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RINGS WITH QUIVERS THAT ARE TREES

K. R. FULLER AND JOEL HAACK

Associated with each artinian ring R are two diagrams
called the left and right quivers of R. We generalize a
well-known theorem on hereditary serial rings by proving
that if these quivers have no closed paths then R is a factor
ring of a certain ring of matrices over a division ring. It
follows that the categories of finitely generated left and
right /̂ -modules are Morita dual to one another. Applying
our theorem and theorems of Gabriel and Dlab and Ringel,
we show how to write explicit matrix representations of all
hereditary algebras of finite module type.

A quiver is, in the terminology of Gabriel [8], [9], a finite set
of points (vertices) connected by arrows. Given an artinian ring R
and a basic set of primitive idempotents eίf , en of R (see, for
example, [1, §27]), one forms &(RR) the left quiver of R (see [11]):
The vertices of &(RR) are vί9 ,vn, one for each basic idempotent,
with ni5 arrows from vt to v3- iff Re^Je^ appears exactly niS times
in a direct decomposition of the semisimple left i?-module Je^tPe^
The right quiver <£?(RR) is formed similarly, with vertices v[, •••,<
and n'tj arrows from v\ to v\ iff βjR/ejJ appears exactly w y times in
a direct decomposition of e^/e^2. Note that n^ Φ 0 iff nH Φ 0. Also,
R is indecomposable iff <g?(BR) is connected, i.e., there is a nonoriented
path from vt to v3- for every i, j = 1, , n.

A quiver & is called a tree in case it is connected and contains
no cycles, i.e., in case it has a unique nonoriented path from vt to
Vj, for every i, j . Let έ? be such a quiver. Then the vertices of
& are partially ordered by ^ , where v^vs iff there is an oriented
path from v5 to vt (or i = j), and we can relabel the vertices so that
Vi^Vj implies i^j. Having done this, we see that for any ring D,
the set of matrices

T = {[dij}\dijeD,dij = 0 if VtSvj)

is a subring of the ring of upper tr iangular matrices over D. More-
ever, if D is a division ring, then &(TT) — &, &{TT) is the dual
quiver of &, and T is the unique basic tic tac toe ring (in the sense
of Mitchell [12, §10.8]) over D with left quiver <gK

Murase [14] showed that an indecomposable artinian ring whose
quivers are of the form

v, < v2 < v3 - vn-t < vn
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is a factor ring of a block upper triangular matrix ring (i.e., of one
whose basic ring is an upper triangular matrix ring) over a division
ring. (Goldie [10] proved a similar result.) A ring with such a
quiver is a serial ring, and an indecomposable hereditary artinian
ring is serial iff it has quivers of this form. We extend this result,
showing that any artinian ring whose quivers are trees is a factor
ring of a tic tac toe ring over a division ring. As an application
we also prove that such rings are self-dual in the sense that there
is a Morita duality between their categories of finitely generated
left and right modules.

Before proceeding to the proofs we note that, by the work of
Gabriel [8], ]9], and Dlab and Ringel [4], an indecomposable hereditary
algebra over an algebraically closed field is of finite module type iff
its quivers are Dynkin diagrams of type An, Dn, E6, E7, or E8. These
diagrams are all trees, so the theorem we are about to prove allows
one to apply Gabriel's argument [8] (see also [2], [11]) to show that
any artinian ring with quivers of type An, Dn, E6, E7, or E8 is a ring
of finite module type.

LEMMA 1. Let R be an artinian ring with e19 , en a basic set
of primitive idempotents. If ReJJei is isomorphic to a direct
summand of Jkej/Jk+1ejf then in &(BR) there is an oriented path
from Vj to Vi of length k. Moreover, if in addition R is hereditary,
then the converse is also true.

