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NUMERICAL ALGORITHMS FOR OSCILLATION VECTORS
OF SECOND ORDER DIFFERENTIAL EQUATIONS

INCLUDING THE EULER-LAGRANGE
EQUATION FOR SYMMETRIC

TRIDIAGONAL MATRICES

JOHN GREGORY

We give numerical algorithms for second order differen-
tial equations. More specifically we consider the problem
of numerically determining oscillation points and vectors
for numerical solutions of the equation (r{t)xf(t)Yr+p(t)x(t)=0
and focal points and vectors for the quadratic form J(x) =

[\rxn-px2)dt.

As a biproduct of our work we obtain some new theoretical
and numerical results for symmetric tridiagonal matrices. Many of
our results may be extended to eigenvalue and eigenvector problems,
integral and partial differential equations, and higher order problems
described in § 4. Many of our matrix results may be extended to
more general banded symmetric matrices.

In a broad sense this work is a numerical application of an
approximation theory of quadratic forms on Hubert spaces given
by the author. Our ideas are based on generalizations of a basic
idea of Hestenes; namely on the consideration of the ''negative
signature of quadratic forms [5]." Our ideas are similar to finding
roots of polynomials by looking at sign changes as opposed to the
more difficult problem of solving equations.

For convenience of presentation we now describe the basic pro-
cedure: (i) Let (r(ί)αj'(ί))' + p(t)x(t) = 0 be the differential equation
which is the Euler-Lagrange equation of the quadratic form J(x) =

{τxn — px2)dt. Let xo(t) be " a " solution of the differential equation
a

satisfying xo(a) = 0. (ii) Approximate the vectors x(t) on [a, b] by
Spline functions of degree 1 (order 2) so that the approximating
finite dimensional quadratic form is J(xμ; μ) = xτ

μΏμxμ\ where xμ is a
"piecewise linear function," Dμ is a symmetric tridiagonal matrix,
and μ is a parameter denoting the distance between "knot points."
(iii) Obtain the "Euler-Lagrange equations" for Dμ; call the solu-
tion c(μ). (iv) Show that c(μ) converges to xo(t) as μ —> 0 in the
strong If derivative norm sense. We remark that we have previ-
ously shown that the negative signature (negative eigenvalues) of
the matrix Dμ "agrees" with the negative signature of the quadratic
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form J(x).
To better visualize our ideas we think of the ' 'commutative

diagram" pictured below.

L(x) = (rx'Y + px = 0

x(a) = 0, x(X) = 0

(1)

= \\rx'2 - px2)dt

a; 6 AC, x' 6 L2, x{a) = 0;

a?(ί) = 0 if ί ^ λ

Completion

of diagram

(2)

L

Numerical Approxima-

tion of L(x)

(2) (3)

Numerical Approximation

of J(x) by Splines

Arrow (1) denotes ideas originally given by Hestenes which were
redeveloped by the author to "fit" into the overall picture. Arrow
(2) denotes approximation ideas previously given by the author [3],
[4]. Arrow (3) denotes the new ideas (algorithms) in this paper
which include the oscillation vector (eigenvector) results and the
"Euler-Lagrange equations" for tridiagonal matrices.

In § 2 we present the preliminaries necessary for the remainder
of our results. In particular we discuss the connection between
splines of degree 1 and the approximation theory of quadratic forms
previously given by the author. In § 3 we show how oscillation
points and the oscillation vector c(σ) are obtained. In particular we

S b

[c'(σ) —
a

xΌ(t)fdt -> 0 as the spline parameter σ —> 0, where the prime denotes
differentiation. In § 4 we note how more general problems can be
reduced to those of this paper. We will not give any numerical
results in this paper. However, our algorithm is very efficient
giving faster and more accurate results than the standard computer
routines for comparison cases (I.B.M.-S.S.P. routines).

II Preliminaries* In this section we give the Spline approxi-
mation setting associated with the quadratic form in (1) and the
differential equation in (2). These results are given in [4] and are
included for ease of exposition.

Our fundamental quadratic form is J(x) = J(x, x) where

( 1 ) J(x, y) =\\r(t)x'(t)y'(t) - p(t)x(t)y(t)]dt .
Jα

J(x) is the quadratic form whose Euler-Lagrange equation is the
second order equation
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(2) (r(t)x'(t))' + p(t)x(t) = 0 .

