen to be

$$
\begin{equation*}
\ll x \exp (-M) \ll x \exp \left\{-v^{\beta(1-2 \varepsilon / 3)}\right\} \tag{2.5}
\end{equation*}
$$

for sufficiently large v.
Next we observe that

$$
\begin{align*}
\sum_{j=1}^{M} \frac{1}{p_{j}} & =\sum_{v \leqq p \leqq w} \frac{1}{p}=\log \left(\frac{\log w}{\log v}\right)+o(1) \\
& =\xi+\log (1-\varepsilon / 3)+o(1) \tag{2.6}\\
& \leqq \xi-\varepsilon / 3
\end{align*}
$$

for sufficiently large v. The integers $n \leqq x$ which satisfy (2.3) and which have fewer than M prime factors in $[v, \exp (w)]$ must therefore satisfy

$$
\frac{3}{\varepsilon} \sum_{\substack{p, n \\ p>\exp w}} \frac{1}{p} \geqq 1
$$

The number of such integers n is

$$
\begin{align*}
& \leqq \frac{3}{\varepsilon} \sum_{n \leqq x} \sum_{p>1 n} \frac{1}{p}=\frac{3}{\varepsilon} \sum_{p>\exp p w} \frac{1}{p}\left[\frac{x}{p}\right] \tag{2.7}\\
& \ll \frac{x}{\varepsilon} \sum_{p>\exp w} \frac{1}{p^{2}} \ll \frac{x}{\varepsilon} \exp (-w)
\end{align*}
$$

The bound (2.4) now follows from (2.5) and (2.7).
We now suppose that $g(n)=u \leqq v$. For each $\xi>0$ we split the divisors d of n into two classes, $A_{n}(\xi, v)$ and $B_{n}(\xi, v)$. We say that d is in $A_{n}(\xi, v)$ if

$$
\begin{equation*}
\sum_{\substack{p>d \\ p \geqq v}} \frac{1}{p} \geqq \xi \tag{2.8}
\end{equation*}
$$

The class $B_{n}(\xi, v)$ consists of divisors which do not satisfy (2.8).
Lemma 5. For any $\varepsilon>0$ and any $\xi>0$ there exists a positive integer $v_{0}=v_{0}(\xi, \varepsilon)$ such that if $g(n)=u \leqq v$ and $v \geqq v_{0}$ then

$$
\begin{equation*}
\sum_{d \in A_{n}(\xi, v)} \frac{1}{d} \leqq(\log (1+u)) \exp \left\{-v^{\beta(1-\varepsilon)}\right\} \tag{2.9}
\end{equation*}
$$

where $\log \beta=\xi$.

Proof. Let v, w and M be as in the proof of Lemma 4. For any collection \mathscr{P} of M primes in $[v, \infty)$ we have

$$
\sum_{p \in \mathscr{G}} \frac{1}{p} \leqq \sum_{j=1}^{M} \frac{1}{p_{j}} \leqq \xi-\varepsilon / 3
$$

for sufficiently large v, as in (2.6). Thus if $d \in A_{n}(\xi, v)$ then d must have at least M prime factors in $[v, \infty)$. Let $q_{1}, q_{2}, \cdots, q_{J}$ be the prime factors of n which are greater than or equal to v. If $J \leqq M$ then $A_{n}(\xi, v)$ is empty. Otherwise

$$
\sum_{d \in A_{n}(\xi, v)} \frac{1}{d} \leqq\left(\sum_{d \mid n} \frac{1}{d}\right)\left(\sum_{j=1}^{J} \frac{1}{q_{j}}\right)^{M} / M!
$$

Since $g(n)=u \leqq v$ we have

$$
\left(\sum_{j=1}^{J} \frac{1}{q_{j}}\right)^{M} / M!\leqq(M!)^{-1} \ll \exp \left\{-v^{\beta(1-2 \varepsilon / 3)}\right\}
$$

