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(hnp) -RINGS OVER WHICH EVERY MODULE ADMITS
A BASIC SUBMODULE

SURJEET SINGH

The structure of those bounded (hnp)-τings over which
every module admits a basic submodule, is determined. It
is shown that such rings are precisely the block lower trian-
gular matrix rings over D\M where D is a discrete valuation
ring with M as its maximal ideal.

In [12], the author generalized some well known results on
decomposability of torsion abelian groups to torsion modules over
bounded (hnp)-τings. Let R be a bounded (hnp)-ring and M be a
(right) iϋ-module. A submodule N of M is called a basic submodule
of M if it satisfies the following conditions:

( i ) N is decomposable in the sense that it is a direct sum of
uniserial modules and finitely generated uniform torsion free modules.

(ii) JV is a pure submodule of M.
(iii) M/N is a divisible module.
The following result has been proved by the author (see [9] for

details):

THEOREM 1. Any torsion module M over a bounded (hnp)-ring
has a basic submodule and any two basic submodules of M are
isomorphic.

In general an J?-module need not have a basic submodule. However
Marubayashi [8, Theorem (3.6)] showed that every module over a
gf-discrete valuation ring has a basic submodule. In this paper we
determine the structure of those bounded (/mp)-rings, over which
every (right) module admits a basic submodule (Theorems 3 and 4).

As defined by Marubayashi [8, p. 432], a prime, right as well
as left principal ideal ring R, such that its Jacobson radical J(R) is
the only maximal ideal, and idempotents modules J{R) can be lifted,
is called a ^-discrete valuation ring; further if R/J(R) is a division
ring, then R is called a discrete valuation ring. In view of [8,
Lemma (3.1)] and [7, Lemma (2.1)], ^-discrete valuation rings are
precisely the matrix rings over discrete valuation rings. Modules
considered will be unital right modules and the notations and ter-
minology of [12,13] will be used without comment.

Henceforth in all lemmas, R is a bounded (hnp)-τmg over which
every module admits a basic submodule. Further Q stands for the
classical quotient ring of R.
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LEMMA 1. A submodule N of a torsion free module M over an
(hnp)-ring S is pure if and only if M/N is torsion free.

Proof. Necessity. Let for some xeM and a regular element
b in S, xb = y e N. As N is pure, for some zeN, xb = zb. This in
turn gives x = zeN. This proves that M/N is torsion free.

SUFFICIENCY. Let M/N be torsion-free. Consider a finite system
of equations Σ< «Λi = sj9 Sj e N, having a solution {#*} in M. If K —
Σ xβ + N, then K/N being finitely generated and torsion free, is
protective. Hence K = i^ 0 N. This gives that the above system
of equations have a solution in N. Hence N is pure in M.

LEMMA 2. If U is a uniform torsion free right R-module, then
either U is finitely generated, or divisible.

Proof. Since by Lemma 1, 0 and U are only pure submodules
of U, so 0 or U is the basic submodule of U. Hence U is divisible
or finitely generated.

LEMMA 3. Every over-ring of R different from Q is finitely
generated as an R-module.

Proof. Consider an over ring S of R such that S Φ Q. Now
<S=ΘΣ^i> Ui are uniform as right S-modules, since S is an (hnp)-
ring [6]. If any Ut is divisible as a right iϋ-module, then S — Q,
otherwise by Lemma 2, SB is finitely generated.

Let L be any ring and J be an ideal of L. Let n be a positive
integer and (klf k2, , kr) be an ordered r-tuple of positive integers
such that kλ + k2 + •• + kr = n. In the notations of Reiner [10,
Chapter 8], we can form a block matrix ring of the type:

["(Zr) (/)

(L)

(L)

\JCί9 fC29 ' * * 9 ™r)

In the terminology of Robson [11], any such matrix ring is said to
be a block lower triangular matrix ring over L\J.

