SOME PROPERTIES OF A SPECIAL SET OF RECURRING SEQUENCES

H. C. WILLIAMS

Several number theoretic and identity properties of three special second order recurring sequences are established. These are used to develop a necessary and sufficient condition for any integer of the form $2^n 3^m A - 1$ $(A < 2^{n+1} 3^m - 1)$ to be prime. This condition can be easily implemented on a computer.

1. Introduction. Various tests for primality of integers of the form $2^nA - 1$ and $3^nA - 1$ are currently available; for example, Lehmer [2] and Riesel [5] have developed necessary and sufficient conditions for $2^nA - 1$ to be prime when $A < 2^n$ and Williams [6] has given a necessary and sufficient condition for the primality of $2A3^n - 1$ when $A < 4 \cdot 3^n - 1$. Of special concern to Riesel was the determination of the primality of $3A2^n - 1$; in this paper we present a simple necessary and sufficient condition for $2^n3^mA - 1$ to be prime when $A < 2^{n+1}3^m - 1$. In order to obtain this result we must first develop some properties of a special set of second order linear recurring sequences.

Let a, b be two integers and put $\alpha = a + b\rho$, $\beta = a + b\rho^2$, where $\rho^2 + \rho + 1 = 0$. We define for any integer n

$$egin{align} R_n &= rac{
holpha^n-
ho^2eta^n}{
ho-
ho^2} \,, \ S_n &= rac{
ho^2lpha^n-
hoeta^n}{
ho-
ho^2} \,, \ T_n &= rac{lpha^n-eta^n}{
ho-
ho^2} \,. \end{align}$$

We see that $R_0=1$, $S_0=-1$, $T_0=0$, $R_1=a-b$, $S_1=-a$, $T_1=b$. Putting $G=\alpha+\beta=2a-b$ and $H=\alpha\beta=a^2-ab+b^2$, we get

$$R_{n+2} = GR_{n+1} - HR_n$$
 , $S_{n+2} = GS_{n+1} - HS_n$, $T_{n+2} = GT_{n+1} - HT_n$.

It follows that R_n , S_n , T_n are integers for any nonnegative integral value of n.

In the next sections of this paper we present a number of identities satisfied by the R_n , S_n , T_n functions. We also develop some of their number theoretic properties. It should be noted that

the function T_n is simply a constant multiple b of the Lucas function $U = (\alpha^n - \beta^n)/(\alpha - \beta)$; hence, many of its properties are easily deduced from the well-known (see, for example, [2]) properties of the Lucas functions.

2. Some identities. We first note that from the definition of R_n , S_n , T_n , we obtain the fundamental identity

$$R_n + S_n + T_n = 0.$$

We can easily verify for any integers m, n that

$$egin{align*} R_{m+n} &= R_m R_n - T_m T_n \;, \ (2.1) & S_{m+n} &= T_m T_n - S_m S_n \;, \ T_{m+n} &= S_m S_n - R_m R_n = T_m R_n - S_m T_n = R_m T_n - T_m S_n \;. \end{gathered}$$

Putting m=1, we get

$$R_{n+1} = aR_n + bS_n$$
 , $S_{n+1} = (a-b)S_n - bR_n$, $T_{n+1} = (b-a)R_n - aS_n$.

Putting n = m, we see that

$$R_{2n} = -S_n(2R_n + S_n)$$
 , $S_{2n} = R_n(2S_n + R_n)$, $T_{2n} = T_n(R_n - S_n)$;

also, by using these results and putting m=2n above, we get

$$R_{3n}=S_n^3-3S_nR_n^2-R_n^3$$
 , $S_{3n}=R_n^3-3S_n^2R_n-S_n^3$, $T_{3n}=-3R_nS_nT_n=-(R_n^3+S_n^3+T_n^3)$. (Use $-R_n^3=(S_n+T_n)^3$.)