Also,

$$
\sum_{d \backslash n} \frac{1}{d} \leqq \prod_{p \leqq u}\left(1-\frac{1}{p}\right)^{-1} \prod_{\substack{p \not n \\ p>u}}\left(1-\frac{1}{p}\right)^{-1} \ll \log (1+u)
$$

by the theorem of Mertens.
Let $\sum_{m}(v)$ denote a sum over integers m which satisfy $g(m)=v$.
Lemma 6. Let $\varepsilon>0$. Then there exists a constant $v_{0}=v_{0}(\varepsilon)$ such that the following inequalities hold: if $x>0$ and $y \geqq 2$, if $g(n)=u \leqq v$ and $v \geqq v_{0}$, then

$$
\begin{equation*}
\sum_{\substack{m(v) \\(n, m) x<m<(n, m) x y}} m^{-1} \leqq(\log 1+u)(\log y) \exp \left\{-v^{\beta(1-\varepsilon)}\right\} \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\substack{m(v) \\(n, m)^{-1} x<m<(n, m)^{-1} x y}} m^{-1} \leqq(\log 1+u)(\log y) \exp \left\{-v^{\beta(1-\varepsilon)}\right\}, \tag{2.11}
\end{equation*}
$$

where $\beta=e^{1 / 2}$.
Proof. The proofs of the two inequalities are virtually identical, so we prove only (2.10). We have

$$
\sum_{\substack{m, v) \\(n, m) x<m<(n, m) x y}} m^{-1}=\sum_{\substack{d \mid n \\(n, m, m) d \\ d x<m<d x y}} \sum^{-1} .
$$

If $(n, m)=d$ we write $m=d m^{\prime}$. Then by Lemma 5 with $\xi=1 / 2$,

$$
\begin{aligned}
& \sum_{\substack{d \in A_{n}(1 / 2, v)}} \sum_{\substack{\left(m^{(v)}, d x, m=d \\
d x<m_{<1 x y}\right.}} m^{-1} \\
& \quad \leqq \sum_{d \in A_{\left.n^{(1 / 2}, v\right)}} d^{-1} \sum_{\substack{m^{\prime} \\
x<m^{\prime}<x y}}\left(m^{\prime}\right)^{-1} \\
& \quad \leqq(\log 1+u)(\log y) \exp \left\{-v^{\beta(1-\varepsilon / 2)}\right\}
\end{aligned}
$$

for sufficiently large v.
If $d \in B_{n}(1 / 2, v)$ then

$$
\begin{aligned}
1 & \leqq \sum_{\substack{p \mid m \\
p \geq v}} p^{-1} \leqq \sum_{\substack{p, d \\
p \geq v}} p^{-1}+\sum_{\substack{p, n, v \\
p \geq v}} p^{-1} \\
& <\frac{1}{2}+\sum_{\substack{p \mid n, p \geq v}} p^{-1}
\end{aligned}
$$

and so

$$
\begin{equation*}
\sum_{\substack{p\left|m^{\prime} \\ p\right| \geq v}} p^{-1}>\frac{1}{2} . \tag{2.12}
\end{equation*}
$$

By Lemma 4

$$
\begin{equation*}
\sum_{\substack{m^{\prime} \leq 2 x \\ n m^{\prime} \leqq}}\left(m^{\prime}\right)^{-1} \leqq x^{-1} N\left(\frac{1}{2}, v, 2 x\right) \leqq 2 \exp \left\{-v^{\beta(1-\varepsilon / 2)}\right\} \tag{2.13}
\end{equation*}
$$

for sufficiently large v, where the sum on the left of (2.13) is over m^{\prime} satisfying (2.12). Hence

$$
\begin{aligned}
\sum_{d \in B(1 / 2, v)} & \sum_{\substack{m^{\prime}(v)=d \\
d x<m<m<d x y}} m^{-1} \\
& \leqq \sum_{d \in B_{n^{\prime}}(1 / 2, v)} d^{-1} \sum_{\substack{m^{\prime}, \dot{m^{\prime}<x y}}}\left(m^{\prime}\right)^{-1} \\
& \leqq \sum_{d \in B_{n}(1 / 2, v)} d^{-1}(\log y) \exp \left\{-v^{\beta(1-\varepsilon / 2)}\right\} \\
& \ll \log (1+u)(\log y) \exp \left\{-v^{\beta(1-\varepsilon / 2)}\right\}
\end{aligned}
$$