For convenience we assume r(ί) and p(t) are continuous functions
on a^t<Lb, although these restrictions may be relaxed, and r( ί)>0.

Let Szf denote the arcs x(t) which are absolutely continuous
on A — [a, b] and have square integrable derivates x\t). The norm,
\\x\\ = (x, x)1/2 on the Hubert space j y is defined from

(x,v) = x(a)y(a) + ί V
Ja

Let Σ denote the set of real numbers of the form σ = l/n(n ~
1, 2, •••) and zero. The metric on Σ is the absolute value function
of the difference. Let σ = 1/n, define the partition

π(σ) = (α = a < a, < α2- < an = b) ,

where

(4) αfc = i l z l + α (i = 0 , - , Λ ) .

The space j^(σ) is the set of continuous broken linear functions
with vertices at π(σ). Let j^(0) denote the subset of J ^ satisfying
ίc(α) = 0 and x(b) = 0.

For each λ in /ί let <^(λ) denote the arcs x(t) in J%f satisfying
x(a) = 0 and $(£) Ξ O O Π [λ, 6]. Finally if μ = (λ, α1) is in the metric
space ^ ^ = 4 x Σ with metric d(μlf μ2) = |λ2 — λx| + |σ2 — σx|, let
«^(μ) = J^(σ ) Π 3ff{S). Thus an arc a?(t) in ^ ( λ , σ) is a spline of
degree 2 on [α, αfc] where αfc ^ λ < αfc+1, such that a?(α) = 0 and sc(i) =
0 on [ak, b].

To construct /(a?: μ): Let rβ(ί) = r(αfc), pσ(t) = p(αfc) if ί is in
[a*, a*+i); n(δ) = r(6), pσ(b) = p(b). Finally for μ = (λ, σ) let
e/(ίc, a?; μ), where

( 5 ) J{x, y; μ) = f V*(*K(%'W - PΛt)x(t)y(t)]dt
Ja

is defined for arcs a(ί), y(ί) in
We now give some important definitions: The signature (index)

of a quadratic form Q(x) on a subspace ^ of J^ is the dimension
of a maximal, linear subclass ^ of ^ such that x^O in ^ implies
Q(x) < 0. The nullity of Q(&) on ^ is the dimension of the set
^ 0 = {x in & \ Q(x, y) = 0 for all # in ^ } . A vector x in I?o is
said to be a Q null vector of ^ . The vector z is Q orthogonal to
& if z satisfies Q(z, y) = 0 for all y in ^ . For each μ = (λ, σ) in
Λί let s(^) = s(λ, a) and n(/ι) = n(X, σ) denote the index and nullity
of the quadratic form J(x; μ) given in (5) if σ Φ 0. Let s(λ, 0) and
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n(X, 0) denote the index and nullity of the quadratic form J(x) given
by (1) on ^ ( λ ) . Let σ = 0 in Σ. A point λ at which s(λ, 0) is
discontinuous is an oscillation point of J(x; 0) relative to {£ίf(^)\
λ in A = [α, 6]}. Let σ =£ 0 in Σ. A point λ(σ) at which s(λ, σ) is
discontinuous is an oscillation point of J(x; σ) relative to B(μ). The
oscillation points are denoted by λm(<τ), m = 1, 2, 3, •••.

In Reference [3] we show that the mth oscillation point λm(σ) is
a continuous function of σ if λm(σ) < b. Furthermore if σ — 1/n;
ak = α + &(δ — α)/w for & = 0, 1, 2, , n;

1 - 11 - ak \/σ if t in [α^, αfe+1]

0 otherwise

for A = 1, 2, 3, •; and x(t) = δ«sβ(ί) is in ^(j«) for ^ = (λ, σ),
A straightforward calculation shows that J(x; μ) = babae(Xβ(μ) = xτ

where x = (blf 62, f = Σ6α^α(ί), <wθ) = /(««, ^̂  ^), and Z>(μ) is a
symmetric, tridiagonal matrix "increasing" in λ so that the upper
k x k submatrix of D(ak+lf σ) is D(ak, σ).

