RINGS WITH QUIVERS THAT ARE TREES

K. R. FULLER AND JOEL HAACK

Associated with each artinian ring R are two diagrams called the left and right quivers of R. We generalize a well-known theorem on hereditary serial rings by proving that if these quivers have no closed paths then R is a factor ring of a certain ring of matrices over a division ring. It follows that the categories of finitely generated left and right R-modules are Morita dual to one another. Applying our theorem and theorems of Gabriel and Dlab and Ringel, we show how to write explicit matrix representations of all hereditary algebras of finite module type.

A quiver is, in the terminology of Gabriel [8], [9], a finite set of points (vertices) connected by arrows. Given an artinian ring Rand a basic set of primitive idempotents e_1, \dots, e_n of R (see, for example, [1, §27]), one forms $\mathscr{C}(_RR)$ the left quiver of R (see [11]): The vertices of $\mathscr{C}(_RR)$ are v_1, \dots, v_n , one for each basic idempotent, with n_{ij} arrows from v_i to v_j iff Re_j/Je_j appears exactly n_{ij} times in a direct decomposition of the semisimple left R-module Je_i/J^2e_i . The right quiver $\mathscr{C}(R_R)$ is formed similarly, with vertices v'_1, \dots, v'_n and n'_{ij} arrows from v'_i to v'_j iff e_jR/e_jJ appears exactly n'_{ij} times in a direct decomposition of e_iJ/e_iJ^2 . Note that $n'_{ij} \neq 0$ iff $n_{ji} \neq 0$. Also, R is indecomposable iff $\mathscr{C}(_RR)$ is connected, i.e., there is a nonoriented path from v_i to v_j for every $i, j = 1, \dots, n$.

A quiver \mathscr{Q} is called a *tree* in case it is connected and contains no cycles, i.e., in case it has a unique nonoriented path from v_i to v_j , for every *i*, *j*. Let \mathscr{Q} be such a quiver. Then the vertices of \mathscr{Q} are partially ordered by \leq , where $v_i \leq v_j$ iff there is an oriented path from v_j to v_i (or i = j), and we can relabel the vertices so that $v_i \leq v_j$ implies $i \leq j$. Having done this, we see that for any ring *D*, the set of matrices

$$T = \{ \llbracket d_{ij} \rrbracket | d_{ij} \in D, d_{ij} = 0 \quad \text{if} \quad v_i \nleq v_j \}$$

is a subring of the ring of upper triangular matrices over D. Moreever, if D is a division ring, then $\mathscr{C}(_{T}T) = \mathscr{Q}, \mathscr{Q}(T_{T})$ is the dual quiver of \mathscr{Q} , and T is the unique basic tic tac toe ring (in the sense of Mitchell [12, §10.8]) over D with left quiver \mathscr{Q} .

Murase [14] showed that an indecomposable artinian ring whose quivers are of the form

$$v_1 \longleftarrow v_2 \longleftarrow v_3 \cdots v_{n-1} \longleftarrow v_n$$

is a factor ring of a block upper triangular matrix ring (i.e., of one whose basic ring is an upper triangular matrix ring) over a division ring. (Goldie [10] proved a similar result.) A ring with such a quiver is a serial ring, and an indecomposable hereditary artinian ring is serial iff it has quivers of this form. We extend this result, showing that any artinian ring whose quivers are trees is a factor ring of a tic tac toe ring over a division ring. As an application we also prove that such rings are self-dual in the sense that there is a Morita duality between their categories of finitely generated left and right modules.

Before proceeding to the proofs we note that, by the work of Gabriel [8], [9], and Dlab and Ringel [4], an indecomposable hereditary algebra over an algebraically closed field is of finite module type iff its quivers are Dynkin diagrams of type A_n , D_n , E_6 , E_7 , or E_8 . These diagrams are all trees, so the theorem we are about to prove allows one to apply Gabriel's argument [8] (see also [2], [11]) to show that any artinian ring with quivers of type A_n , D_n , E_6 , E_7 , or E_8 is a ring of finite module type.

LEMMA 1. Let R be an artinian ring with e_1, \dots, e_n a basic set of primitive idempotents. If Re_i/Je_i is isomorphic to a direct summand of $J^k e_j/J^{k+1}e_j$, then in $\mathscr{C}(_RR)$ there is an oriented path from v_j to v_i of length k. Moreover, if in addition R is hereditary, then the converse is also true.

