ON ARC LENGTH SHARPENINGS

William A. Ettling

This paper introduces two new sharpenings:

Theorem. Let A denote a rectifiable arc (with length $l(A)$) of a metric space, let P denote a finite, normally-ordered subset of A, and let $l\left(T^{*}(P)\right)$ denote the linear content of a mini-tree $T^{*}(P)$ spanning P. Then l.u.b. ${ }_{P \subset A} l\left(T^{*}(P)\right)=l(A)$.

Definition. If E is a nonempty subset of a set P that is spanned by tree T, then T is said to be on E.

Theorem. Let $\sigma(E)$ denote the greatest lower bound of the linear contents of all trees on E. If A denotes a rectifiable arc of a finitely compact metric space, then l.u.b. ${ }_{E \subset A} \sigma(E)=l(A)$, where E denotes any finite normallyordered subset of A.

On arc length sharpenings. ${ }^{1}$ It is convenient to call an unordered pair of distinct points p, q of a metric space M a segment, denoted by $\{p, q\}$. Each of the points p, q of the segment $\{p, q\}$ is an endpoint of the segment, and the length of $\{p, q\}$ is the distance $p q$ of its endpoints.

A nonempty set S of distinct segments forms a chain C provided the end points of the segments may be labelled $a_{0}, a_{1}, \cdots, a_{k}$ (with all the a_{i} 's representing pairwise distinct elements of M) so that the elements of S are $\left\{a_{0}, a_{1}\right\},\left\{a_{1}, a_{2}\right\}, \cdots,\left\{a_{k-1}, a_{k}\right\}$. The chain is said to join a_{0} and a_{k}; the points $a_{0}, a_{1}, \cdots, a_{k}$ are the vertices of the chain.

A nonempty set S of segments forms a tree T provided each two distinct points of the set of endpoints of the segments are joined by exactly one chain of its segments. The vertices of T are the endpoints of its segments. The segments of a tree are called branches, and the linear content of a tree is the sum of the lengths of its branches. If a tree T has set E as its vertex set, then T is said to $\operatorname{span} E$. If E is a nonempty subset of a set P, and tree T spans P, then T is said to be on E.

A finite subset E (containing at least two points) of M is spanned by only a finite number of trees. Let $L(E)$ denote the minimum of the linear contents of the trees that span E and let $T^{*}(E)$ symbolize any tree spanning E whose linear content $l\left(T^{*}(E)\right.$) equals $L(E)$. $T^{*}(E)$ is referred to as a mini-tree spanning E.

Denote by $\sigma(E)$ the greatest lower bound of linear contents of all trees that span P where $P \supset E$ (P is a finite subset of M); that

[^0]is, $\sigma(E)$ is the greatest lower bound of the linear contents of all trees on E. Clearly $0<\sigma(E) \leqq L(E)$, and easy examples of subsets E of the Euclidean plane exist such that $\sigma(E)<L(E)$.

A subset A of a metric space is an arc provided it is the homeomorph of a line segment: that is, $A=f(I)$, where f is biuniform and bicontinuous in the line segment $I=[a, b], a<b$. The points $\alpha=f(a), \beta=f(b)$ are the endpoints of A. Calling α the initial point and β the terminal point of A serves to orient the arc, and a finite subset $P=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)$ of A is normally ordered provided these points are encountered in the order of their subscripts when the arc is traversed from α to β.

This paper furnishes the following two primary theorems, along with several other results in support of these theorems.

THEOREM 1. For each rectifiable arc A of a metric space,

$$
\underset{P \subset A}{\text { l.u.b. } l\left(T^{*}(P)\right)=l(A), ~}
$$

where P represents a finite normally ordered subset of A.
Theorem 2. If A denotes a rectifiable arc of a finitely compact metric space M, with length $l(A)$, then

$$
\underset{E \subset A}{\text { l.u.b. }} \sigma(E)=l(A),
$$

where E denotes any finite normally ordered subset of A.

The literature refers to this kind of theorem as an arc length "sharpening." Theorem 1 is similar in nature to a "second sharpening" as presented by Blumenthal [1], and Theorem 2 partially answers the question of a possible "third sharpening" posed by the same author. Menger and Mimura [3] have previously proved a third sharpening for arcs of Euclidean space.

For arcs of the type of space prescribed by Theorem 2, points not on the arc may be allowed to enter into the computation of its length.

