($h n p$)-RINGS OVER WHICH EVERY MODULE ADMITS A BASIC SUBMODULE

Surdeet Singh

Abstract

The structure of those bounded ($h n p$)-rings over which every module admits a basic submodule, is determined. It is shown that such rings are precisely the block lower triangular matrix rings over $D \backslash M$ where D is a discrete valuation ring with M as its maximal ideal.

In [12], the author generalized some well known results on decomposability of torsion abelian groups to torsion modules over bounded ($h n p$)-rings. Let R be a bounded ($h n p$)-ring and M be a (right) R-module. A submodule N of M is called a basic submodule of M if it satisfies the following conditions:
(i) N is decomposable in the sense that it is a direct sum of uniserial modules and finitely generated uniform torsion free modules.
(ii) N is a pure submodule of M.
(iii) M / N is a divisible module.

The following result has been proved by the author (see [9] for details):

Theorem 1. Any torsion module M over a bounded (hnp)-ring has a basic submodule and any two basic submodules of M are isomorphic.

In general an R-module need not have a basic submodule. However Marubayashi [8, Theorem (3.6)] showed that every module over a g-discrete valuation ring has a basic submodule. In this paper we determine the structure of those bounded ($h n p$)-rings, over which every (right) module admits a basic submodule (Theorems 3 and 4).

As defined by Marubayashi [8, p. 432], a prime, right as well as left principal ideal ring R, such that its Jacobson radical $J(R)$ is the only maximal ideal, and idempotents modules $J(R)$ can be lifted, is called a g-discrete valuation ring; further if $R / J(R)$ is a division ring, then R is called a discrete valuation ring. In view of [8, Lemma (3.1)] and [7, Lemma (2.1)], g-discrete valuation rings are precisely the matrix rings over discrete valuation rings. Modules considered will be unital right modules and the notations and terminology of $[12,13]$ will be used without comment.

Henceforth in all lemmas, R is a bounded ($h n p$)-ring over which every module admits a basic submodule. Further Q stands for the classical quotient ring of R.

Lemma 1. A submodule N of a torsion free module M over an (hnp)-ring S is pure if and only if M / N is torsion free.

Proof. Necessity. Let for some $x \in M$ and a regular element b in $S, x b=y \in N$. As N is pure, for some $z \in N, x b=z b$. This in turn gives $x=z \in N$. This proves that M / N is torsion free.

SUFFICIENCY. Let M / N be torsion-free. Consider a finite system of equations $\sum_{i} x_{i} r_{i j}=s_{j}, s_{j} \in N$, having a solution $\left\{x_{i}\right\}$ in M. If $K=$ $\sum x_{i} S+N$, then K / N being finitely generated and torsion free, is projective. Hence $K=K_{1} \oplus N$. This gives that the above system of equations have a solution in N. Hence N is pure in M.

Lemma 2. If U is a uniform torsion free right R-module, then either U is finitely generated, or divisible.

Proof. Since by Lemma 1, 0 and U are only pure submodules of U, so 0 or U is the basic submodule of U. Hence U is divisible or finitely generated.

Lemma 3. Every over-ring of R different from Q is finitely generated as an R-module.

Proof. Consider an over ring S of R such that $S \neq Q$. Now $S=\oplus \sum U_{i}, U_{i}$ are uniform as right S-modules, since S is an $(h n p)$ ring [6]. If any U_{i} is divisible as a right R-module, then $S=Q$, otherwise by Lemma $2, S_{R}$ is finitely generated.

Let L be any ring and J be an ideal of L. Let n be a positive integer and ($k_{1}, k_{2}, \cdots, k_{r}$) be an ordered r-tuple of positive integers such that $k_{1}+k_{2}+\cdots+k_{r}=n$. In the notations of Reiner [10, Chapter 8], we can form a block matrix ring of the type:

$$
\left[\begin{array}{lll}
(L) & (J) & \cdots(J) \\
(L) & (L) & \cdots(J) \\
(L) & (L) & \cdots
\end{array}\right]\left(k_{1}\right) ~\left[k_{1}, k_{2}, \cdots, k_{r}\right) .
$$

In the terminology of Robson [11], any such matrix ring is said to be a block lower triangular matrix ring over $L \backslash J$.

Theorem 2. Let R be a bounded (hnp)-ring over which every module admits a basic submodule. Then there exists a discrete valuation ring D with maximal ideal M such that R is a block lower triangular matrix ring over $D \backslash M$.

Proof. First of all we show that R has only one maximal invertible ideal. Let A be a maximal invertible ideal of R. If A is not the only maximal invertible ideal, then in the notations of [13] $R<R_{A}<Q$. There exists a non unit regular element a in R such that a is a unit modulo A. Then $U_{n} a^{-n} R \subset R_{A}$ and $U_{n} a^{-n} R$ is not finitely generated as a right R-module. This contradicts Lemma 3. Hence A is the only maximal invertible ideal of R and $R=R_{A}$. Then $J(R)=A$. This then gives R has only finitely many idempotent ideals. Let B be a minimal nonzero idempotent ideal of R. Then $O_{l}(B)=\{x \in Q: x B \subset B\}$ is a Dedekind prime ring [3, Proposition (1.8)]. As for R, every torsion free uniform $O_{l}(B)$-module is either finitely generated or divisible. As a consequence $O_{l}(B)$ has only one maximal ideal P and $O_{l}(B)=O_{l}(B)_{P}$. So by [7, Lemma (2.1)] $O_{l}(B)=D_{n}$ for some discrete valuation ring D. By Jacobson [5, p. 120], R is equivalent to $O_{l}(B)$. Hence by Robson [11, Theorem (6.3) and Corollary (2.8)], R is a block lower triangular matrix ring over $D \backslash M$, where D is a discrete valuation ring with M as its maximal ideal.