Ill* The approximating oscillation vector* In this section we
define the elements of D(σ), construct the finite dimension spline
function c(σ), and show that c(σ) approximates " t h e " solution xo(t)
of (2) subject to xo(a) = 0 in a strong (derivative) sense. We note
that c(σ) is the Euler-Lagrange equation for the matrix D(σ) in the
sense that the signature s{μ) or number of negative eigenvalues of
D(σ) counts the number of oscillations of c(μ). Since 6 is not rele-
vant to our discussion for technical reasons we will modify the
definition of {ak}. Thus let σ = 1/n and define ak = a + kσ for k —
0,1, 2, . The reader may assume b — a = mσ for m sufficiently
large.

As indicated above the matrix element eaβ of D(σ) is J(za9 zβ) σ).
A straightforward calculation shows that eaβ = 0 if | a — β | ^ 2,

(6a) eaa = r(αα_x) + r(aa) - σ2[p(αα_x) + p(αβ)]/3 ,

and

(6b) eα,α+1 - - r(aa) -

We remark that similar expressions are obtained for the case
of second order integral differential equations and for eigenvalue
problems.

Our first computational lemma may be found (for example) in
[2; p. 81] with λ = 0 in the reference. It involves a Sturm-sequence
argument. We note that we will assume σ small enough so that
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eaa > 0 and ea>a+1 < 0. We define recursively: p0 — 1, Pi — en,

( 7 ) pr = errpr_x - ej fr_1pr-a (r = 2, 3, 4, •)

and note that p r is the determinant of the upper r x r submatrix
of D(σ) which we denote by D{r\σ). In Theorem 2, result (d) is
proven in Theorem 5 and included here for completeness.

LEMMA 1. The number of agreements in sign of two successive
members of the sequence {pr} is equal to the number of eigenvalues
of D(σ) which are greater than 0.

THEOREM 2. The following nonnegative integers are equal:
(a) s(ak+1, σ) + n(ak+ί, σ),
(b) k — l(k), where l(k) is the number of agreements in sign

of {Po,Pi,P2, ••-,£*},
(c) the number of nonpositive eigenvalues of D(k){σ),

and
(d) the number of times the vector c(σ), defined below, i(crosses

the axis" on the interval (a09 ak+1].

THEOREM 3. There exists δ > 0 such that ifσ<d and ak+1 is
not an oscillation point of (2), i.e., xo(ak+1) Φ 0 where x0 is a solu-
tion of (2) such that xo(a) = 0, then the nonnegative integers in
Theorem 2 are equal to:

(e) the number of oscillation points of (2) on (α, ak+ί) and
(f) 8(ak+1, 0) = 8(ak+1, 0) + n(ak+ί, 0).

We remark that one method is complete. Namely the elemen-
tary calculations of eaa and eata^x in (6) and the number of sign
changes of pr in (7) allow us to determine the number of oscilla-
tions of (2).

We now wish to consider a second method for finding oscillation
points. In this method we will actually construct the numerical
oscillation vector c{σ) which agrees with (2) in the sense that

\\c\σ) - x[{t)]2dt > 0 as σ > 0 .

Given the matrix D(σ) = (eaβ) define a sequence {c19 c2, c8, } of
real numbers as follows:

(8a) c,en + c2e12 = 0 ,

(8b) cλe21 + c2e22 + c3e32 = 0 ,

a n d



402 JOHN GREGORY

(8c) Cr^βr,^ + crerr + cr+1er,r+1 = 0 (r = 3, 4, 5, •) .

As before we assume σ small enough so that err>0 and β r, r + 1<
0 in (6). Given the sequence of numbers {cr} defined in (8), let
%*(t) — c(σ) = Σcaza be the spline of degree 2 (broken line segment)
such that xσ(ak) = ck. The vector xσ(t) is the Euler-Lagrange solution
of D(σ) in the sense that the number of times it crosses the axis is
the number of negative eigenvalues (see Theorem 2). Furthermore
we will prove that xσ(t) —> xQ(t) in the strong derivative sense des-
cribed above.

The next theorem is obtained by noting that the product of
D(σ) with vectors of the form xΣ — ^lz\ckzk and x2 = S U L ^ i C ^ is
almost the zero vector because of (8). In fact xlD{σ)x1 — — cn+1cnen,n+1

and xlD(σ)x2=- cnicnι+1eni+1,nί-cn2cn2+1en2,n2+1. These resul ts are easily

obtained by "visualizing" the effect of D{σ) on the given vectors.
Hence our remark about the Euler-Lagrange equation of tridiagonal
matrices.