If p_{i} is a vertex of a tree T, let $B\left(p_{i}\right)$ denote the set of vertices of T, which paired with p_{i}, form branches of T. Call $B\left(p_{i}\right)$ the set of vertices of T sending branches to p_{i}. The cardinality of $B\left(p_{i}\right)$ is denoted by $o\left(p_{i}\right)$ and is called the order of p_{i}. A subtree of a tree T is a tree which has each of its branches a branch of T.

Lemma 1. Let T be a tree spanning vertex set $E=\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$. If $p_{i} \in E$ has order $o\left(p_{i}\right)=k$, then $E-\left\{p_{i}\right\}$ is the union of k non-
empty mutually exclusive subsets, each of which is a vertex set of a subtree of T or is a single point.

Proof. To say that a vertex p_{i} of a tree T is of order k means that p_{i} is joined directly (paired with) exactly k other vertices of T by branches of T. So with respect to pairs of points of E which are branches of T, there are k distinct disjoint subsets of E which are joined only through point p_{i} by branches of T. For if the contrary be assumed, some two of them would have a vertex in common and the two would be connected by branches of T. Thus, in the tree T, there would exist two sequences of branches joining any point of the two subsets with p_{i}, contradicting the uniqueness of chains in a tree.

Theorem A. If T is a tree spanning a set E of n distinct points ($n \geqq 2$), then T has exactly $n-1$ branches.

Proof. The statement is clearly valid for $n=2$. Suppose the result holds for trees with vertex sets E of cardinality at most $n-1$, it will be shown valid for n. Let E be a set of n distinct points, T a tree spanning E, and $p \in E$ a vertex of T of order r. By Lemma 1, the set $E-\{p\}$ is the sum of a finite number of subsets $E_{1}, E_{2}, \cdots, E_{r}$, each of which admits a subtree T_{i} of T but ceases to do so after the adjunction of any point of $E-\{p\}$ not belonging to it, or is a single point. If E_{i} consists of n_{i} points, then $n_{i} \leqq n-1(i=1,2, \cdots, r)$. By the inductive hypothesis, if E_{i} admits a subtree T_{i}, then T_{i} consists of exactly $n_{i}-1$ branches. If E_{i} consists of a single point, no branch of T is admitted by E_{i}. In either case, each E_{i} admits exactly $n_{i}-1$ branches of T. Hence $E-\{p\}$ admits exactly

$$
\sum_{i=1}^{r}\left(n_{i}-1\right)=\sum_{i=1}^{r} n_{i}-r=(n-1)-r
$$

branches of T. Since T is a tree, there is exactly one point $p_{i} \in E_{i}$ such that $\left\{p_{i}, p\right\}$ is a branch of $T(i=1,2, \cdots, r)$. Hence T has exactly $((n-1)-r)+r=n-1$ branches.

A normally ordered subset $P=\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$ of an $\operatorname{arc} A$ with endpoints a^{\prime}, b^{\prime} is a homogeneous ε-chain provided
(1) $a^{\prime} p_{1}<\varepsilon, p_{n} b^{\prime}<\varepsilon$,
(2) $p_{i} p_{j}=\varepsilon$, for $|i-j|=1 \quad(i, j=1,2, \cdots, n)$,
(3) $p_{i} p_{j} \geqq \varepsilon$, for $|i-j|>1 \quad(i, j=1,2, \cdots, n)$.

If a normally ordered subset is such that $a^{\prime} p_{1}<\varepsilon, p_{n} b^{\prime}<\varepsilon, p_{i} p_{i+1} \leqq \varepsilon$ for $i=1,2, \cdots, n-1$, then P is called an ε-chain.

Three known lemmas needed in the proof of Theorem 1 will now be stated without proof (cf. [1]).

Lemma 2. For each positive number ε, there exists a homogeneous e-chain in A.

Lemma 3. For every positive number δ there exists a positive number ε such that every ε-chain in A is δ-dense in A.

Lemma 4. Let $A=f(I)$ be a rectifiable arc of a metric space with length $l(A)$. Then any positive number η implies the existence of a positive δ such that for each finite normally ordered subset P of A which is δ-dense in $A, l(P)>l(A)-\eta$.