It is clear that any non block lower triangular matrix ring over $D \backslash M$ where D is a discrete valuation ring with M is its maximal ideal, is equivalent to D_{n}. So to prove the converse of the above theorem it is enough to prove the following:

Theorem 3. Let R be a bounded (hnp)-ring such that R is equivalent to S, for some g-discrete valuation ring S, which is an overring of R, then every R-module admits a basic submodule.

Proof. First of all we show that any uniform torsion free R module U is either divisible or finitely generated. Suppose U is not divisible. Now $S=D_{n}$. There exist regular elements a and b in R such that $a S b \subset R$. Since S is bounded there exists a nonzero ideal \mathscr{F} of S such that $\mathscr{I} \subset S b$. Then $a \mathscr{J} \subset R$ and the fact that S_{S} is embeddable in $a \mathscr{F}$ gives that S_{R} is finitely generated. Similarly ${ }_{R} S$ is finitely generated. So using [3, Theorem (1.6)], we get $S=$ $O_{l}(A)=A^{*}=A A^{*}$ for some idempotent ideal A of R. We can suppose that $U \subset Q$, the classical quotient ring of R. If $U S=e Q$, then $U A A^{*} A=e Q A=e Q$. However $U A A^{*} A \subset U$. Thus in this case U is divisible. Hence $U S$ is finitely generated as S-module [8, Lemma (3.2)]. This gives U_{R} is finitely generated, since as proved above S_{R} is finitely generated.

Thus every uniform torsion free right R-module is injective or projective. Consider any right R-module M and let T be its torsion submodule. T admits a basic submodule B by Theorem 1. Then B is a pure submodule of M and T / B is divisible; further T / B is the torsion submodule of M / B. So we can write

$$
M / B=L / B \oplus T / B \oplus K / B
$$

where L / B is torsion free, divisible R-module and K / B is a torsion free reduced R-module. If $K / B=0$, we get B itself is a basic submodule. So let $K / B \neq 0$. We can find a maximal uniform submodule U / B of K / B. By what has been proved above U / B is finitely generated and hence projective. So by Lemma $1, U$ is a pure submodule of K, and $U=U_{1} \oplus B$, where U_{1} is a finitely generated uniform torsion submodule. By Zorns lemma, we can find a maximal direct sum $E=B \oplus \Sigma \oplus U_{i}$, in K such that E is a pure submodule of K, U_{i} are finitely generated uniform, torsion free R-modules. By Lemma $1, K / E$ is torsion free. If K / E is not divisible, then as before we get a nonzero finitely generated uniform submodule V / E of K / E such that V / E is pure in K / E. Then $V=V_{1} \oplus E$ and V is a pure submodule of K. This contradicts the maximality of E. Hence K / E is divisible. E is clearly decomposable and is a basic submodule of M. This completes the proof.

We remark that any two basic submodules of a module over the ring of the above theorem, can be shown to be isomorphic.

Acknowledgment. The author is extremely thankful to the referee for his various suggestions.

References

1. D. Eisenbud and P. Griffith, Serial rings, J. Algebra, 17 (1971), 389-400.
2. D. Eisenbud and J. C. Robson, Modules over Dedekind prime rings, J. Algebra, 16 (1970), 67-85.
3. -, Hereditary noetherian prime rings, J. Algebra, 16 (1970), 86-104.
4. L. Fuchs, Abelian Groups, Pergamon Press, 1960.
5. N. Jacobson, The Theory of Rings, Mathematical Survey No. 2, Amer. Math. Soc., 1943.
6. J. Kuzmanovitch, Localizations of Dedekind prime rings, J. Algebra, 21 (1972), 371-395.
7. H. Marubayashi, Modules over bounded Dedekind prime rings, Osaka J. Math., 9 (1972), 95-110.
8. -, Modules over bounded Dedelkind prime rings II, 9 (1972), 427-445.
9. Musharafuddin Khan, Ph. D. Thesis, Aligarh Muslim University, Aligarh, 1976.
10. I. Reiner, Maximal Orders, Academic Press, 1975.
11. J. C. Robson, Idealizers and hereditary noetherian prime rings, J. Algebra, 22 (1972), 45-81.
12. S. Singh, Modules over hereditary noetherian prime rings, Canad J. Math., 27 (1975), 867-883.
13. , Modules over hereditary noetherian prime rings II, Canad. J. Math., 28 (1976), 73-82.

Received April 13, 1977. This research was supported by the U.G.C. Grant No. F30-5(6562)/76/(SR-II).