Proof. We induct on k. The cases k — 0 and k = 1 follow
immediately from the definition of a quiver. Now let Rei\Jei be
isomorphic to a direct summand of Jke5IJk+ιe3 . Let

®Re3 -^-*Jk~ιe3 >0
r=l r

be a projective cover. Then / induces an epimorphism

(Je3JJ2e3r) -^-> J%/Jk+ίe3 > 0 .
i

0
r=i

Since ©Ui {Je3 JJ2e3r) and Jke3-/Jk+1e3 are semisimple iϋ/J-modules, /
splits. Thus there exists an r with ReJJet isomorphic to a direct
summand of Jejr/J2ejr. By induction, there is an oriented path of
length (k — 1) from v3- to vjr and one of length 1 from vJr to vi9 which
combine to give the desired path of length k.

For the moreover part, suppose we have an oriented path

Assume that Reim/Jeim is a direct summand of Jmeΰ IJmJrlej (m < k).



RINGS WITH QUIVERS THAT ARE TREES 373

Then since R is hereditary, Jmeΰr = Reiιnί 0 M, some M. Thus

J™+ί

ej/J™+% = JeJJ%m 0 JM/J*M,

and we are done since Reim+1/Jeim+1 is a direct summand of Jeim/J2eim.
Now we are ready to prove the promised result.

THEOREM 2. If the left and right quivers of an artinian ring
R are trees, then there is an indecomposable tic tac toe ring T over
a division ring D such that R is isomorphic to a factor ring of T.
Moreover, &{BR) = &(TT); and R is hereditary iff R = T.

Proof. It is easy to see that a ring is Morita equivalent to an
upper triangular tic tac toe ring over a division ring D iff it is
isomorphic to a (block-upper-triangular) tic tac toe ring over D.
Thus we may assume that R is basic.

Suppose that & = &(RR) and &(RR) are trees, and correspond-
ingly, relabel the vertices of & and the idempotents of R as in the
earlier discussion. In particular then, v1 is minimal with respect to
the partial order ^ , and hence no arrows leave vγ.

Note that for each basic idempotent ei9 e^e* is a division ring
since e*Jet = 0 by Lemma 1. For each pair of idempotents ep and
eq with an arrow from vq to vp in <£? (and hence one arrow from
v'p to v'q in &(RR)), we have a left epRep- right βgi2βg-bimodule epJeq

with άim(βpBβpepJeq) = l = άim(epJeqβqRβg). So we may choose epqeepJeq

with epq Φ 0 and define a division ring isomorphism σpq: epRep —> eqReq

via xepq = epqσpq{x) for x e epRep. Since ^ is connected, we have
epRep = eriϋβr for all primitive idempotents ep and βr. Define eit = et

and for each vt ^ i;̂  with oriented path

define

For ^p <— vg in ^ , define Ίpq = ^^ and 7 g p = σ^1. Now let vt =
îO»

 v*i» * * #> ̂ Λ ~ v ί ^ e ^ e vert ices of a nonoriented p a t h from v1

to Vy for j Φl. Define

°is = Ύik_liko °ΎHi2oσHil for j = 2, , w .

Define <7U = l β l B β l . Let

•5 = 1

Then D = eόReά and D is a division subring of R.
Let v^Vj via an oriented path of length k. Then etRej =
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by Lemma 1. It is then straightforward to verify that Deiά =
eiJkeit using the equalities Dep — epRep and epRepq = epRepepq = epJeq

for vp^-vq. Hence we have shown that

( * ) B = Σ Dei3 .

N e x t we claim t h a t deiά — eiad for any d e D and vt ^ vs in <^.

Suppose we have vp <— vff. Let vx — v<0, v^, , vim = vq be the non-

oriented p a t h from vλ to vq. If vp — v<M-1, then σlff = σpq°σlΊ>, and

e M ^i f f (») = epqσpq(σlp(x)) = σιp(x)βPq

If ^ ^ v ^ , ^ then σ l p = σ^1 o α l f f, and

^ir(«)) = epqσlq(x) = σ^(σlp(x))epq = σlp(x)epq

Now the claim follows by induction on the length of the path from
Vj to Vt.

