SOME RADICAL PROPERTIES OF RINGS

WITH $(a, b, c)=(c, a, b)$
David Pokrass

Abstract

A ring is an s-ring if (for fixed s) A^{s} is an ideal whenever A is. We show that at least two different definitions for the prime radical are equivalent in s-rings. If R satisfies (a, b, c) $=(c, a, b)$ then R is a 2 -ring. In this note we investigate various properties of the prime and nil radicals of R. In addition, if R is a finite dimensional algebra over a field of characteristic $\neq 2$ of 3 we show that the concepts of nil and nilpotent are equivalent.

In [1] Brown and McCoy studied a collection of prime radicals and nil radicals in an arbitrary nonassociative ring. In light of their treatment we will consider these radicals in rings which satisfy the identity

$$
\begin{equation*}
(a, b, c)=(c, a, b) . \tag{1}
\end{equation*}
$$

While these rings may be viewed as an extension of alternative rings, they are in general not even power associative. Examples of (not power associative) rings satisfying (1) appear in [2] and [4].

1. s-rings and the prime radical. Prime radicals for an arbitrary ring R were treated in [1] in the following way. Let \mathscr{A} be the set of all finite nonassociative products of at least two elements from some countable set of indeterminates $x_{1}, x_{2}, x_{3}, \cdots$. Then if $u \in \mathscr{A}$ we call an ideal $P u$-prime if $u\left(A_{1}, A_{2}, \cdots, A_{n}\right) \cong P$ implies some $A_{i} \subseteq P$ for ideals $A_{1}, A_{2}, \cdots, A_{n}$. For example if $u=\left(x_{1} x_{2}\right) x_{3}$ then P is u-prime if whenever $\left(A_{1} A_{2}\right) A_{3} \subseteq P$ we have one of the A_{i} 's in P. The u-prime radical R^{u} is then the intersection of all u-prime ideals in R. It was shown that if u^{*} is the word having the same association as u, but in only one variable, then $R^{u}=R^{u^{*}}$. For example if $u=\left(x_{1} x_{2}\right) x_{3}$ then $u^{*}=(x x) x$, and $R^{u^{*}}$ is the intersection of ideals P with the property that if $(A A) A \subseteq P$ for an ideal A, then $A \subseteq P$.

Another theory of the prime radical was given in [9]. Call a ring R an s-ring if for some fixed positive integer s, A^{s} is an ideal whenever A is. Call an ideal P prime if $A_{1} A_{2} \cdots A_{s} \subseteq P$ implies some $A_{i} \subseteq P$ for ideals A_{1}, \cdots, A_{s}. The prime radical $P(R)$ of an s-ring R is then the intersection of all prime ideals.

In the case of s-rings we see that these approaches are essentially the same:

Theorem 1. Let R be an s-ring. Then for each $u \in \mathscr{A}$ having degree $\geqq s, R^{u}$ coincides with $P(R)$.

Proof. If A is an ideal of R, consider the two descending chains: $A^{(0)}=A_{0}=A, A^{(n+1)}=A^{(n)} A^{(n)}$, and $A_{n+1}=\left(A_{n}\right)^{s}$. It is easily seen that $\left\langle A_{n}\right\rangle$ is a chain of ideals in R and for each $n, A_{n} \subseteq A^{(n)}$. Next choose $u \in \mathscr{A}$. We first show that there is an integer r such that $A^{(r)} \subseteq u^{*}(A, A, \cdots, A)$. We induct on $\operatorname{deg} u^{*}$. When $u^{*}=x^{2}$, take $r=1$. Assuming $\operatorname{deg} u^{*}>2$, write $u^{*}=v_{1} v_{2}$ where each v_{i} has degree less than that of u^{*}. Then there exists r_{1}, r_{2} such that $A^{\left(r_{i}\right)} \subseteq$ $v_{i}(A, A, \cdots, A)$. Letting $r=\max \left\{r_{1}, r_{2}\right\}, A^{(r+1)}=A^{(r)} A^{(r)} \subseteq A^{\left(r_{1}\right)} A^{\left(r_{2}\right)} \subseteq$ $v_{1}(A) v_{2}(A) \subseteq u^{*}(A)$, which completes the induction. Now assume P is prime (in the sense of [9]). Then P is also u^{*}-prime. For if A is any ideal with $u^{*}(A, A, \cdots, A) \subseteq P$ we may choose r such that $A_{r} \subseteq A^{(r)} \subseteq u^{*}(A) \subseteq P$. Using repeatedly the fact that P is prime we see that $A \subseteq P$. We have shown $R^{u}=R^{u^{*}} \subseteq P(R)$.