Proof. We induct on k. The cases k = 0 and k = 1 follow immediately from the definition of a quiver. Now let Re_i/Je_i be isomorphic to a direct summand of $J^k e_j/J^{k+1}e_j$. Let

$$\bigoplus_{r=1}^{t} Re_{j_{r}} \xrightarrow{f} J^{k-1}e_{j} \longrightarrow 0$$

be a projective cover. Then f induces an epimorphism

$$\bigoplus_{r=1}^t (Je_{j_r}/J^2e_{j_r}) \xrightarrow{\bar{f}} J^k e_j/J^{k+1}e_j \longrightarrow 0 \ .$$

Since $\bigoplus_{r=1}^{i} (Je_{j_r}/J^2e_{j_r})$ and $J^k e_j/J^{k+1}e_j$ are semisimple R/J-modules, \overline{f} splits. Thus there exists an r with Re_i/Je_i isomorphic to a direct summand of $Je_{j_r}/J^2e_{j_r}$. By induction, there is an oriented path of length (k-1) from v_j to v_{j_r} and one of length 1 from v_{j_r} to v_i , which combine to give the desired path of length k.

For the moreover part, suppose we have an oriented path

$$v_i = v_{i_k}$$
 \longleftrightarrow $v_{i_{k-1}}$ \cdots v_{i_1} \longleftrightarrow $v_{i_0} = v_j$.

Assume that Re_{i_m}/Je_{i_m} is a direct summand of $J^m e_j/J^{m+1}e_j$ (m < k).

Then since R is hereditary, $J^{m}e_{j} \cong Re_{i_{m}} \oplus M$, some M. Thus

$$J^{m+1}e_j/J^{m+2}e_j\cong Je_{i_m}/J^2e_{i_m}\oplus JM\!/J^2M$$
 ,

and we are done since $Re_{i_{m+1}}/Je_{i_{m+1}}$ is a direct summand of $Je_{i_m}/J^2e_{i_m}$. Now we are ready to prove the promised result.

THEOREM 2. If the left and right quivers of an artinian ring R are trees, then there is an indecomposable tic tac toe ring T over a division ring D such that R is isomorphic to a factor ring of T. Moreover, $\mathscr{C}(_{R}R) = \mathscr{C}(_{T}T)$; and R is hereditary iff $R \cong T$.

Proof. It is easy to see that a ring is Morita equivalent to an upper triangular tic tac toe ring over a division ring D iff it is isomorphic to a (block-upper-triangular) tic tac toe ring over D. Thus we may assume that R is basic.

Suppose that $\mathscr{Q} = \mathscr{Q}(_{\mathbb{R}}R)$ and $\mathscr{Q}(R_{\mathbb{R}})$ are trees, and correspondingly, relabel the vertices of \mathscr{Q} and the idempotents of R as in the earlier discussion. In particular then, v_1 is minimal with respect to the partial order \leq , and hence no arrows leave v_1 .

Note that for each basic idempotent $e_i, e_i Re_i$ is a division ring since $e_i Je_i = 0$ by Lemma 1. For each pair of idempotents e_p and e_q with an arrow from v_q to v_p in \mathcal{C} (and hence one arrow from v'_p to v'_q in $\mathcal{C}(R_R)$), we have a left $e_p Re_p$ - right $e_q Re_q$ -bimodule $e_p Je_q$ with $\dim(e_p Re_p e_p Je_q) = 1 = \dim(e_p Je_{e_q Re_q})$. So we may choose $e_{pq} \in e_p Je_q$ with $e_{pq} \neq 0$ and define a division ring isomorphism $\sigma_{pq}: e_p Re_p \rightarrow e_q Re_q$ via $xe_{pq} = e_{pq}\sigma_{pq}(x)$ for $x \in e_p Re_p$. Since \mathcal{C} is connected, we have $e_p Re_p \cong e_r Re_r$ for all primitive idempotents e_p and e_r . Define $e_{ii} = e_i$ and for each $v_i \leq v_j$ with oriented path