for sufficiently large v.
3. First estimates. In this section we begin our proof of Theorem
3. For $n \neq m$ we define

$$
\begin{aligned}
& \delta=\delta(n, m)=2 \min \left\{\frac{\alpha_{n}}{n}, \frac{\alpha_{m}}{m}\right\} \\
& \Delta=\Delta(n, m)=2 \max \left\{\frac{\alpha_{n}}{n}, \frac{\alpha_{m}}{m}\right\},
\end{aligned}
$$

and

$$
t=t(n, m)=\max \{g(n), g(m)\}
$$

We write $\sum_{a=1}^{n_{*}}$ and $\sum_{b=1}^{m_{*}}$ for sums over integers prime to n and m respectively. Thus

$$
\begin{align*}
& \lambda\left(E_{n} \cap E_{m}\right) \\
& =\sum_{a=1}^{n_{*}} \sum_{b=1}^{m_{*}} \lambda\left\{\left(\frac{\alpha-\alpha_{n}}{n}, \frac{a+\alpha_{n}}{n}\right) \cap\left(\frac{b-\alpha_{m}}{m}, \frac{b+\alpha_{m}}{m}\right)\right\} \\
& \leqq \delta(n, m) \sum_{|a| n-b|m|<\Delta(n, m)}^{n_{n}} \sum_{b=1}^{m_{*}} 1 \tag{3.1}\\
& =\delta \sum_{\substack{a=1 \\
|a m=b n|<n}}^{n_{*}} \sum_{b=1}^{m_{*}} 1 .
\end{align*}
$$

For each integer u we define $H(u)$ to be the number of pairs $\{a, b\}$ which satisfy

$$
\begin{aligned}
& a m-b n=u, \quad 1 \leqq a \leqq n, \quad(a, n)=1 \\
& 1 \leqq b \leqq m, \quad(b, m)=1
\end{aligned}
$$

From (3.1) it follows that

$$
\begin{equation*}
\lambda\left(E_{n} \cap E_{m}\right) \leqq \delta \sum_{\substack{u \\|u|<n m\lrcorner}} H(u) \tag{3.2}
\end{equation*}
$$

Let $d=(n, m)$. It is clear that $H(0)=0$ and if $d \nmid u$ then $H(u)=0$. Thus in estimating the right hand side of (3.2) we may assume that

$$
\begin{equation*}
d<n m \Delta \tag{3.3}
\end{equation*}
$$

and restrict ourselves to integers u which are divisible by d. We write $|u|=d d_{u} u_{1}$, where the prime divisors of d_{u} also divide d and (d, u_{1}) $=1$. Obviously this decomposition is unique. It is shown in [5] that if either $\left(u_{1}, n m d^{-1}\right)>1$ or $\left(d_{u}, n m d^{-2}\right)>1$ then $H(u)=0$. Hence we may further restrict ourselves to integers u which satisfy

$$
\begin{equation*}
\left(u_{1}, n m d^{-1}\right)=\left(d_{u}, n m d^{-2}\right)=1 \tag{3.4}
\end{equation*}
$$

For such u we have the estimate

$$
\begin{align*}
H(u) & \leqq d \prod_{\substack{p \backslash d \\
p \nmid d u^{\prime} m d^{-2}}}\left(1-\frac{2}{p}\right) \prod_{\substack{p|d \\
p| d_{u} \backslash m d^{-2}}}\left(1-\frac{1}{p}\right) \tag{3.5}\\
& \leqq \varphi(d) \prod_{\substack{p \| d d \\
p \nmid n m d^{-2}}}\left(1-\frac{1}{p}\right) \prod_{p \mid d_{u}}\left(1-\frac{1}{p}\right)^{-1}
\end{align*}
$$