Proof of Theorem 1. Since $l\left(T^{*}(P)\right) \leqq l(P)$, for $P \subset A$, then

$$
\underset{P \subset A}{ } \text { lu.b. } l\left(T^{*}(P)\right) \leqq \text { l.u.b. } l(P)=l(A) .
$$

It remains to show that l.u.b. ${ }_{P \subset A} l\left(T^{*}(P)\right) \geqq l(A)$. By Lemma 4, $\eta>0$ implies the existence of a positive δ such that for each P which is δ-dense in $A, l(P)>l(A)-\eta$. By Lemma 3, there corresponds to this δ a positive ε such that every ε-chain in A is δ dense in A, and Lemma 2, there exists for this ε a homogeneous ε-chain $P=\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$ in A. Then P is δ-dense in A and $l(P)>$ $l(A)-\eta$. Now P being a normally ordered set and a homogeneous ε-chain imply that $l(P)=(n-1) \varepsilon$. Since each two points of P has distance at least ε and tree T^{*} spanning P has $n-1$ branches, $l\left(T^{*}(P)\right) \geqq(n-1) \varepsilon$. So for each homogeneous ε-chain $P, l(P)=$ $l\left(T^{*}(P)\right)$. Hence corresponding to each $\eta>0$ a subset P of A exists with $l\left(T^{*}(P)\right)>l(A)-\eta$; that is,

$$
\underset{P \subset A}{\text { l.u.b. } l\left(T^{*}(P)\right) \geqq l(A) . . . ~}
$$

The remainder of this paper is presented in support of Theorem 2. The following problem is similar to one found in [2].

Problem T_{n}. Given a set $E=\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$ of $n \geqq 3$ points of a metric space M. Find the mini-tree(s) on E.

If $p, q, r \in M$ are linear with q metrically between p and r, then a mini-tree on set $\{p, q, r\}$ is $\{\{p, q\},\{q, r\}\}$; that is, no additional vertices are required to yield a mini-tree on $\{p, q, r\}$. Further, the trees $\{\{p, r\}\}$ and $\{\{p, q\},\{q, r\}\}$ have the same linear content.

Definition. A tree T is an R-tree on a subset $E=\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$ of $n \geqq 3$ points of M provided the set of all vertices $p_{1}, p_{p}, \cdots, p_{n}$,
q_{1}, \cdots, q_{k} of T are elements of such that (1) $o\left(q_{i}\right) \geqq 3(i=1,2, \cdots, k)$, and (2) $0 \leqq k \leqq n-2$.

Theorem B. Let $E=\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$ be a finite subset of $n \geqq 3$ points of a metric space M. If a solution of the Problem T_{n} exists, then it is an R-tree on E or it can be replaced by an R-tree having the same linear content.

Proof. The result is trivial, if $k=0$, in which case $o\left(q_{i}\right) \geqq 3$ is vacuously satisfied. So suppose that $k>0$ and that T is a minitree on E spanning $E^{A}=\left\{p_{1}, p_{2}, \cdots, p_{n}, q_{1}, \cdots, q_{k}\right\}$ (augmented vertex set). It is easy to see that $o\left(q_{i}\right)>1(i=1,2, \cdots, k)$. Suppose $o\left(q_{i}\right)=2$ for some i and that $B\left(q_{i}\right)=\left\{r^{\prime}, r^{\prime \prime}\right\} \subset E^{A}$. If q_{i} is linear with vertices $r^{\prime}, r^{\prime \prime}$, then branches $\left\{r^{\prime}, q_{i}\right\},\left\{q_{i}, r^{\prime \prime}\right\}$ can be replaced by $\left\{r^{\prime}, r^{\prime \prime}\right\}$ without increasing the linear content of T. On the other hand, if r^{\prime}, $r^{\prime \prime}, q_{i}$ are not linear, the triangle inequality implies that $r^{\prime} r^{\prime \prime}<$ $r^{\prime} q_{i}+q_{i} r^{\prime \prime}$. Then the tree formed by replacing branches $\left\{r^{\prime}, q_{i}\right\}$, $\left\{q_{i}, r^{\prime \prime}\right\}$ by $\left\{r^{\prime}, r^{\prime \prime}\right\}$ would decrease the linear content of T, contradicting the minimal linear content assumption on T. Thus $o\left(q_{i}\right) \geqq 3$ for each $i(i=1,2, \cdots, k)$ or T can be replaced by a tree of equal linear content having this property.

Without loss of generality, it may be assumed that T has $o\left(q_{i}\right) \geqq 3$ for each $i(i=1,2, \cdots, k)$.

Then the number of branches leading from q-points is at least $3 k / 2$; the number from p-points at least $n / 2$. But $n+k-1=$ (total number of branches of $T) \geqq 3 k / 2+n / 2$, from which it is easily deduced that $k \leqq n-2$. This concludes that proof.