$$v_i = v_{i_0}$$
 ${\displaystyle \longleftarrow }$ $v_{i_1} {\displaystyle \dotsb }$ $v_{i_{k-1}}$ ${\displaystyle \longleftarrow }$ $v_{i_k} = v_j$,

define

$$e_{ij} = e_i e_{i_0 i_1} \cdots e_{i_{k-1} i_k} e_j$$

For $v_p \leftarrow v_q$ in \mathscr{Q} , define $\gamma_{pq} = \sigma_{pq}$ and $\gamma_{qp} = \sigma_{pq}^{-1}$. Now let $v_1 = v_{i_0}, v_{i_1}, \dots, v_{i_k} = v_j$ be the vertices of a nonoriented path from v_1 to v_j for $j \neq 1$. Define

 $\sigma_{\scriptscriptstyle 1j}=\gamma_{\scriptscriptstyle i_{k-1}i_k}\circ\cdots\circ\gamma_{\scriptscriptstyle i_1i_2}\circ\sigma_{\scriptscriptstyle i_0i_1}\quad \text{ for } \quad j=2,\,\cdots,\,n\;.$ Define $\sigma_{\scriptscriptstyle 11}=1_{\scriptscriptstyle e_1Re_1}$. Let

$$D = \left\{\sum_{j=1}^n \sigma_{1j}(x) \,\middle|\, x \in e_1 R e_1
ight\}$$
 .

Then $D \cong e_j R e_j$ and D is a division subring of R.

Let $v_i \leq v_j$ via an oriented path of length k. Then $e_i R e_j = e_i J^k e_j$

by Lemma 1. It is then straightforward to verify that $De_{ij} = e_i J^k e_j$, using the equalities $De_p = e_p Re_p$ and $e_p Re_{pq} = e_p Re_p e_{pq} = e_p Je_q$ for $v_p \leftarrow v_q$. Hence we have shown that

(*)
$$R = \sum_{v_i \leq v_j} De_{ij}$$
 .

Next we claim that $de_{ij} = e_{ij}d$ for any $d \in D$ and $v_i \leq v_j$ in \mathscr{Q} . Suppose we have $v_p \leftarrow v_q$. Let $v_1 = v_{i_0}, v_{i_1}, \dots, v_{i_m} = v_q$ be the nonoriented path from v_1 to v_q . If $v_p = v_{i_{m-1}}$, then $\sigma_{1q} = \sigma_{pq} \circ \sigma_{1p}$, and

$$e_{pq}\left(\sum_{r=1}^n \sigma_{1r}(x)
ight) = e_{pq}\sigma_{1q}(x) = e_{pq}\sigma_{pq}(\sigma_{1p}(x)) = \sigma_{1p}(x)e_{pq}$$

 $= \left(\sum_{r=1}^n \sigma_{1r}(x)
ight)e_{pq}$.

If $v_p
eq v_{i_{m-1}}$, then $\sigma_{_{1p}} = \sigma_{_{pq}}^{_{-1}} \circ \sigma_{_{1q}}$, and

$$e_{pq} \Big(\sum_{r=1}^{n} \sigma_{1r}(x) \Big) = e_{pq} \sigma_{1q}(x) = \sigma_{pq}^{-1}(\sigma_{1p}(x)) e_{pq} = \sigma_{1p}(x) e_{pq}$$

 $= \Big(\sum_{r=1}^{n} \sigma_{1r}(x) \Big) e_{pq} .$

Now the claim follows by induction on the length of the path from v_i to v_i .

Let T be the tic tac toe ring

$$T = \{\llbracket d_{ij}
rbracket \, | \, d_{ij} \in D, \, d_{ij} = 0 \quad ext{if} \quad v_i \nleq v_j \}$$
 .

Define

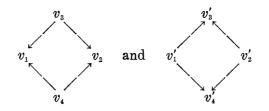
Since the elements of D commute with each e_{ij} , and since

$$e_{km}e_{pq} = egin{cases} e_{kq} & ext{ if } & m=p \ 0 & ext{ if } & m
eq p \ , \end{cases}$$

 Φ is a ring homomorphism. Also Φ is onto by (*).