THEOREM 4. / / CιCi+1 ^ 0 for exactly the values I = nl9 n2,
then the vectors (clf c2, , cn i, 0, 0, 0, ) Γ , (0, 0, 0, , cΛ l + 1, c n i + 2 , ,

cΛ2, 0, 0, 0, "Ύ, etc. are "negative vectors97 for D(σ) in the sense
that xτD{σ)x ^ 0.

Since ctCι+1 ̂  0 and —en,n+1 > 0 we are done.

Note that we have constructive negative vectors for D(σ). We
wish to show that we have the correct number. This will be done
by showing that the sequences {ck} and {pk} are very closely related.
Thus choose M, a positive integer, so large that b — a<Mσ. Define
9i = Πf^i1 eitt+1 and gk+1 = gk/ektk+ί (k = 1, 2, , M - 1). Note that
9»0n+i<O Define the vector y = (ylf y2, y3f •• )Γ by y f c = ( - l ) f c + 1 ^ _ ! ^ .
The feth component of the vector D(σ)y is the quantity

2 **P*1 PA K I ) ^ = 0

by the definition of pfc in (7).

THEOREM 5. Tfeβrβ exists a constant 7 ^ 0 so that ck =
7( —l)fe"1pΛ_1βfΛ. Γfe^s ίfeβ results in Theorem 2 (pαrί d) feoϊd.

Let J5*(σ) denote the matrix formed from the first k rows and
k + 1 columns of D(σ). By removing the first column of E\σ) we
note that the rank of E\σ) is k. Let z be in Ek+1. Then the
solution space of Ek(σ)z = 0 is one dimensional. By construction
Zi = to, c2, , ck, ck+ί)

τ and 2;2 = (y19 y21 , j/ f c , T/^!)77 are in the null
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space of Eik)(σ) when yk = (— l)k+1/pk-ιQk This completes the proof.
We note that by considering the matrix D(σ) — XI (or more

generally the matrix D(σ) — XF(σ) in our setting) we are able to
obtain results which count the number of eigenvalues of D(σ) which
are greater than or equal to λ (or solve a "generalized" eigenvalue
problem).

[cf(σ) — x'0(t)]2dt-*

0 as σ —> 0. The proof is rather technical. It relies on the hypo-
theses (1) and (2) in [3] and Theorems 4 and 5 in [4] which show
that these hypotheses hold in (more general circumstances than) our
problem setting with σ0 = 0. For convenience and without loss of
generality we assume ξ0 is an oscillation point of (2), i.e., xo(t) is a
nonzero solution of (2) such that xQ(a) = 0 = #o(?o) Choose b = ξ + ε
(for ε sufficiently small), σr = 1/r for 1/r < ε and r > M.

Let (3) denote the inner product (with x(a) — 0), let J(x; σ) =
J(xf x σ) be given in (5) and let j y (σ) be as defined above except
that ak = a + σk and x(t) in J%f(σ) vanishes if t > ξ + σ. For con-
tinuity of exposition we state conditions (1) and (2) of [3]: Strong
convergence is denoted by xq ==> x0 and weak convergence by xq —> x0

in the sense of [3].
Let Σ be a metric space with metric p. A sequence {σr} in Σ

converges to σ0 in Σ, written σr —> σ09 if limr=0O p(crr>
 σo) — 0. For

each σ in Σ, let j / ( σ ) be a closed subspace of j ^ ( 0 ) such that:

(9a) if 0V —> 0 o, ίcr in j^(σr)9 and # r -> /̂0 then y0 is in jy(0)

(9b) if x0 is in J^(0) and ε > 0, there exists δ > 0

such that, whenever p(σ, σ0) < δ, there exists xσ in *s%f(σ) satisfying

II JI

For each σ in Σ let /(»; σ) be a quadratic form defined on
(o ) with J(a?, i/; cr) the associated bilinear form. For r = 0, 1, 2, ,

let xr be in s*f(σr), yr in J^(σ r ) such that: If xr -> ̂ 0> 1/r==> 2/o>
o r —> <70, then

(10a) lim J(a r , ]/r; α r) = JΓ(»0, yo; σ0) ,

(10b) lim inf J(xr; σr) ^ J(x0; σ0) ,

and

(10c) lim J(xr; σr) — J(xQ; σ0) implies xr ==> x0 .