from [5].
Next let \mathscr{P}_{0} be the set of primes p which divide d but do not divide $n m d^{-2}$. We split \mathscr{P}_{0} into disjoint subsets \mathscr{P}_{1} and \mathscr{P}_{2} consisting of primes satisfying $p \leqq t$ and $p>t$ respectively. Let \mathscr{S}_{j} be the set of positive integers whose prime divisors are in \mathscr{P}_{j}, for $j=0,1,2$. From (3.4) we may assume that $d_{u} \in \mathscr{S}_{0}$ and hence that d_{u} is uniquely represented as $d_{u}=s_{1} s_{2}$ with $s_{1} \in \mathscr{S}_{1}$ and $s_{2} \in \mathscr{S}_{2}$. Thus

$$
\begin{align*}
H(u) & \leqq \varphi(d) \prod_{p \in \mathscr{F}_{0}}\left(1-\frac{1}{p}\right) \prod_{p \mid s_{1} s_{2}}\left(1-\frac{1}{p}\right)^{-1} \\
& \leqq \varphi(d) \prod_{p \in \mathscr{F}_{1}}\left(1-\frac{1}{p}\right) \prod_{p \mid s_{1}}\left(1-\frac{1}{p}\right)^{-1} \tag{3.6}
\end{align*}
$$

Now $|u|=d d_{u} u_{1}=d s_{1} s_{2} u_{1}$ where the set of primes which divide s_{1}, s_{2}, and u_{1} are all distinct. Therefore if we set $k=s_{2} u_{1}$ then k is relatively prime to

$$
Q=\prod_{\substack{p \mid m d^{-1} \\ p \leqq t}} p
$$

by (3.4) and the definition of \mathscr{P}_{2}. From (3.2) and (3.6) we obtain

$$
\begin{align*}
\lambda\left(E_{n} \cap E_{m}\right) & \leqq \delta \sum_{|u|<n m \Delta} H(u) \\
& =\delta \sum_{s_{1} \in \mathscr{I}_{1} \leq k \leqq\left(n m| | d s_{1}\right)}\left\{H\left(-d s_{1} k\right)+H\left(d s_{1} k\right)\right\} \tag{3.7}\\
& \leqq 2 \delta \varphi(d) \prod_{p \in \mathscr{F}_{1}}\left(1-\frac{1}{p}\right)\left\{\sum_{s_{1} \in \mathscr{\mathscr { M }}_{1}} \prod_{p \mid s_{1}}\left(1-\frac{1}{p}\right)^{-1} \sum_{1 \leqq k \leqq\left(n m \Delta / d s_{1}\right)}^{*} 1\right\},
\end{align*}
$$

where $(k, Q)=1$ in the sum \sum^{*}.
By the prime number theorem there exists an absolute constant b such that

$$
\begin{equation*}
\pi(y) \log 2 y+\log \log y \leqq y \log 3 \tag{3.8}
\end{equation*}
$$

for all $y \geqq b$. Throughout the remainder of this section we shall assume that

$$
\begin{equation*}
t=t(n, m) \geqq b \quad \text { and } \quad n m \Delta \geqq 3^{t} d \tag{3.9}
\end{equation*}
$$

Then by the sieve of Erathosthenes

$$
\sum_{1 \leq k \leq \operatorname{nmm} / d s_{1)}}^{*} 1 \leqq \frac{n m A}{d s_{1}} \prod_{p \mid Q}\left(1-\frac{1}{p}\right)+2^{\pi(t)} .
$$

If $s_{1} \leqq t^{\pi(t)}$ then using (3.8) and (3.9) we have

$$
\begin{aligned}
2^{\pi(t)} & \leqq 3^{t} t^{-\pi(t)} \log ^{-1} t \\
& \ll \frac{n m \Delta}{d s_{1}} \prod_{p \mid Q}\left(1-\frac{1}{p}\right) .
\end{aligned}
$$