To see the other inclusion, assume $\operatorname{deg} u \geqq s$. Let P be u^{*} prime. Then P is also prime. For if A is an ideal with $A^{s} \subseteq P$ it follows that $u^{*}(A) \subseteq A^{\operatorname{deg} u *} \subseteq A^{s} \subseteq P$, and so $A \subseteq P$. This shows $P(R) \cong R^{u^{*}}=R^{u}$, which completes the proof.

Corollary. If R is a 2-ring, the u-prime radicals all coincide.
Rich has shown that in an s-ring the prime radical $P(R)$ is the intersection of all ideals Q such that R / Q has no nonzero nilpotent ideals [5]. However, if R / Q has no nonzero nilpotent ideals it also has no nonzero solvable ideals: For if $A^{(n)} \subseteq Q$ for some ideal A, then $A_{n} \subseteq A^{(n)} \subseteq Q$ using the same notation as above. It follows that $A \subseteq Q$. This shows that the word "nilpotent" may be replaced by "solvable" in Rich's characterization of $P(R)$.
2. Nilalgebras. In this section we let R denote a ring satisfying equation (1) and having characteristic not equal to 2 or 3 . Outcalt showed that if R is simple then it is alternative (and hence a CaycleyDickson algebra or associative) [3]. Sterling extended this result by showing that if R has no nonzero ideals whose square is zero then R is alternative [8].

We see that rings R which satisfy (1) are 2 -rings. For if A is an ideal with $\alpha_{1}, a_{2} \in A$, then $\left(a_{1} \alpha_{2}\right) x=\left(\alpha_{1}, a_{2}, x\right)+a_{1}\left(a_{2} x\right)=\left(a_{2}, x, a_{1}\right)+$ $a_{1}\left(a_{2} x\right) \in A^{2}$. In fact, it is easily shown that A^{n} is an ideal for each $n \geqq 2$.

Next recall that an element a is nilpotent if there is some association u^{*} such that $u^{*}(\alpha)=0$. An ideal A is a nil ideal if each element in A is nilpotent. We call A solvable if $A^{(n)}$ (defined above)
is zero for some n. Finally, A is right nilpotent if the sequence $A, A^{2}, A^{2} A,\left(A^{2} A\right) A, \cdots$ reaches zero in a finite number of steps.

Lemma. Let R be a ring satisfying (1). Then R is nilpotent if and only if R is right nilpotent.

Proof. The proof of this lemma, which appears in [4], only required identity (1) and is therefore valid.

We will need the following identity [8, eq. 4] which holds in R

$$
\begin{equation*}
9(((a, x, x), x, x), x, x)=(a,(x, x, x),(x, x, x)) . \tag{2}
\end{equation*}
$$

Lemma. Let R be a finite dimensional algebra, satisfying (1), over a field F of characteristic $\neq 2$, 3. If R is solvable then R is nilpotent.

Proof. We induct on $\operatorname{dim} R$. When $\operatorname{dim} R=1$ the result is obvious, so assume $\operatorname{dim} R>1$. By the previous lemma it is sufficient to show that R is right nilpotent. Let S_{a} denote the right multiplication operator $x \rightarrow x a$. Let \hat{R} be the subalgebra of the multiplication algebra R^{*} which is generated by $\left\{S_{a} \mid a \in R\right\}$. Note that R is right nilpotent if and only if \hat{R} is nilpotent. Now by the solvability of R we may write $R=B+F x$ where B is an ideal containing R^{2} and $B \subsetneq R$. Since $\operatorname{dim} B<\operatorname{dim} R, B$ is nilpotent by the induction assumption. Suppose $B^{k}=0$. We claim $(\hat{R})^{6 k^{2}}=0$.

Treating a as the independent variable and expanding (2) it becomes apparent that $\left(S_{x}\right)^{6}$ may be written as the sum of 15 terms each containing $S_{x^{2}}, S_{x^{2} x}$, or $S_{x x^{2}}$. These factors are in $\left(R^{2}\right)^{*} \cong B^{*}$. This implies that $\left(S_{x}\right)^{6 k}$ can be expressed as a sum of terms each containing at least k factors from B^{*}. Since B^{n} is as ideal for each n, it follows that $\left(S_{x}\right)^{6 k}=0$. Now choose $T \in(\hat{R})^{6 k 2}$. Then T is a sum of terms each containing a factor of the form

$$
\left(S_{y_{1}} S_{y_{2}} \cdots S_{y_{6 k}}\right)\left(S_{z_{1}} S_{z_{2}} \cdots S_{z_{6 k}}\right) \cdots\left(S_{w_{1}} S_{w_{2}} \cdots S_{w_{6 k}}\right)
$$

where each subscript is either equal to x or is a member of B. Note there are k "blocks" each having length $6 k$. If k of the S 's have elements from B attached to them then the above expression is 0 since B^{n} is always an ideal. On the other hand if there are not k such S 's, then one of the blocks must be of the form $S_{x} S_{x} \cdots S_{x}$, or $\left(S_{x}\right)^{6 k}=0$. In any case $T=0$, so R is nilpotent completing the proof.