Clearly $\mathscr{Q}(_{T}T) = \mathscr{Q}(_{R}R)$. If R is hereditary, then for $v_{i} \leq v_{j}$ with oriented path of length k, $De_{ij} = e_{i}J^{k}e_{j} \neq 0$ by Lemma 1. So $e_{ij} \neq 0$ and Φ is an isomorphism. If T is a tic tac toe ring whose quivers are trees, then T is hereditary by [12, Theorem IX. 10.9].

One could apparently use an argument similar to the one in [4, Proposition 10.2] to show that the rings of Theorem 2 are factor rings of so-called tensor rings (see [5]). The same argument, however, shows that rings with quivers



are also tensor rings. But these need not be tic tac toe rings. Indeed, let φ be an automorphism of a division ring D which does not fix the center of D. Then the ring R_{φ} of matrices

$$\begin{pmatrix} a & 0 & x & m \\ b & y & z \\ & c & 0 \\ & & d \end{pmatrix}$$

with all entries in D except $m \in {}_{D}M_{D}$ where ${}_{D}M = {}_{D}D$ and multiplication in M_{D} is given by $m \cdot d = m\varphi(d)$, is a tensor ring that is not a tic tac toe ring. In contrast, by Theorem 2 or originally by Murase in [14], the ring S_{φ} of matrices

$$\begin{pmatrix} a & m \\ 0 & b \end{pmatrix}$$

with $a, b \in D$ and $m \in M$ is isomorphic to the ring of upper triangular 2×2 matrices over D. (A word of caution: Associativity is lost if one tries this trick for 3×3 upper triangular matrices.) The ring R_{φ} fails to behave similarly, for the center of R_{φ} is all scalar matrices cI with $\varphi(c) = c \in \text{center}(D)$.

Note also that the above example indicates that Theorem 2 does not extend to include rings whose quivers are not trees.

A gap in the Morita duality theory that begs to be filled is the nearly total lack of knowledge of which artinian rings (in addition to artin algebras and QF rings) are self-dual. The characterization of artinian rings whose quivers are trees given in Theorem 2 enables us to show that such rings are self-dual. We employ the following lemma whose proof is dual to that of [7, Lemma 4]. In what follows, E(M) is the injective envelope of M and $Soc_k(M)$ is the kth term in the lower Loewy series of M.

LEMMA 3. Let R be any ring. Then the following statements about a left R-module M are equivalent:

(a) M is distributive.

(b) For each simple left R-module T, the set of submodules $\{\ker \gamma | \gamma \in \operatorname{Hom}_{\mathbb{R}}(M, E(T))\}$ is linearly ordered.

(c) For each simple left R-module T the right $End_{R}(T)$ -module $Hom_{R}(M, E(T))$ is uniserial.

PROPOSITION 4. If R is an artinian ring whose quivers are trees, then there is a Morita duality between the categories of finitely generated left and finitely generated right R-modules.

Proof. Assume that R is indecomposable and basic with identity element a sum of orthogonal primitive idempotents $1_R = e_1 + \cdots + e_n$. Let $E_i = E(Re_i/Je_i)$ for $i = 1, \dots, n$, let $E = E_1 \bigoplus \dots \bigoplus E_n$, and let $S = \text{End}(_RE)$. Then $()^* = \text{Hom}_R(_{-,R}E_S)$ defines a duality between the categories of finitely generated left R-modules and finitely generated right S-modules [13] and [7, Lemma 5]. Write $1_S = f_1 + \cdots + f_n$ where the f_i are the orthogonal primitive idempotents in S such that $Ef_i = E_i$. Let N = J(S). We will show that the quivers of S are the same as the quivers of R.

From the results in [1, §24], we see that for $i = 1, \dots, n$,

$$(Re_i/Je_i)^* \cong (\operatorname{Soc} E_i)^* \cong f_i S/f_i N$$

 $(\operatorname{Soc}_2(E_i)/\operatorname{Soc} (E_i))^* \cong f_i N/f_i N^2$.

So by [7, Lemma 5], $f_i N/f_i N^2$ is square free, and by [6, Theorem 2.4],

$$e_i R/e_i J$$
 embeds in $e_j J/e_j J^2$
iff Re_i/Je_i embeds in $\operatorname{Soc}_2(E_j)/\operatorname{Soc}(E_j)$
iff $f_i S/f_i N \cong (Re_i/Je_i)^*$ embeds in $(\operatorname{Soc}_2(E_j)/\operatorname{Soc}(E_j))^*$
 $\cong f_i N/f_i N^2$.