We begin by proving an interesting theorem concerning J(x, y; σ).
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THEOREM 6. There exists a δ > 0 and M > 0 such that if σ<δ
then J(x, y σ) <L M\\x \\ \\ y \\ for all x and y in

Suppose not. Then for r = N, N + 1, we may choose xr, yr

in J^(σr) such that || xr \\ = \\ yr \\ = 1, σr < 1/r, and a\ = \ J(xr, yr;
σr) I > r. Now xr = xr/ar => 0, yr = yr/αr => 0 so by (10a), 1 = J(# r ,
^ r ; σr) —> /(O, 0; 0) = 0. This contradiction establishes the result.

For the next result let kσ satisfy akσ< ζ^akσ+1 = b0. Let xσ(t) =
fe> C2> •*•> Cko> 0)σ = Σi=ic&i(t) where zt(t) is the i th spline basis
element and assume J(xσ(t); σ) < 0. By Theorems 2 and 3, ckσckσ+ί ^ 0
so we may choose cx such that J(xσ(t); σ) < 0.

LEMMA 7. For each σ = 1/m we have J(cΐ; σ) < 0 where c* =
(βu c2> , cn<jf 0)σ; Ci is chosen by our algorithm. Furthermore if
\\c* || = 1 then there exists yo(t) in J&f(b) such that cσn=>y0(t).

The first part was proven above. The second part follows since
Hubert spaces are weak sequentially compact; that is, if {zk} c S
(bounded) then there exists z0 in S such that zkn —»z0 for some sub-
sequence {zkn} of {zk}.

THEOREM 8. The vector c* = (clf c2, •••, cσf 0) given by the
algorithm converges strongly to xo(t) (as σ -+0) in the derivative
norm sense of (3).

By lemma let {c?J be any weakly convergent subsequence of
{c*J so that lim sup σ^ 0 J(fiΐq; σq) ^ 0. By (10b) lim infβq^ J(c*g; σq) ^
J(yo(t)). Thus

0 ^ lim sup J(c*; σq) ^ lim inf «/"(c* c7g) ^ Jd/oC*)) ^ 0

and

lim J(c*; σq) = J(yo(*)) = 0 implies by (10c) that c* => yo(t) .
<7g->0 q q

Furthermore yo(t) = xo(t) on [a, b0] or yo(t) = 0. The latter is impos-
sible since 1 = lim^oo || cOq \\ = || y0 \\ = 0 is impossible. This completes
the proof.

IV* More general problems. In future papers we will con-
struct the Euler-Lagrange equations for ' 'higher order'' banded
symmetric matrices, such as for 2&th order symmetric differential
equations and partial differential equations, by modifying the above
arguments. In addition we have been able to adapt our existing
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ideas to eigenvalue problems (and double eigenvalue problems),
integral differential equations, and to some singular differential
equations.

The last result is somewhat unexpected! We have been able to
numerically construct the Bessel functions J0(x) and Jt(x) although
our quadratic form is singular as r(0) = 0. In fact, at this time
the author must confess that we have not developed the abstract
results to justify the results we have obtained. It is evident that
this will come when the work of Stein [7] has been properly inter-
preted. It thus appears that our algorithm may be applicable to
many of the singular differential equations and quadratic forms
which occur in mathematical physics. It also appears that by a
change of the independent variable such as s = 1/ί we may be able
to handle problems where 6 = °° such as limit point limit circle
problems. Needless to say we will not only obtain qualitative
results for second order problems but also quantitative and numeri-
cal results for more general problems.

Finally a remark about symmetric matrices: While it appears
that tridiagonal results are rather limited we note the well known
"Jacobi-Given's Method" for reduction of symmetric matrices to
tridiagonal form [6, pp. 352-354] by finite product of orthogonal
matrices of the form 0Zm = (μid) where au = amm = cos φ, alm = —
aml = sin φ(m < I), akk = 1 if k Φ I or m, and aiS = 0 otherwise. Far
more efficient for banded matrices are methods (for example) due
to Schwartz [8, pp. 273-283]. In fact, it appears from references
such as [8] that the ' 'state of the ar t" for numerical solutions of
symmetric matrices has sufficiently progressed to make the numeri-
cal solutions of symmetric differential systems and quadratic func-
tionals a very feasible concept.
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