Theorem 2. If R is a finite dimensional nilalgebra, satisfying (1), over a field of characteristic $\neq 2,3$, then R is nilpotent.

Proof. We induct on $\operatorname{dim} R$. Assume $\operatorname{dim} R>1$. If R is alternative we are done. If not, by Sterling's result [8], there exists an ideal $J \neq 0$ such that $J^{2}=0$. Then R / J is solvable by the induction assumption. Since J is solvable it follows that R must be. By the previous lemma R is nilpotent.
3. Radicals. If v is a word in one variable, then a is called v-nilpotent if the sequence $a, v(a), v(v(a)), \cdots$ ends in 0 . An ideal is v-nil if each of its elements is v-nilpotent. Every ring has a maximal v-nil ideal N_{v} and a maximal nil ideal $N[1]$. We shall call N_{v} the v-nil radical and N the nil radical. The Jacobson radical J is the set of all elements which generate quasi-regular ideals. It is shown in [1] that for each word $u^{*}=v$ we have

$$
R^{u} \cong N_{v} \cong N \cong J .
$$

Theorem 3. Let R be a ring of characteristic $\neq 2,3$ and satisfying (1). Then all of the u-prime radicals coincide and each of the v-nil radicals coincides with N.

Proof. The first statement follows from the corollary to Theorem 1 and the fact that R is a 2 -ring. The second statement follows from Sterling's theorem: The ring R / R^{u} contains no nonzero ideals whose square is zero (since $A^{2} \subseteq R^{u}$ implies $A \subseteq R^{u}$). Hence R / R^{u} is alternative, and so R / N_{v} is alternative. Since R / N_{v} is power associative, N / N_{v} is a v-nil ideal in R / N_{v}, and so N must be a v-nil ideal in R. This means $N_{v}=N$.

Theorem 4. If R is a finite dimensional algebra, satisfying (1) over a field of characteristic $\neq 2,3$, then the Jacobson radical R is nilpotent.

Proof. By the reasoning in the proof of Theorem 3 we may conclude that R / N is alternative. A result of Slater's says that in an alternative ring with d.c.c. on right ideals, the nil radical equals the Jacobson radical 17]. Hence $0=N(R / N)=J(R / N)$. It follows that $J \subseteq N$ so J is nilpotent.

We will add one final note. If R is a ring the attached ring R^{+}is the ring where multiplication is redefined by $a \cdot b=a b+b a$. Rich has shown that if R is alternative and having characteristic $\neq 2,3$, then the (Jordan) ring R^{+}has the same prime radical as R [6]. That is, $P(R)=P\left(R^{+}\right)$using the notation of $\S 1$. This result may be generalized slightly: If R satisfies (1) and has characteristic
$\neq 2,3$, then the prime radical of R coincides with each of the u-prime radicals $\left(R^{+}\right)^{u}$ in R^{+}. This is interesting because while Jordan rings are 3 -rings, it does not seem likely that in general R^{+}will be an s-ring. The proof (which we omit) is similar to the one found in [6].

References

1. B. Brown and N. McCoy, Prime ideals in nonassociative rings, Trans. Amer. Math. Soc., 89 (1958), 245-255.
2. E. Kleinfeld, Assosymmetric rings, Proc. Amer. Math. Soc., 8 (1957), 983-986.
3. D. L. Outcalt, An extension of the class of alternative rings, Canad. J. Math., $\mathbf{1 7}$ (1965), 130-141.
4. D. Pokrass and D. Rodabaugh, Solvable assosymmetric rings are nilpotent, Proc. Amer. Math. Soc., 64 (1977), 30-34.
5. M. Rich, Some radical properties of s-rings, Proc. Amer. Math. Soc., 30 (1971), 40-42.
6. The prime radical in alternative rings, Proc. Amer. Math. Soc., 56 (1976), 11-15.
7. M. Slater, Alternative rings with d.c.c., I, J. of Algebra, 11 (1969), 102-110.
8. N. Sterling, Rings satisfying $(x, y, z)=(y, z, x)$, Canad. J. Math., 20 (1968), 913-918.
9. P. Zwier, Prime ideals in a large class of nonassociative rings, Trans. Amer. Math. Soc., 158 (1971), 257-271.

Received December 6, 1976.
Emory University
Atlanta, GA 30322.