Thus the right quiver of S is the same as the right quiver of R.

Now to see that the left quivers of R and S are the same we need only show that $\dim_{f_iSf_i}f_iSf_j)=0$ or 1 for all i, j. But (writing maps on the right), $f_iSf_j \cong \operatorname{Hom}_R(E_i, E_j) \cong \operatorname{Hom}_{e_jRe_j}(e_jE_i, e_jE_j)$ by [6, Lemma 2.1]. Note that since the quivers of R are trees, Re_i and e_iR are distributive R-modules for each $i = 1, \dots, n$ [3]. So by Lemma 3 and [7, Lemmas 4 and 5], ${}_{e_jRe_j}e_jE_{if_iSf_i}\cong \operatorname{Hom}_R(Re_j, E_i)$ is left and right uniserial, so since f_iSf_i is also a division ring, e_jE_i is both left and right one-dimensional or zero. Now since ${}_{e_jRe_j}e_jE_j$ is also one-dimensional, it follows that ${}_{f_iSf_i}f_iSf_j$ is zero or one-dimensional. Note also that $f_iSf_j \neq 0$ iff $e_jE_i \neq 0$ iff $e_iRe_j \neq 0$. Thus R and S are isomorphic factor rings of tic tac toe rings with the same quivers over isomorphic division rings $e_iRe_i \cong f_iSf_i$.

Regarding algebras of finite module type, we conclude with

REMARK 5. Let R be an indecomposable hereditary artin algebra of finite module type which does not satisfy the hypotheses of Theorem 2. Then according to Dlab and Ringel [4], [5] the quivers of R or of its opposite ring are Dynkin diagrams of one of the types

Using an argument similar to that in the proof of Theorem 2, one can show that if R is an artinian ring with quivers of one of the above types, then R is a factor ring of a generalized tic tac toe ring; that is, R is isomorphic to a factor of a matrix ring with some of the entries from a division subring C of a division ring D and the other nonzero entries from D. (For example, if R is hereditary with quivers

$$\mathscr{Q}(_{_R}R) = v_3 \longrightarrow v_1 \longleftrightarrow v_2 \longleftrightarrow v_4 \ \mathscr{Q}(R_{_R}) = v_3' \longleftrightarrow v_1' \Longrightarrow v_2' \longrightarrow v_4'$$

then R is isomorphic to a ring T of matrices

with dim $(D_c) = 2$.) To show this, assume that R is basic and that $\mathscr{C}(_RR)$ is a tree. Arrange the right and left quivers of R so that the multiple arrows point to the right. Let v'_{α} be the vertex of $\mathscr{C}(R_R)$ at the tails of the multiple arrows, and let v'_{β} be the vertex of $\mathscr{C}(R_R)$ at the heads of the multiple arrows. Let \mathscr{C}_{α} be the subquiver of $\mathscr{C}(_RR)$ containing v_{α} and the arrows and vertices to the left of v_{α} , and let \mathscr{C}_{β} be the subquiver of $\mathscr{C}(_RR)$ containing v_{β} and the arrows and vertices to the right of v_{β} . Notice that dim $({}_{e_{\alpha}Re_{\alpha}}e_{\alpha}Je_{\beta}) = 1$ since $\mathscr{C}(_RR)$ is a tree. For $v_{p} \leftarrow v_{q}$ in $\mathscr{C}(_RR)$, let e_{pq} generate ${}_{e_{p}Re_{p}}e_{p}Je_{q}$, and define e_{jj} as before for $v_{i} \leq v_{j}$. Define $\sigma_{\alpha j}$ for $v_{j} \in \mathscr{C}_{\alpha}$ and $\sigma_{\beta j}$ for $v_{j} \in \mathscr{C}_{\beta}$ as in the proof of Theorem 2. Let

$$C' = \left\{\sum_{v_j \in \mathscr{Q}_\beta} \sigma_{\beta j}(x) \,\middle|\, x \in e_\beta R e_\beta \right\} \,.$$