It follows that if we sum over $s_{1} \leqq t^{\pi(t)}$ on the right hand side of (3.7) we obtain the upper bound

$$
\begin{align*}
& 2 \delta \varphi(d) \prod_{p \in \mathscr{Q}_{1}}\left(1-\frac{1}{p}\right) \sum_{s_{1} \leq t^{\pi}(t)} s_{1} \varphi\left(s_{1}\right)^{-1} \sum_{1 \leqq k \leq\left(n m / / d s_{1}\right)}^{*} 1 \\
& \quad \ll \delta \frac{\varphi(d)}{d} n m \Delta \prod_{p \mid Q}\left(1-\frac{1}{p}\right) \prod_{p \in \mathscr{\mathscr { P }}_{1}}\left(1-\frac{1}{p}\right) \sum_{s_{1} \in \mathscr{P}_{1}} \varphi\left(s_{1}\right)^{-1} \tag{3.10}\\
& \quad \ll \alpha_{n} \alpha_{m} \frac{\varphi(d)}{d} \prod_{p \mid n m d^{-1}}\left(1-\frac{1}{p}\right) \prod_{p \in \mathscr{F}_{1}}\left(1+\frac{1}{p(p-1)}\right) \\
& \quad \ll \frac{\alpha_{n} \varphi(n)}{n} \frac{\alpha_{m} \varphi(m)}{m} \ll \lambda\left(E_{n}\right) \lambda\left(E_{m}\right) .
\end{align*}
$$

Now if $s_{1}>t^{\pi(t)}$ we easily see that for some prime $p \in \mathscr{P}_{1}$ and some integer $\gamma \geqq 2$ we must have $p^{\gamma} \mid s_{1}, p^{\gamma}>t p \leqq t$. By considering the cases where γ is even or odd it follows that s_{1} is divisible by a square greater than $t^{2 / 3}$. Thus summing over $s_{1}>t^{\pi(t)}$ in (3.7) we obtain

$$
\begin{align*}
2 \delta \varphi(d) & \prod_{p \in \mathscr{Q}_{1}}\left(1-\frac{1}{p}\right) \sum_{t \pi(t)<s_{1}} s_{1} \varphi\left(s_{1}\right)^{-1} \sum_{1 \leqq k \leqq\left(n m A / d s_{1}\right)}^{*} 1 \\
& \leqq 2 \delta \varphi(d) \sum_{t^{\pi}(t)_{<s s_{1}} 1 \leqq k \leqq\left(n m A / d s_{1}\right)} 1 \\
& \leqq 2 \delta \varphi(d) \sum_{r=\left[t^{1 / 3}\right]} \sum_{1 \leqq j \leq(n m m / / d)} 1 \tag{3.11}\\
& \leqq 2 \delta \varphi(d) \frac{n m \Delta}{d} \sum_{r=\left[\left[^{1 / 3}\right]\right.}^{\infty} r^{-2} r^{-2} \\
& \ll \alpha_{n} \alpha_{m} t^{-1 / 3} \ll\left(\alpha_{n} \frac{\varphi(n)}{n}\right)\left(\alpha_{m} \frac{\varphi(m)}{m}\right) t^{-1 / 3} \log ^{2} t \\
& \ll \lambda\left(E_{n}\right) \lambda\left(E_{m}\right) .
\end{align*}
$$

Putting the estimates in (3.10) and (3.11) together, it follows that

$$
\begin{equation*}
\lambda\left(E_{n} \cap E_{m}\right) \ll \lambda\left(E_{n}\right) \lambda\left(E_{m}\right) \tag{3.12}
\end{equation*}
$$

for all pairs $\{n, m\}, n \neq m$, which satisfy (3.9).
4. Second estimates. Let Z be a finite subset of $\{2,3,4, \cdots\}$ with $\Lambda(Z)$ defined by (1.5). We choose ε in Lemma 6 so that $e^{1 / 2}(1-\varepsilon)=3 / 2$. This determines an absolute constant v_{0} such that (2.10) and (2.11) hold for all $v \geqq v_{0}$. We then define η_{0} by

$$
\begin{equation*}
\eta_{0}=\exp \left\{-\max \left(b, C, v_{0}\right)\right\} \tag{4.1}
\end{equation*}
$$