Let $T, T^{\prime \prime}$ be R-trees with vertex sets $\left\{p_{1}, p_{2}, \cdots, p_{n}, q_{1}, q_{2}, \cdots, q_{k}\right\}$ and $\left\{p_{1}, p_{2}, \cdots, p_{n}, q_{1}^{\prime}, q_{2}^{\prime}, \cdots, q_{k}^{\prime}\right\}$, respectively. The trees T and T^{\prime} have the same structure provided the mapping f with $f\left(p_{i}\right)=p_{i}, f\left(q_{j}\right)=q_{j}^{\prime}$ ($i=1,2, \cdots, n ; j=1,2, \cdots, k$) maps $B\left(p_{i}\right)$ onto $B^{\prime}\left(p_{i}\right)$ and $B\left(q_{i}\right)$ onto $B^{\prime}\left(q_{j}\right)$, where $B^{\prime}\left(p_{i}\right)$ and $B^{\prime}\left(q_{j}\right)$ are subsets of the vertex set of T^{\prime}.

In general, there will exist infinitely many trees having the same structure. The relation "has the same structure as" on the class of all R-trees on a given finite set E is an equivalence relation. Because $0 \leqq k \leqq n-2$ and a structure class is determined largely by the k additional vertices, it is further seen that the number of equivalence classes of R-trees on a given set of n points of M under the relation "has the same structure as" is finite. Let these equivalence classes be denoted by $C_{1}, C_{2}, \cdots, C_{N}$.

Theorem C. Let $E=\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$ be a subset of a finitely compact metric space M. There exists a mini-tree on E. (As in [2], p. 447, with modifications.)

Proof. Since there are only a finite number of the aforementioned equivalence classes, it suffices to show that if $C \in\left\{C_{1}, C_{2}, \cdots, C_{N}\right\}$, then there exists on E a mini-tree in C.

The structure of trees in C stipulates which of the pairs $q_{i} p_{j}$, $q_{i} q_{j}, p_{i} p_{j}$ will be segments as branches of trees in C.

If $k=0$, there are no q points. Since E is finite, there are only a finite number of ways to form pairs of elements of E. Hence a minimum length tree can be selected.

If $k \neq 0$, each R-tree in C has vertex set consisting of $\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$ together with k additional q-points. Let these be denoted $q_{1}, q_{2}, \cdots, q_{k}$. For $i=1,2, \cdots, k$, let $E_{i}=\left\{p_{i_{1}}, p_{i_{2}}, \cdots, p_{i_{i_{i}}}\right\}=$ $\left\{p_{j}: p_{j} \in E\right.$ and $\left\{q_{i}, p_{j}\right\}$ is a branch of trace of trees in $\left.C\right\}$. Let N_{1}, N_{2} be sets of unordered pairs of natural numbers, defined as follows:
$N_{1}=\left\{\{i, j\}:\left\{q_{i}, q_{j}\right\}\right.$ is a branch of trees in $\left.C\right\}$,
$N_{2}=\left\{\{i, j\}:\left\{p_{i}, p_{j}\right\}\right.$ is a branch of trees in $\left.C\right\}$.
Then the linear content of a tree in C is

$$
f\left(q_{1}, q_{2}, \cdots, q_{k}\right)=\sum_{i=1}^{k} \sum_{j=1}^{\lambda_{i}} q_{i} p_{i j}+\sum_{i, j, j \in N_{1}} q_{i} q_{j}+\sum_{i, j, j \in N_{2}} p_{i} p_{j} .
$$

Now suppose that $\left\{\bar{q}_{1}, \bar{q}_{2}, \cdots, \bar{q}_{k}\right\}$ represents a specific (fixed) set of q-points. Since $\bar{E}^{A}=\left\{p_{1}, p_{2}, \cdots, p_{n}, \bar{q}_{1}, \bar{q}_{2}, \cdots, \bar{q}_{k}\right\}$ is a finite set, there exists a mini-tree $\bar{T}(k)$ spanning set \bar{E}^{a}. Let \bar{L}_{k} denote the linear content of this mini-tree. Let set $X=\left\{r: r \in M\right.$ and $\left.\min _{i} r p_{i} \leqq \bar{L}_{k}\right\}$. Then every q-point of a tree of minimal linear content in C is in X, for otherwise the length of such a tree would be greater than \bar{L}_{k}. Thus if $\left\{q_{1}, q_{2}, \cdots, q_{k}\right\}$ is a set of q-points of a mini-tree of C, then $\left\{q_{1}, q_{2}, \cdots, q_{k}\right\}$ is an element of the Cartesian product X^{k}. Since X is bounded and M is finitely compact, X is compact. Tychonoff's theorem implies that X^{k} is compact. But $f\left(q_{1}, q_{2}, \cdots, q_{k}\right)$ is continuous on X^{k}, and so assumes a minimum value on X^{k}. This proves the theorem.