Since

$$H^n R_{-n} = -S_n$$
 , $H^n S_{-n} = -R_n$, $H^n T_{-n} = -T_n$,

it follows that

$$(2.3) H^m R_{n-m} = T_m T_n - S_m R_n , H^m S_{n-m} = R_m S_n - T_m T_n ,$$

$$H^m T_{n-m} = S_m R_n - R_m S_n = R_m T_n - T_m R_n = T_m S_n - R_m T_n .$$

If, in the first of these formulas, we put n=m, we have $R_0H^n=T_n^2-R_nS_n$; hence, we can deduce the following:

$$(2.4)$$
 $T_n^2 - R_n S_n = R_n^2 - T_n S_n = S_n^2 - T_n R_n = H^n$, $T_n^2 + R_n T_n + R_n^2 = R_n^2 + S_n R_n + S_n^2 = S_n^2 + T_n S_n + T_n^2 = H^n$, $T_n S_n + S_n R_n + R_n T_n = -H^n$.

More generally, we have

$$egin{aligned} R_n^2-R_{n-m}R_{n+m}&=S_n^2-S_{n-m}S_{n+m}=T_n^2-T_{n-m}T_{n+m}=H^{n-m}T_n^2 \ , \ R_n^2-T_{n-m}S_{m+n}&=S_n^2-R_{n-m}T_{m+n}=T_n^2-S_{n-m}R_{n+m}=H^{n-m}R_n^2 \ , \ R_n^2-S_{n-m}T_{n+m}&=S_n^2-T_{n-m}R_{m+n}=T_n^2-R_{n-m}S_{m+n}=H^{n-m}S_m^2 \ . \end{aligned}$$

We also have

$$R_{n+m}^2-H^{2m}R_{n-m}^2=T_{2m}S_{2n}$$
 , $S_{n+m}^2-H^{2m}S_{n-m}^2=T_{2m}R_{2n}$, $T_{n+m}^2-H^{2m}T_{n-m}^2=T_{2m}T_{2n}$.

A great many other identities satisfied by these functions can be developed; for example, since

$$R_n + S_n + T_n = 0$$
, $R_n S_n + S_n T_n + R_n T_n = -H^n$,

we can use Waring's formula (see, for example, [4] p. 5) to obtain

$$R_n^m + S_n^m + T_n^m = egin{cases} \sum_{j=0}^{[r/3]} rac{(r-j-1)!\,2r}{(2j)!\,(r-3j)!} H^{(r-3j)n}(R_nS_nT_n)^{2j} & (m=2r) \ \sum_{j=0}^{[(r-1)/3]} rac{(r-1-j)!\,(2r+1)}{(2j+1)!\,(r-1-3j)!} H^{(r-1-3j)n}(R_nS_nT_n)^{2j+1} \ & (m=2r+1) \end{cases}$$

$$\begin{split} (R_{\it n}S_{\it n})^{\it m} &+ (S_{\it n}T_{\it n})^{\it m} + (T_{\it n}R_{\it n})^{\it m} \\ &= (-1)^{\it m} \sum_{j=0}^{\lceil m/3 \rceil} (-1)^{j} \frac{(m-2j-1)!\,m}{(m-3j)!\,j!} H^{\it n(m-3j)} (R_{\it n}S_{\it n}T_{\it n})^{\it 2j} \end{split}$$

for m > 0. From these we deduce the rather interesting identities

$$egin{aligned} R_n^4 + S_n^4 + T_n^4 &= 2H^{2n} \;, \ R_n^7 + S_n^7 + T_n^7 &= 7H^{2n}R_nS_nT_n \;, \ R_n^{10} + S_n^{10} + T_n^{10} &= 2H^{5n} + 15H^{2n}R_n^2S_n^2T_n^2 \;, \ R_n^5S_n^5 + R_n^5T_n^5 + S_n^6T_n^5 &= 5H^{2n}R_n^2S_n^2T_n^2 - H^{5n} \;. \end{aligned}$$

The following identities are also of some interest:

$$egin{aligned} (S_n(S_n^2-3H^n))^3+(T_n(T_n^2-3H^n))^3+(R_n(R_n^2-3H^n))^3\ &=3(R_nS_nT_n)^3\ ,\ &(R_nS_n(H^n+T_n^2))^4+(R_nT_n(H^n+S_n^2))^4+(S_nT_n(H^n+R_n^2))^4\ &=H^{8n}+28H^{2n}(R_nS_nT_n)^4\ . \end{aligned}$$

Both of these formulas can be derived by expanding the powers of the binomials and using the formulas above for expressions of the form $R_n^j + S_n^j + T_n^j$ and $(R_n S_n)^j + (S_n T_n)^j + (T_n R_n)^j$.