Let T be the tic tac toe ring

T = {[dίj]\dί3 eD,dij = 0 if VtSv,}.

Define

Φ: T >R via Φ: [dtjj i > Σ ^ A , .

Since the elements of D commute with each eiίf and since

ekq if m = p

0 \ί mφ p ,

Φ is a ring homomorphism. Also Φ is onto by (*).
Clearly ^(TT) = <&(RB). If i? is hereditary, then for v ^ ^ with

oriented path of length k, Deίό = e< Ĵ β̂  ^ 0 by Lemma 1. So eiS Φ 0
and Φ is an isomorphism. If T is a tic tac toe ring whose quivers
are trees, then T is hereditary by [12, Theorem IX. 10.9].

One could apparently use an argument similar to the one in [4,
Proposition 10.2] to show that the rings of Theorem 2 are factor
rings of so-called tensor rings (see [5]). The same argument, however,
shows that rings with quivers
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/ \
/ \

v1 v2 and vί
\ /

are also tensor rings. But these need not be tic tac toe rings. Indeed,
let φ be an automorphism of a division ring D which does not fix
the center of D. Then the ring Rφ of matrices

/α 0 x m\

b y z

c 0

dl

with all entries in D except m 6 DMD where DM = DD and multiplication
in MD is given by m d — rnφid), is a tensor ring that is not a tic tac
toe ring. In contrast, by Theorem 2 or originally by Murase in [14],
the ring Sφ of matrices

a m

0 b

with a, b e D and m e M is isomorphic to the ring of upper triangular
2 x 2 matrices over D. (A word of caution: Associativity is lost
if one tries this trick for 3 x 3 upper triangular matrices.) The
ring Rφ fails to behave similarly, for the center of Rψ is all scalar
matrices cl with φ(c) = e e center (D).

Note also that the above example indicates that Theorem 2 does
not extend to include rings whose quivers are not trees.

A gap in the Morita duality theory that begs to be filled is the
nearly total lack of knowledge of which artinian rings (in addition
to artin algebras and QF rings) are self-dual. The characterization
of artinian rings whose quivers are trees given in Theorem 2 enables
us to show that such rings are self-dual. We employ the following
lemma whose proof is dual to that of [7, Lemma 4]. In what follows,
E(M) is the injective envelope of M and Socfc (M) is the kth. term in
the lower Loewy series of M.

LEMMA 3. Let R be any ring. Then the following statements
about a left R-module M are equivalent:

(a) M is distributive.
(b) For each simple left R-module T, the set of submodules

{ker 717 e Hon^ (M, E(T))} is linearly ordered.
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(c) For each simple left R-module T the right End (RE(T))~
module HomΛ (Λf, E(T)) is uniserial.

PROPOSITION 4. If R is an artinian ring whose quivers are
trees, then there is a Morita duality between the categories of
finitely generated left and finitely generated right R-modules.

Proof. Assume that R is indecomposable and basic with identity
element a sum of orthogonal primitive idempotents 1^ = e1 + + en.
Let Et = E(Ret/Jet) for i = 1, , n, let E = Ex 0 © En, and let
S = End(RE). Then ( )* = HomΛ (-,BES) defines a duality between
the categories of finitely generated left J?-modules and finitely gen-
erated right S-modules [13] and [7, Lemma 5]. Write 1̂  —fλ Λ V fn

where the /< are the orthogonal primitive idempotents in S such
that Efi = Et. Let N = J(S). We will show that the quivers of S
are the same as the quivers of R.