Suppose that A denotes a rectifiable arc of a finitely compact metric space M. Denote by $l(A)$ the length of arc A and let $P_{i}=$ $\left\{p_{i}^{1}, p_{i}^{2}, \cdots, p_{i}^{n(i)}\right\}(i=1,2, \cdots)$ be an ε_{i}-chain in arc A and $\lim _{i \rightarrow \infty} \varepsilon_{i}=0$. By the above theorem, there exists a mini-tree $T\left(P_{i}\right)$ spanning a set P_{i}^{*} containing P_{i}. Denote by $l\left(T\left(P_{i}\right)\right)$ the linear content of such a tree. Then for each $i, l\left(T\left(P_{i}\right)\right) \leqq \sum_{j=1}^{n(i)-1} p_{i}^{j} p_{i}^{i+1} \leqq l(A)$. Hence 1.u.b. $l\left(T\left(P_{i}\right)\right) \leqq l(A)$.

Lemma 5. If $T\left(P_{i}\right)$ is a mini-tree on an ε_{i}-chain P_{i} of A, then each branch of $T\left(P_{i}\right)$ has length at most ε_{i}.

Proof. Suppose that the length of a branch of $T\left(P_{i}\right)$ were greater than ε_{i}. Then that branch could be deleted from $T\left(P_{i}\right)$,
destroying the connectedness of $T\left(P_{i}\right)$; the connectedness could then be restored by pairing an appropriate two successive points of P_{i} as a branch. This would result in a tree $T^{\prime}\left(P_{i}\right)$ of smaller linear content than that of $T\left(P_{i}\right)$, contradicting the mini-property of $T\left(P_{i}\right)$.

Note the following two possibilities:
Either (1) there exists $\delta>0$ and for infinitely many i, point $p_{i} \in P_{i}^{*}$ such that distance $p_{i} A \geqq \delta$,
or
(2) for each $\delta>0$, there exists a positive integer N such that $i>N$ implies $p_{i} A<\delta$, for each $p_{i} \in P_{i}^{*}$.

Theorem D. Let A be a rectifiable arc (with length $l(A)$) of a finitely compact metric space M and let $P_{i}(i=1,2, \cdots)$ be an ε_{i} chain in arc A and $\lim _{i \rightarrow \infty} \varepsilon_{i}=0$. Then statement (2) above holds.

Proof. Suppose the contrary. Then there exists $\delta>0$ and for infinitely many i, a point $p_{i} \in P_{i}^{*}$ such that p_{i} has distance from A greater than or equal to δ. The number of points of P_{i}^{*} which can be connected with p_{i} by a chain of $T\left(P_{i}\right)$ of length at least $\delta / 2$ is at least $2^{\left[\delta /\left(2 \epsilon_{i}\right)\right]}$, since by the above lemma, $T\left(P_{i}\right)$ has at least $\left[(\delta / 2) / \varepsilon_{i}\right]$ branches. Since P_{i}^{*} is connected by branches of $T\left(P_{i}\right)$ and P_{i}^{*} contains P_{i}, each of the above mentioned $2^{\left[\delta /\left(2 \varepsilon_{i}\right)\right]}$ points is connected to each of the points of the ε_{i}-chain P_{i} on arc A by a chain of length greater than $\delta / 2$. Since $T\left(P_{i}\right)$ is a tree, these chains have no vertices in common. Thus for infinitely many $i, l\left(T\left(P_{i}\right)\right)>(\delta / 2) \cdot 2^{\left[\bar{\delta} / 2 \varepsilon_{i}\right]}$, and hence $\lim _{i \rightarrow \infty} l\left(T\left(P_{i}\right)\right)=\infty$. But l.u.b. $l\left(T\left(P_{i}\right)\right) \leqq l(A)<\infty$.

Intuitively, the above result says that for each $\delta>0$, almost all of the mini-trees $T\left(P_{i}\right)$ are contained within a "tube" of radius δ about the arc A.