and assume that $0<\Lambda(Z) \leqq \eta_{0}$.
Next we write

$$
\sum_{\substack{n \in Z \\ n \neq m}} \sum_{\substack{m \in Z}} \lambda\left(E_{n} \cap E_{m}\right)=S_{1}+S_{2}
$$

where S_{1} is the sum over pairs $\{n, m\}$ which satisfy (3.9) and S_{2} is the sum over the remaining pairs $\{n, m\}$ which do not satisfy (3.9). We apply (3.12) to obtain the estimate

$$
\begin{equation*}
S_{1} \ll \sum_{n \in Z} \sum_{m \in Z} \lambda\left(E_{n}\right) \lambda\left(E_{m}\right)=\Lambda(Z)^{2} \tag{4.2}
\end{equation*}
$$

Thus it remains only to bound S_{2}.
From (2.2) and (3.7) we have

$$
\begin{align*}
& \lambda\left(E_{n} \cap E_{m}\right) \\
& \quad \leqq 2 \delta \varphi(d) \frac{n m \Delta}{d} \prod_{p_{1} \in \mathscr{Q}_{1}}\left(1-\frac{1}{p_{1}}\right)_{s_{1} \in \mathscr{S}_{1}} \varphi\left(s_{1}\right)^{-1} \tag{4.3}\\
& \quad \ll \alpha_{n} \alpha_{m} \ll \log ^{2}(1+t) \lambda\left(E_{n}\right) \lambda\left(E_{m}\right)
\end{align*}
$$

Hence if we set $L=-\log \{\Lambda(Z)\}$ and sum over pairs $\{n, m\}$ which satisfy $t<L$ we obtain

$$
\begin{align*}
& \sum_{\substack{n \in Z \\
\text { ṅm } \\
t<L}} \sum_{m \in Z} \lambda\left(E_{n} \cap E_{m}\right) \tag{4.4}\\
& \quad \ll \Lambda(Z)^{2}\left(\log \log \left\{\Lambda(Z)^{-1}\right\}\right)^{2}
\end{align*}
$$

Now for any pair $\{n, m\}$ in the sum S_{2} we have either $t<b$ or $n m \Delta<$ $3^{t} d$, where $d=(n, m)$. But from (4.1) we have $b \leqq L$ so that terms for which $t<b$ are already included in (4.4). Therefore the only sum which we need to bound is

$$
S_{3}=\sum_{\substack{n \in \mathcal{Z} \\ n \neq m}} \sum_{m \in Z} \lambda\left(E_{n} \cap E_{m}\right)
$$

where each pair $\{n, m\}$ satisfies $t \geqq L$ and (using (3.3))

$$
\begin{equation*}
d<n m \Delta<3^{t} d \tag{4.5}
\end{equation*}
$$

We have

$$
\begin{align*}
S_{3} & \ll \sum_{v=L}^{\infty} \sum_{u=1}^{v}\left\{\sum_{\substack{n^{(u)}}} \sum_{\substack{m^{(v)} \\
\left(n, m<n m 3^{v}(n, m)\right.}} \alpha_{n} \alpha_{m}\right\} \tag{4.6}\\
& \ll \sum_{v=L}^{\infty} \log (1+v) \sum_{u=1}^{v}\left\{\sum_{n^{(u)}} \lambda\left(E_{n}\right) \sum_{\substack{\sum^{m^{\prime}(v)} \\
\left(n, m<n_{m}\left(3^{v}(n, m)\right.\right.}} \alpha_{m}\right\},
\end{align*}
$$

where we have used (2.2) and (4.3). Our objective it to establish

$$
\begin{equation*}
\sum_{\substack{m(v) \\(n, m)<n m\left\langle 3^{v}(n, m)\right.}} \alpha_{m} \ll C v(\log 1+v) \exp \left\{-v^{3 / 2}\right\} \tag{4.7}
\end{equation*}
$$

for the sums on the right of (4.6), that is for fixed $n, g(n)=u \leqq v$ and $v \geqq v_{0}$. To accomplish this we consider two cases.

