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SOME RADICAL PROPERTIES OF RINGS
WITH (a, b, c) = (c, a, b)

DAVID POKRASS

A ring is an s-ring if (for fixed s) As is an ideal whenever
A is. We show that at least two different definitions for
the prime radical are equivalent in s-rings. If R satisfies
(a, b, c) — (c, a, b) then R is a 2-ring. In this note we inves-
tigate various properties of the prime and nil radicals of R.
In addition, if R is a finite dimensional algebra over a field of
characteristic Φ2 of 3 we show that the concepts of nil and
nilpotent are equivalent.

In [1] Brown and McCoy studied a collection of prime radicals
and nil radicals in an arbitrary nonassociative ring. In light of their
treatment we will consider these radicals in rings which satisfy the
identity

(1) (α, 6, c) = (c, a, b) .

While these rings may be viewed as an extension of alternative
rings, they are in general not even power associative. Examples
of (not power associative) rings satisfying (1) appear in [2] and [4].

I* s-rings and the prime radical. Prime radicals for an arbitrary
ring R were treated in [1] in the following way. Let J ^ be the
set of all finite nonassociative products of at least two elements
from some countable set of indeterminates xlf x2f x3, . Then if
% G J / we call an ideal P u-prime if u(A19 A2, •••, An) £ P implies
some Â  £ P for ideals Aί9 A2, •••, An. For example if u = {xxx^)xz

then P is u-prime if whenever (A1A2)A3 £ P we have one of the A/s
in P. The w-prime radical Ru is then the intersection of all w-prime
ideals in R. It was shown that if 16* is the word having the same
association as u, but in only one variable, then Ru — Ru\ For ex-
ample if u = (#A)#3 then u* = (xx)x, and Ru* is the intersection of
ideals P with the property that if (AA)A £ P for an ideal A, then
AQP.

Another theory of the prime radical was given in [9]. Call a
ring R an s-ring if for some fixed positive integer s, As is an ideal
whenever A is. Call an ideal P prime if AXA2 As £ P implies
some Ai £ P for ideals Aίf •••, As. The prime radical P(R) of an
s-ring R is then the intersection of all prime ideals.

In the case of s-rings we see that these approaches are essentially
the same:
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THEOREM 1. Let R be an s-ring. Then for each u e Jϊf having
degree ^s, Ru coincides with P(R).

Proof. If A is an ideal of R, consider the two descending chains:
A(0) = Ao = A, A{n+1) = Ain)A{n), and An+ί = (An)

s. I t is easily seen

that <A%> is a chain of ideals in R and for each n, An £ A(%). Next
choose u 6 Jzf. We first show that there is an integer r such that
A(r) £ u*(A, A, •••, A). We induct on degw*. When u* = x2, take
r — 1. Assuming deg u* > 2, write w* = v ^ where each vt has
degree less than that of u*. Then there exists rlf r2 such that A{ri) £
^(A, A, , A). Letting r - max {rlf r2}, A(r+1) == A(r)A(r) £ A(ri)A(r2) £
v1(A)t;2(A) £ w*(A), which completes the induction. Now assume P
is prime (in the sense of [9]). Then P is also w*-prime. For if A
is any ideal with u*(A, A, •••, A) £ P we may choose r such that
Ar £ A(r) £ π*(A) £ P. Using repeatedly the fact that P is prime
we see that A £ P. We have shown Ru = i2M* £ P(Λ).

To see the other inclusion, assume deg u ^ s. Let P be w*-
prime. Then P is also prime. For if A is an ideal with A8 £ P it
follows that w*(iί) £ Adegtt* £ As £ P, and so AQ P. This shows
P(ϋ?) £ Ru* = Ru, which completes the proof.

COROLLARY. If R is a 2-ring, the u-prime radicals all coincide.

Rich has shown that in an s-ring the prime radical P(R) is the
intersection of all ideals Q such that R/Q has no nonzero nilpotent
ideals [5]. However, if R/Q has no nonzero nilpotent ideals it also
has no nonzero solvable ideals: For if A{n) £ Q for some ideal A,
then An £ A{n) £ Q using the same notation as above. It follows
that A £ Q. This shows that the word "nilpotent" may be replaced
by "solvable" in Rich's characterization of P{R).

2. Nilalgebras* In this section we let R denote a ring satisfying
equation (1) and having characteristic not equal to 2 or 3. Outcalt
showed that if R is simple then it is alternative (and hence a Caycley-
Dickson algebra or associative) [3]. Sterling extended this result
by showing that if R has no nonzero ideals whose square is zero
then R is alternative [8].

We see that rings R which satisfy (1) are 2-rings. For if A is
an ideal w i t h a19 a2 e A, then (axa2)x — (aly a2, x) + a^a^x) = (a2, x, Oj) +

aj{a2x) 6 A2. In fact, it is easily shown that An is an ideal for each
n ^ 2.