Theorem E (Continuity). Let $l(T(E))$ denote the linear content of a mini-tree $T(E)$ on $E=\left\{p_{1}, p_{2}, \cdots, p_{n}\right\} \subset M$, and suppose that $E^{*}=\left\{p_{1}, p_{2}, \cdots, p_{n}, q_{1}, q_{2}, \cdots, q_{k}\right\}$ is the vertex set of $T(E)$. Let $\varepsilon>0$ be given and consider points $p_{1}^{\prime}, p_{2}^{\prime}, \cdots, p_{j}^{\prime}$ (for some j such that $1 \leqq$ $j \leqq n)$ with distances $p_{i} p_{i}^{\prime}<\delta=\varepsilon /(3(2 n-3))(i=1,2, \cdots, j)$. Then a mini-tree on $E^{\prime}=\left\{p_{1}^{\prime}, p_{2}^{\prime}, \cdots, p_{j}^{\prime}, p_{j+1}, \cdots, p_{n}\right\}$ has linear content $l\left(T\left(E^{\prime}\right)\right)$ such that $\left|l(T(E))-l\left(T\left(E^{\prime}\right)\right)\right|<\varepsilon$.

Proof. Consider a tree T^{\prime} spanning $\left\{p_{1}^{\prime}, p_{2}^{\prime}, \cdots, p_{j}^{\prime}, p_{j+1}, \cdots, p_{n}\right.$, $q_{1}, q_{2}, \cdots, q_{k}$ \} and having the same structure as mini-tree $T(E)$. Now $l(T(E))=\sum p_{r} p_{s}+\sum p_{r} q_{s}+\sum q_{r} q_{s}$, with $l\left(T^{\prime}\right)$ possibly differing from $l(T(E))$ only in the distances of the types $p_{r} p_{s}$ and $p_{r} q_{s}$. But

$$
p_{r}^{\prime} p_{s}^{\prime} \leqq p_{r}^{\prime} p_{r}+p_{r} p_{s}+p_{s} p_{s}^{\prime}<p_{r} p_{s}+2 \delta,
$$

$$
\begin{aligned}
& p_{r}^{\prime} p_{s} \leqq p_{r}^{\prime} p_{r}+p_{r} p_{s}<p_{r} p_{s}+\delta, \quad \text { and } \\
& p_{r}^{\prime} q_{s} \leqq p_{r}^{\prime} p_{r}+p_{r} q_{s}<p_{r} q_{s}+\delta
\end{aligned}
$$

In total, there are $n+k-1$ branches in the tree T^{\prime} and $k \leqq n-2$. So there are at most $2 n-3$ branches in T^{\prime}. Therefore,

$$
\begin{aligned}
l\left(T^{\prime}\right) & <\sum p_{r} p_{s}+\sum_{i=1}^{2 n-3} 2 \delta+\sum p_{r} q_{s}+\sum_{i=1}^{2 n-3} \delta+\sum q_{r} q_{s} \\
& =\sum p_{r} p_{s}+\sum p_{r} q_{s}+\sum q_{r} q_{s}+\sum_{i=1}^{2 n-3} 3 \delta \\
& =l(T(E))+(2 n-3) \cdot 3 \varepsilon /(3(2 n-3)) \\
& =l(T(E))+\varepsilon .
\end{aligned}
$$

But a mini-tree on E^{\prime} has linear content $l\left(T\left(E^{\prime}\right)\right) \leqq l\left(T^{\prime}\right)<l(T(E))+\varepsilon$. Hence $-\varepsilon<l(T(E))-l\left(T\left(E^{\prime}\right)\right)$.

Now it remains to show that $l(T(E))-l\left(T\left(E^{\prime}\right)\right)<\varepsilon$. Suppose the contrary; that is, that there exists $\varepsilon_{0}>0$ such that for each $\delta>0$ (and in particular, for $\delta=\varepsilon_{0} /(3(2 n-3))$ there are points $p_{i}^{\prime}(i=1,2, \cdots, j) \quad$ with $\quad p_{i}^{\prime} p_{i}<\delta \quad(i=1,2, \cdots, j)$ and $l\left(T\left(E^{\prime}\right)\right) \leqq$ $l(T(E))-\varepsilon_{0}$. But for ε_{0}, there is $\delta=\varepsilon_{0} /(3(2 n-3))$ such that $p_{i}^{\prime \prime} p_{i}^{\prime}<\delta(i=1,2, \cdots, j)$ implies that $l\left(T\left(E^{\prime \prime}\right)\right)<l\left(T\left(E^{\prime}\right)\right)+\varepsilon_{0}$ (by the first part of the proof). (Here $l\left(T\left(E^{\prime \prime}\right)\right)$ denotes the linear content of a mini-tree on $E^{\prime \prime}=\left\{p_{1}^{\prime \prime}, p_{2}^{\prime \prime}, \cdots, p_{j}^{\prime \prime}, p_{j+1}, \cdots, p_{n}\right\}$. In particular, the $p_{i}^{\prime \prime}=p_{i}(i=1,2, \cdots, j)$ are such that $p_{i}^{\prime \prime} p_{i}^{\prime}<\delta$. Then $l(T(E))<$ $l\left(T\left(E^{\prime}\right)\right)+\varepsilon_{0} \leqq\left(l\left(T\left(E^{\prime}\right)\right)-\varepsilon_{0}\right)+\varepsilon_{0}=l(T(E))$. This contradiction establishes the result.