THEOREM 2. Let R be a bounded (hnp)-ring over which every
module admits a basic submodule. Then there exists a discrete
valuation ring D with maximal ideal M such that R is a block lower
triangular matrix ring over D\M.
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Proof. First of all we show that R has only one maximal in-
vertible ideal. Let A be a maximal invertible ideal of R. If A is
not the only maximal invertible ideal, then in the notations of [13]
R < RA < Q. There exists a non unit regular element a in R such
that a is a unit modulo A. Then Una~nR c RA and Una~nR is not
finitely generated as a right i?-module. This contradicts Lemma 3.
Hence A is the only maximal invertible ideal of R and R = RA.
Then J(R) = A. This then gives iϋ has only finitely many idempotent
ideals. Let B be a minimal nonzero idempotent ideal of R. Then
0,(2?) = {# e Q: £J5 c 2?} is a Dedekind prime ring [3, Proposition (1.8)].
As for R, every torsion free uniform Oz(l?)-module is either finitely
generated or divisible. As a consequence 0Z(2?) has only one maximal
ideal P and 0,(5) = Oι(B)P. So by [7, Lemma (2.1)] Oι(B) = D% for
some discrete valuation ring JO. By Jacobson [5, p. 120], R is equi-
valent to Oj(JB). Hence by Robson [11, Theorem (6.3) and Corollary
(2.8)], R is a block lower triangular matrix ring over D\M, where
ΰ is a discrete valuation ring with M as its maximal ideal.

It is clear that any non block lower triangular matrix ring over
D\M where D is a discrete valuation ring with M is its maximal
ideal, is equivalent to Dn. So to prove the converse of the above
theorem it is enough to prove the following:

THEOREM 3. Let R be a bounded (hnp)-ring such that R is
equivalent to S, for some g-discrete valuation ring S, which is an
overring of R, then every R-module admits a basic submodule.

Proof. First of all we show that any uniform torsion free R-
module U is either divisible or finitely generated. Suppose U is not
divisible. Now S — Dn. There exist regular elements a and b in
R such that aSbaR. Since S is bounded there exists a nonzero
ideal J^ of S such that J^ c Sb. Then a^ c R and the fact that
Ss is embeddable in a^ gives that SB is finitely generated. Similarly

BS is finitely generated. So using [3, Theorem (1.6)], we get S =
Ot(A) = A* = AA* for some idempotent ideal A of R. We can suppose
that UaQ, the classical quotient ring of R. If US = eQ, then
UAA*A = eQA = eQ. However UAA*A c U. Thus in this case U
is divisible. Hence US is finitely generated as S-module [8, Lemma
(3.2)]. This gives UB is finitely generated, since as proved above
SB is finitely generated.

Thus every uniform torsion free right j£-module is injective or
projective. Consider any right jβ-module M and let T be its torsion
submodule. T admits a basic submodule B by Theorem 1. Then]2?
is a pure submodule of M and T/B is divisible; further T/B is the
torsion submodule of M/B. So we can write
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where L/B is torsion free, divisible j?-module and KjB is a torsion
free reduced i2-module. If K/B = 0, we get B itself is a basic
submodule. So let K/B Φ 0. We can find a maximal uniform sub-
module Ό/B of K/B. By what has been proved above U/B is finitely
generated and hence protective. So by Lemma 1, U is a pure submodule
of K, and U = U1φ B, where ZTi. is a finitely generated uniform torsion
submodule. By Zorns lemma, we can find a maximal direct sum
ί = B 0 Σ Θ ^ » i n JBΓ such that E is a pure submodule of K, Ut

are finitely generated uniform, torsion free jβ-modules. By Lemma
1, K/E is torsion free. If K/E is not divisible, then as before we
get a nonzero finitely generated uniform submodule V/E of K/E
such that V/E is pure in K/E. Then V = VΊ 0 E and F is a pure
submodule of if. This contradicts the maximality of E. Hence
K/E is divisible. E is clearly decomposable and is a basic submodule
of M. This completes the proof.

We remark that any two basic submodules of a module over
the ring of the above theorem, can be shown to be isomorphic.
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