Let

$$D = \left\{\sum_{v_j \in \mathscr{Q}_{\alpha}} \sigma_{\alpha j}(x) \, \Big| \, x \in e_{\alpha} R e_{\alpha} \right\} \, .$$

Define $\theta: C' \to D$ via $e_{\alpha\beta}e_{\beta}c' = \theta(c')e_{\alpha}e_{\alpha\beta}$ for $c' \in C'$. Then $C = \operatorname{im} \theta \cong C'$. Now let

$$T = \{ \llbracket d_{ij} \rrbracket | d_{ij} \in D, d_{ij} = 0 \quad ext{if} \quad v_i \nleq v_j \ , \ ext{and} \quad d_{ij} \in C \quad ext{if} \quad v_i \in \mathscr{O}_{s} \} \ .$$

Then T is a ring, since if $v_k \in \mathscr{C}_{\alpha}$ and $v_i \in \mathscr{C}_{\beta}$, then $v_i \not\leq v_k$ (and hence $d_{ik} = 0$). So in any nonzero product $d_{ij}d_{jk}$, we must have $v_i \leq v_j$ and $v_j \leq v_k$, giving $v_i \leq v_k$, and thus either $v_i \in \mathscr{C}_{\alpha}$, or both $v_i, v_j \in \mathscr{C}_{\beta}$ and $d_{ij}d_{jk} \in C$. Now define

$$egin{array}{lll} arPsi : & T o R & ext{by} \ arphi : & \llbracket d_{ij}
rbrace \longmapsto \sum_{v_i \leq v_j, v_i \in \, arphi^{\, - }_{eta}} heta^{-1}(d_{ij}) e_{ij} + \sum_{v_i \leq v_j, v_i \in \, arphi^{\, - }_{lpha}} d_{ij} e_{ij} \ . \end{array}$$

The map Φ is clearly additive and onto. To show that Φ preserves the multiplication, we need only add to the proof of Theorem 2 that for $d \in D$ and $c \in C$,

$$de_{lphaeta} heta^{-1}(c)e_{eta k}=dce_{lphaeta}e_{eta k}=dce_{lpha k}$$
 ,

which is immediate by the definition of θ .

ACKNOWLEDGMENT. We wish to thank E. L. Green whose talks at The University of Iowa this fall were a principal source of inspiration for this work. Also we acknowledge that the first part of Lemma 1 was already known to him.

References

1. F. W. Anderson and K. R. Fuller, *Rings and Categories of Modules*, Springer-Verlag, New York-Heidelberg-Berlin, 1974.

2. I. N. Bernstein, I. M. Gelfand, V. A. Ponomarev, Coxeter functors and a theorem of Gabriel, Uspehi Mat. Nauk., 28 (1973), 19-33.

3. V. P. Camillo, Distributive modules, J. Algebra, 36 (1975), 16-25.

4. V. Dlab and C. Ringel, On algebras of finite representation type, J. Algebra, 33 (1975), 306-394.

5. ____, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. No. 173, 6 (1976).

6. K. R. Fuller, On indecomposable injectives over artinian rings, Pacific J. Math., **29** (1969), 115-135.

7. ____, Rings of left invariant module type, Comm. in Algebra, 6 (1978), 153-167.

8. P. Gabriel, Unzerlegbare Darstellungen I, Manuscripta Math., 6 (1972), 71-103.

9. _____, Indecomposable Representations II, in "Symposia Mathematica" Vol. XI, Academic Press, New York-San Francisco-London, 1973, 81-104.

10. A. W. Goldie, Torsion-free modules and rings, J. Algebra, 3 (1964), 268-287.

^{11.} R. Gordon and E. L. Green, Modules with cores and amalgamations of indecomposable modules, Mem. Amer. Math. Soc., No. 187, **10** (1977).

^{12.} B. Mitchell, Theory of Categories, Academic Press, New York-London, 1965.

^{13.} K. Morita, Duality of modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku, 6 (1958), 85-142.

14. I. Murase, On the structure of generalized uniserial rings I, Sci. Pap. Coll. Gen. Educ. Univ. Tokyo, 13 (1963), 1-22.

Received January 18, 1977.

THE UNIVERSITY OF IOWA IOWA CITY, IA 52242