Proof of Theorem 2. Let P be a finite normally ordered subset of a rectifiable arc A of a finitely compact metric space M and $l(T(P))$ denote the linear content of a mini-tree on P (and spanning vertex set $\left.P^{*} \supset P\right)$. Defining $l^{*}(A)=$ l.u.b. ${ }_{P \subset A} l(T(P)$, it suffices to show that $l^{*}(A) \geqq l(A)$. To do this let $l(A)=$ l.u.b. ${ }_{p \subset A} \sum_{i=1}^{n-1} p_{i} p_{i+1}$ and denote by A_{i} the subarc of A lying between p_{i} and p_{i+1}. Then $l^{*}\left(A_{i}\right) \geqq p_{i} p_{i+1}$ holds, and it remains to show that $l^{*}(A) \geqq \sum_{i=1}^{n-1} l^{*}\left(A_{i}\right)$. But this follows by complete induction on the statement $l^{*}\left(A_{1}+A_{2}\right) \geqq$ $l^{*}\left(A_{1}\right)+l^{*}\left(A_{2}\right)$ the proof of which follows.

For an arbitrary $\varepsilon>0$, there exists two finite subsets $E_{1}^{\prime} \subset A_{1}$ and $E_{2}^{\prime} \subset A_{2}$ such that $l^{*}\left(A_{1}\right)-\varepsilon \leqq l\left(T\left(E_{1}^{\prime}\right)\right)$ and $l^{*}\left(A_{2}\right)-\varepsilon \leqq l\left(T\left(E_{2}^{\prime}\right)\right)$, where $T\left(E_{i}^{\prime}\right)$ denotes a mini-tree on $E_{i}^{\prime}(i=1,2)$. By Theorem E, the linear content $l\left(T\left(E_{i}^{\prime}\right)\right)$ varies an arbitrarily small amount in a sufficiently small neighborhood of a point of E_{i}^{\prime}. It is thus possible to choose E_{1}^{\prime} and E_{2}^{\prime} such that the common endpoint p_{2} of A_{1} and A_{2} lies neither in E_{1}^{\prime} nor E_{2}^{\prime}, so the last point q_{1} of E_{1}^{\prime} and the first point q_{2} of E_{2}^{\prime} are different from p_{2}. Let A_{1}^{\prime} be the subarc of A between p_{1} and $q_{1} ; A_{2}^{\prime}$ the subarc between q_{2} and p_{3}.

Since a metric space is a normal topological space, there exist two open sets U_{1} and U_{2} which contain the subarcs A_{1}^{\prime} and A_{2}^{\prime}, respectively, and which have disjoint closures. If d denotes the distance of the set $A_{1}^{\prime}+A_{2}^{\prime}$ from the boundary of $U_{1}+U_{2}$, then $d>0$. Let δ be such that $0<\delta<\min \left\{d, \varepsilon d / l^{*}\left(A_{1}+A_{2}\right)\right\}$. There exist two normally ordered finite sets E_{1} and E_{2} such that $E_{1}^{\prime} \subset$ $E_{1} \subset A_{1}^{\prime}$ and $E_{2}^{\prime} \subset E_{2} \subset A_{2}^{\prime}$, and such that each two successive points in E_{1} and E_{2} have distance less than δ. Let $E=E_{1}+E_{2}$ and let $l(T(E))$ denote the linear content of a mini-tree on E (and having vertex set $E^{*} \supset E$).