Next recall that an element a is nilpotent if there is some as-
sociation M* such that u*(a) = 0. An ideal A is a nil ideal if each
element in A is nilpotent. We call A solvable if A{n) (defined above)
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is zero for some n. Finally, A is right nilpotent if the sequence
A, A2, A2A, {A2A)A, reaches zero in a finite number of steps.

LEMMA. Let R be a ring satisfying (1). Then R is nilpotent
if and only if R is right nilpotent.

Proof. The proof of this lemma, which appears in [4], only
required identity (1) and is therefore valid.

We will need the following identity [8, eq. 4] which holds in R

(2) 9(((α, x, x), x, x), x, x) = (a, (x, x, x), (x, x, x)) .

LEMMA. Let R be a finite dimensional algebra, satisfying (1),
over a field F of characteristic Φ2, 3. If R is solvable then R is
nilpotent.

Proof. We induct on dim R. When dim R = 1 the result is
obvious, so assume dim R > 1. By the previous lemma it is sufficient
to show that R is right nilpotent. Let Sa denote the right multiplica-
tion operator x —» xa. Let R be the subalgebra of the multiplication
algebra R* which is generated by {Sa\aeR}. Note that R is right
nilpotent if and only if R is nilpotent. Now by the solvability of
R we may write R = B + Fx where B is an ideal containing R2 and
B £Ξ R. Since dim B < dim R, B is nilpotent by the induction assump-
tion. Suppose Bk = 0. We claim (R)βk2 = 0.

Treating a as the independent variable and expanding (2) it
becomes apparent that (SJ6 may be written as the sum of 15 terms
each containing SX2, SX2X, or SXX2. These factors are in (i?2)* £ j?*.
This implies that (Sx)

6k can be expressed as a sum of terms each
containing at least k factors from JB*. Since Bn is as ideal for each
n, it follows that (SJk = 0. Now choose T e (R)6k2. Then T is a
sum of terms each containing a factor of the form

(SVlSy2 Sy6k)(SZlSZ2 SZ6k) (SWlSW2 SW6k) ,

where each subscript is either equal to x or is a member of B. Note
there are k "blocks" each having length 6k. If k of the S's have
elements from B attached to them then the above expression is 0
since Bn is always an ideal. On the other hand if there are not k
such S's, then one of the blocks must be of the form SXSX Sx,
or (Sxy

k = 0. In any case T = 0, so R is nilpotent completing the
proof.

THEOREM 2. If R is a finite dimensional nilalgebra, satisfying
(1), over a field of characteristic Φ2, 3, then R is nilpotent.
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Proof. We induct on dim R. Assume dim R > 1. If R is alterna-
tive we are done. If not, by Sterling's result [8], there exists an
ideal J Φ 0 such that J2 = 0. Then R/J is solvable by the induction
assumption. Since J is solvable it follows that R must be. By the
previous lemma R is nilpotent.

3* Radicals* If v is a word in one variable, then a is called
v-nilpotent if the sequence α, v(a), v(v(a)), ends in 0. An ideal
is v-nil if each of its elements is v-nilpotent. Every ring has a
maximal v-nil ideal Nυ and a maximal nil ideal N[ϊ\. We shall call
Nυ the v-nil radical and N the nil radical. The Jacobson radical J
is the set of all elements which generate quasi-regular ideals. It
is shown in [1] that for each word u* — v we have

Ru S Nv £ N £ J.

THEOREM 3. Let R be a ring of characteristic Φ% 3 omcί satis-
fying (1). T%ew αZi of the u-prime radicals coincide and each of
the v-nil radicals coincides with N.

Proof. The first statement follows from the corollary to Theorem
1 and the fact that R is a 2-ring. The second statement follows
from Sterling's theorem: The ring R/Ru contains no nonzero ideals
whose square is zero (since A2 Q Ru implies A £ Ru). Hence R/Ru

is alternative, and so R/Nυ is alternative. Since R/Nυ is power
associative, N/Nυ is a v-nil ideal in R/Nv, and so N must be a v-nil
ideal in R. This means Nυ — N.

THEOREM 4. If R is a finite dimensional algebra, satisfying
(1) over a field of characteristic Φ2, 3, then the Jacobson radical
R is nilpotent.

Proof. By the reasoning in the proof of Theorem 3 we may
conclude that R/N is alternative. A result of Slater's says that in
an alternative ring with d.c.c. on right ideals, the nil radical equals
the Jacobson radical ]7]. Hence 0 = N(R/N) = J(R/N). It follows
that J £ N so J is nilpotent.

We will add one final note. If J? is a ring the attached ring
R+ is the ring where multiplication is redefined by a*b — ab + ba.
Rich has shown that if R is alternative and having characteristic
Φ% 3, then the (Jordan) ring R+ has the same prime radical as R
[6]. That is, P(R) = P(R+) using the notation of §1. This result
may be generalized slightly: If R satisfies (1) and has characteristic
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=£2, 3, then the prime radical of R coincides with each of the w-prime
radicals (R+)u in R+. This is interesting because while Jordan rings
are 3-rings, it does not seem likely that in general R+ will be an
s-ring. The proof (which we omit) is similar to the one found in [6].
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