If we put
$$W_n=R_n-S_n$$
, $X_n=S_n-T_n=2S_n+R_n$, $Y_n=T_n-R_n=-2R_n-S_n$, we have

$$W_n + X_n + Y_n = 0$$
 , $3R_n = W_n - Y_n$, $3S_n = X_n - W_n$, $3T_n = Y_n - X_n$ $R_{2n} = S_n Y_n$, $S_{2n} = R_n X_n$, $T_{2n} = T_n W_n$.

We also have

$$egin{align} 3\,W_{m+n} &= \,W_m\,W_n \,+\, Y_m X_n \,+\, Y_n X_m \;, \ 3\,X_{m+n} &= \,Y_m\,Y_n \,+\, X_m\,W_n \,+\, W_m X_n \;, \ 3\,Y_{m+n} &= \,X_m X_n \,+\, Y_m\,W_n \,+\, W_m\,Y_n \;, \ \end{array}$$

and from these we are able to derive

$$W_{2n}=(W_n^2+2X_nY_n)/3=X_nY_n+H^n=W_n^2-2H^n$$
 , $Y_{2n}=(X_n^2+2W_nY_n)/3=W_nY_n+H^n=X_n^2-2H^n$, $X_{2n}=(Y_n^2+2X_nW_n)/3=W_nX_n+H^n=Y_n^2-2H^n$,

and

$$egin{align} 3X_{3n} &= X_n^3 + 3X_n^2Y_n - Y_n^3 \;, \ &Y_{3n} &= Y_n^3 + 3Y_n^2X_n - X_n^3 \;, \ &W_{3n} &= X_nY_nW_n \;. \end{gathered}$$

Many other identities similar to those satisfied by the R_n , S_n , T_n functions are satisfied by W_n , X_n , Y_n functions.

3. Some number theoretic results. In the discussion that follows we will assume that a and b satisfy the following two properties:

$$(1) (a,b)=1,$$

$$a \not\equiv -b \pmod{3}.$$

It follows from (1) and (2) that (G, H) = 1. We can now develop several divisibility properties of the R_n, S_n, T_n functions. We will also assume in what follows that n, m represent positive integers.

LEMMA 1. For any
$$n$$
, $(R_n, H) = (S_n, H) = (T_n, H) = 1$.

Proof. If p is any prime divisor of R_n and H, then by (1.1) p is a divisor of R_{n-1} . By continuing this reasoning, we see that $p \mid R_1$. If $p \mid R_1$ and $p \mid H$, then $R_0 = 1$ and $p \mid G$, which is impossible. In the same way we see that $(S_n, H) = 1$. Also, if $p \mid (T_n, H)$, then by

the above reasoning $p \mid T_1 = b$. Since $p \mid H$, we have $p \mid a$ and consequently $p \mid G$.

LEMMA 2. For any
$$n$$
, $(R_n, S_n) = (S_n, T_n) = (T_n, R_n) = 1$.

Proof. If p is any prime divisor of any two of R_n , S_n , T_n , then by (2.4) p must divide H, which is impossible by the preceding lemma.

Since T_n is a simple multiple of the Lucas function U_n , $\{T_n\}$ is divisibility sequence, i.e., $T_n | T_m$ whenever n | m. The analogous properties of R_n and S_n are given in

THEOREM 1. Suppose $n \mid m$. If $m/n \equiv 1 \pmod{3}$, then $R_n \mid R_m$ and $S_n \mid S_m$; if $m/n \equiv -1 \pmod{3}$, then $R_n \mid S_m$, $S_n \mid R_m$; if $m/n \equiv 0 \pmod{3}$, then $R_n \mid T_m$, $S_n \mid T_m$.

Proof. From the identities of §1 we see that $R_n | S_{2n}$, $S_n | R_{2n}$, $R_n | T_{3n}$, $S_n | T_{3n}$. Now since $T_{3n} | T_{3kn}$,

$$R_{(3k+t)n} = R_{3kn}R_{tn} - T_{3kn}T_{tn}$$

$$\equiv R_{3kn}R_{tn} \pmod{R_nS_n}.$$

If t = 1, $R_n | R_{(3k+t)n}$; if t = 2, $S_n | R_{(3k+t)n}$. The remaining results are proved in a similar manner.