Now decompose the finite sets $E_{i}(i=1,2)$ into finitely many classes such that two points of E_{i} are in the same class provided the set $E^{*} \cdot \bar{U}_{i}$ contains the end points of segments of a chain of $T(E)$ joining the two points. If a given point of E_{i} is not connected by such a chain to any other point of E_{i}, then the point is in a class by itself. Let $n_{i}(i=1,2)$ be the number of these classes. Since E^{*} is connected by chains of $T(E)$, every two classes of E_{i} are such that each point of one class is joined by a chain of $T(E)$ to each point of the other, but which does not have all of its vertices contained in \bar{U}_{i}. According tothe definition of these classes and because of the disjointness of \bar{U}_{1} and \bar{U}_{2}, every two of these $n_{1}+n_{2}$ chains are disjoint. On the other hand, each pair of these chains has distance apart at least d, since $E_{1}+E_{2}$ as a subset of $A_{1}^{\prime}+A_{2}^{\prime}$ has distance $\geqq d$ from the boundary of $U_{1}+U_{2}$. Then $\left(n_{1}+n_{2}\right) d \leqq$ $l(T(E)) \leqq l^{*}\left(A_{1}+A_{2}\right)$, and so $\delta<\varepsilon d /\left(\left(n_{1}+n_{2}\right) d\right)=\varepsilon /\left(n_{1}+n_{2}\right)$. Hence $\left(n_{1}+n_{2}\right) \delta<\varepsilon$.

Now for each class, except for the two which contain the last points of E_{1} and E_{2}, introduce a segment consisting of the last point of the class and the next point of E_{1} or E_{2} (according as the class is in E_{1} or E_{2}, respectively). Since each pair of successive points in E_{1} and E_{2} has distance $\leqq \delta$, then each of the above $n_{1}+n_{2}-2$ segments has length $\leqq \delta$ and is therefore contained in \bar{U}_{1} or \bar{U}_{2}, respectively. Augmenting $T(E)$ with these $n_{1}+n_{2}-2$ segments yields a set S of segments containing $T(E)$ and such that $l(S) \leqq$ $l(T(E))+\left(n_{1}+n_{2}-2\right) \cdot \delta<l(T(E))+\left(n_{1}+n_{2}\right) \cdot \delta<l(T(E))+\varepsilon$.

Set S is such that each two points in E_{i} are joined by a unique chain (of S) which is contained entirely in \bar{U}_{i}. Since \bar{U}_{1} and \bar{U}_{2} are disjoint, S must contain two disjoint trees $T_{1}\left(E_{1}\right)$ on E_{1} and $T_{2}\left(E_{2}\right)$ on E_{2}, such that $l\left(T_{1}\left(E_{1}\right)\right)+l\left(T_{2}\left(E_{2}\right)\right) \leqq l(S)<l(T(E))+\varepsilon$. Therefore, for mini-trees $T\left(E_{1}\right)$ and $T\left(E_{2}\right)$ on E_{1} and E_{2}, respectively, $l\left(T\left(E_{1}\right)\right)+$ $l\left(T\left(E_{2}\right)\right)<l(T(E))+\varepsilon$.

On the other hand, $E_{i}^{\prime} \subset E_{i}$ implies that $l\left(T\left(E_{i}^{\prime}\right)\right) \leqq l\left(T\left(E_{i}\right)\right)$ and since E_{i}^{\prime} was chosen so that $l^{*}\left(A_{i}\right)-\varepsilon \leqq l\left(T\left(E_{i}^{\prime}\right)\right)(i=1,2)$,

$$
\begin{aligned}
l^{*}\left(A_{1}\right)+l^{*}\left(A_{2}\right) & \leqq l\left(T\left(E_{1}^{\prime}\right)\right)+\varepsilon+l\left(T\left(E_{2}^{\prime}\right)\right)+\varepsilon \\
& \leqq l\left(T\left(E_{1}\right)\right)+l\left(T\left(E_{2}\right)\right)+2 \varepsilon \\
& <(l(T(E))+\varepsilon)+2 \varepsilon \\
& \leqq \sup l(T(E))+3 \varepsilon \\
& =l^{*}\left(A_{1}+A_{2}\right)+3 \varepsilon .
\end{aligned}
$$

Since this holds for each $\varepsilon>0, l^{*}\left(A_{1}\right)+l^{*}\left(A_{2}\right) \leqq l^{*}\left(A_{1}+A_{2}\right)$, and the theorem is proved.

References

1. L. M. Blumenthal, Theory and Applications of Distance Geometry. London: Oxford University Press, 1953.
2. E. J. Cockayne, On the Steiner problem, Cand. Math. Bull., 10, Number 3, (1967).
3. K. Menger and Mimura, Ergebnisse eines mathematischen Kolloquims, Wien, Heft, 4 (1932).

Received December 20, 1976 and in revised form December 2, 1977.
Southeast Missouri State University
Cape Girardeau, MO 63701

[^0]: ${ }^{1}$ From research for University of Missouri Dissertation (1973).