From the results in [1, §24], we see that for i — 1, •••, n,

(ReJJe.r =
(Soc2(^)/Soc (Et))* = A

So by [7, Lemma 5], AN/fiN2 is square free, and by [6, Theorem 2.4],

βiR/βiJ embeds in βjj/ejj2

iff ReJJβt embeds in Soc2 (Es)/Soc (Ed)

iff AS/AN = (Ret/Jet)* embeds in (Soc2 (^O/Soc (Es))*

Thus the right quiver of S is the same as the right quiver of R.
Now to see that the left quivers of R and S are the same we

need only show that άim(f.sfifiSfj) = 0 or 1 for all i, j. But (writing
maps on the right), ftSfs = Hom^ (Eif Es) = H o m , ^ ^ , esEs) by [6,
Lemma 2.1]. Note that since the quivers of R are trees, Ret and
βiR are distributive ϋJ-modules for each i = l, •••,% [3]. So by
Lemma 3 and [7, Lemmas 4 and 5], e.RejeάEif.sfi = Hom^(Rej9 Et) is left
and right uniserial, so since ftSft is also a division ring, e5Et is both
left and right one-dimensional or zero. Now since 9jBβje3 E3 is also
one-dimensional, it follows that f.sfJiSfό is zero or one-dimensional.
Note also that fSfj φ 0 iff βyJS?< Φ 0 iff etRe,' Φ 0. Thus R and S are
isomorphic factor rings of tic tac toe rings with the same quivers
over isomorphic division rings etRei = fiSft.

Regarding algebras of finite module type, we conclude with

REMARK 5. Let R be an indecomposable hereditary artin algebra
of finite module type which does not satisfy the hypotheses of Theorem
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2. Then according to Dlab and Ringel [4], [5] the quivers of R or
of its opposite ring are Dynkin diagrams of one of the types

Bn: vn

Cn: v1 < v2

F4: vt v2 •

G2: v1 < v2

:v2- •K

Using an argument similar to that in the proof of Theorem 2, one
can show that if R is an artinian ring with quivers of one of the
above types, then R is a factor ring of a generalized tic tac toe
ring; that is, R is isomorphic to a factor of a matrix ring with some
of the entries from a division subring C of a division ring D and
the other nonzero entries from D. (For example, if R is hereditary
with quivers

then R is isomorphic to a ring T of matrices

D D
C

D
0

D

D
C

0

C

with dim (Do) — 2.) To show this, assume that R is basic and that
<&(RR) is a tree. Arrange the right and left quivers of R so that
the multiple arrows point to the right. Let v'a be the vertex of
^(RR) at the tails of the multiple arrows, and let v'β be the vertex
of &(RB) at the heads of the multiple arrows. Let 42a be the sub-
quiver of &(RR) containing va and the arrows and vertices to the
left of vaf and let 4S*β be the subquiver of &(RR) containing vβ and
the arrows and vertices to the right of vβ. Notice that dim (eaReaeaJeβ) =
1 since <&(RR) is a tree. For vp <- vq in &{RR), let epq generate

e RepePJeq> and define eάj as before for vt ^ vd. Define σai for vs e &a

and σβ3 for vs e <g?β as in the proof of Theorem 2. Let

eβReβ

Let

D = σai{x) x e eMe,
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Define Θ:C'-+D via eaβeβc' = θ(c')eaeaβ for c' 6 C. Then C = im 0 = C'
Now let

Γ - { R y] I dtJ 6 2?, d,y = 0 if vt £ vs ,

and dtj eC if vt

Then T is a ring, since if vke&a and i ^ e ^ , then vt^vk (and hence
dik = 0). So in any nonzero product di3 dίk9 we must have vt^vd and
v^vk1 giving Vit^vk, and thus either ^ e ^ , or both vif Vjβ&β and
cZo tf , fe e C. Now define

Φ: T->i2 by

Φ: Idiil i > Σ θ~\diS)eu + Σ d*Ay .

The map Φ is clearly additive and onto. To show that Φ preserves
the multiplication, we need only add to the proof of Theorem 2 that
for d eD and ceC,

deaβθ~\c)eβk = dceaβeβk = dcβαfc ,

which is immediate by the definition of θ.
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