If $\alpha_{m} / m \leqq \alpha_{n} / n$ then the condition $(n, m)<n m \Delta<3^{v}(n, m)$ becomes $(n, m)<2 m \alpha_{n}<3^{v}(n, m)$. Clearly we may assume that $\alpha_{n}>0$ so that by (2.10) we have

$$
\begin{aligned}
\sum_{\substack{m^{(v)}<\\
(n, m)<2 m \alpha_{n}<3^{v}(n, m)}} \alpha_{m} & \leqq C \sum_{\substack{m^{(v)}<3 n \\
(n, m)<2 m_{n}<\left(n, m^{v}\right)}} m^{-1} \\
& <C v(\log 1+v) \exp \left\{-v^{3 / 2}\right\} .
\end{aligned}
$$

If $\alpha_{n} / n<\alpha_{m} / m$ then the condition becomes

$$
\begin{equation*}
(n, m)<2 n \alpha_{m}<3^{v}(n, m) \tag{4.8}
\end{equation*}
$$

Since $\alpha_{k} \leqq C k^{-1}$ we may partition Z into disjoint classes $W_{j}, j=$ $0,1,2, \cdots$, defined by

$$
W_{j}=\left\{k \in Z: C 2^{-j-1}<k \alpha_{k} \leqq C 2^{-j}\right\}
$$

If $m \in W_{j}$ and m satisfies (4.8) then we have

$$
2^{-1}(n, m)<n m^{-1} C 2^{-j}<3^{v}(n, m)
$$

and so

$$
\begin{equation*}
C 2^{-j} n 3^{-v}(n, m)^{-1}<m<C 2^{1-j} n(n, m)^{-1} \tag{4.9}
\end{equation*}
$$

Therefore we may apply (2.11) with $x=C 2^{-j} n 3^{-v}$ and $y=2\left(3^{v}\right)$ to obtain

$$
\begin{aligned}
\sum_{\substack{m(v) \\
(n, m)<2 n \alpha_{m}<3^{v}(n, m)}} \alpha_{m} & \leqq C \sum_{j=0}^{\infty} 2^{-j} \sum_{\substack{m(v) \\
m \in W_{j}}}^{*} m^{-1} \\
& \ll C v(\log 1+v) \exp \left\{-v^{3 / 2}\right\},
\end{aligned}
$$

where Σ^{*} indicates a sum over m 's which satisfy (4.9). This proves (4.7).

By using (4.1), (4.6), and (4.7) we find that

$$
\begin{align*}
S_{3} & \ll C \sum_{v=L}^{\infty} v(\log 1+v)^{2} \exp \left\{-v^{3 / 2}\right\} \sum_{u=1}^{\infty} \sum_{n(u)} \lambda\left(E_{n}\right) \tag{4.10}\\
& \ll \exp \{-L\} \Lambda(Z)=\Lambda(Z)^{2} .
\end{align*}
$$

The three upper bounds (4.2), (4.4), and (4.10) now establish (1.8) and so complete the proofs of Theorem 3 and Theorem 1.

References

1. P. A. Catlin, Two problems in metric Diophantine approximation, I, J. Number Theory, 8 (1976), 282-288.
2. —, Two problems in metric Diophantine approximation, II, J. Number Theory, 8 (1976), 289-297.
3. K. Chung, A Course in Probability Theory, Harcourt, Brace \& World, 1968.
4. R. J. Duffin and A. C. Schaeffer, Khintchine's problem in metric Diophantine approximation, Duke Math. J., 8 (1941), 243-255.
5. P. Erdös, On the distribution of convergents of almost all real numbers, J. Number Theory, 2 (1970), 425-441.
6. P. Gallagher, Approximation by reduced fractions, J. Math. Soc. of Japan, 13 (1961), 342-345.
7. A. Khintchine, Zur metrischen theorie der Diophantischen approximation, Math. Zeit., 24 (1926), 706-714.

Received April 29, 1977.
The University of Texas
Austin, TX 78712