Let $T_{\omega(m)}$ be the first term of the sequence

$$T_1, T_2, T_3, \cdots, T_m$$

in which m occurs as a factor. We will call $\omega = \omega(m)$ the "rank of apparition" of m. From the theory of Lucas functions, it follows that if $m \mid T_n$, then $\omega(m) \mid n$ and consequently that $(T_m, T_n) = T_{(m,n)}$. We also have the result that if (H, m) = 1, then $\omega(m)$ always exists.

We now define $\omega_1=\omega_1(m)$ and $\omega_2=\omega_2(m)$ as analogues of $\omega(m)$. We say for a given m that R_{ω_1} and S_{ω_2} are respectively the first term of the sequences

$$\{R_k\}_{k=1}^{\infty}$$
 and $\{S_k\}_{k=1}^{\infty}$ which m divides.

It is not in general true that $\omega_1(m)$ or $\omega_2(m)$ exist for any m such that (m, H) = 1. In the results that follow we give some characterization of those values of m such that $\omega_1(m)$ or $\omega_2(m)$ do exist. In Theorems 2, 3, 4, and Lemma 3 we give results concerning R_n and ω_1 only; however, analogous results involving S_n and ω_2 for each of these are also true and their proofs are similar.

THEOREM 2. If (m, H) = 1 and ω_1 exists, then ω_2 exists, $3 \mid \omega$, $\omega_1 = \omega/3$ or $2\omega/3$, and $\omega_1 + \omega_2 = \omega$.

Proof. Suppose $\omega_1 \ge \omega$. We have

$$\omega_1 = q\omega + r \quad (0 \le r < \omega \le \omega_1)$$

and

$$0 \equiv R_{\omega_r} = R_{q\omega}R_r - T_{q\omega}T_r \equiv R_{q\omega}R_r \pmod{m}$$
.

Since $m \mid T_{q\omega}$ and $(T_{q\omega}, R_{q\omega}) = 1$, we see that $m \mid R_r$, which is impossible. Thus, $\omega_1 < \omega$.

Since $m \mid T_{3\omega_1}$, we must have $\omega \mid 3\omega_1$; since $\omega > \omega_1$, we see that $3 \mid \omega$ and $\omega_1 = \omega/3$ or $2\omega/3$. Now

$$H^{\omega_1}S_{\omega-\omega_1}=S_{\omega}R_{\omega_1}-T_{\omega}T_{\omega_1}\equiv 0\ (\mathrm{mod}\ m)$$
 ;

thus, $m \mid S_{\omega-\omega_1}$ and $\omega_2 \leq \omega - \omega_1 < \omega$. Since as with ω_1 , $m \mid T_{3\omega_2}$, it follows that $\omega \mid 3\omega_2$, so $\omega_2 = \omega/3$ or $2\omega/3$. Now if $\omega_1 = \omega_2 = \omega/3$ or $2\omega/3$, then $R_{\omega_1} + S_{\omega_1} + T_{\omega_1} = 0$ implies $m \mid T_{\omega_1}$, which is a contradiction since $\omega_1 < \omega$. Thus, since $\omega_1 \neq \omega_2$, we must have $\omega_1 + \omega_2 = \omega$.

THEOREM 3. If (m, H) = 1 and $m \mid R_n$, then ω_1 exists and either $\omega_1 \mid n$ and $n/\omega_1 \equiv 1 \pmod{3}$ or $w_2 \mid n$, $\omega_2 = \omega_1/2$ and $n/\omega_2 \equiv -1 \pmod{6}$.

Proof. Let
$$n=3\omega_1q+r$$
 $(0\leq r<3\omega_1)$; then $0\equiv R_n=R_{3\omega,q}R_r-T_{3\omega,q}T_r\equiv R_{3\omega,q}R_r\pmod m$

and $m \mid R_r$. We now distinguish two cases.

Case 1. $\omega_1 = \omega/3$. Here we have $r < \omega$ and $3r < 3\omega$. Since $m \mid T_{3r}$, we see that $3r = \omega$ or 2ω . If $3r = 2\omega$, then $r = \omega_2$, which, since $(R_r, S_r) = 1$, is impossible. Thus, $r = \omega/3 = \omega_1$, $\omega_1 \mid n$ and $n/\omega_1 \equiv 1 \pmod{3}$.

Case 2. $\omega_1=2\omega/3$. In this case we see that $r<2\omega$ and $3r<6\omega$. Thus, 3r is one of ω , 2ω , 4ω , 5ω . If $3r=\omega$ or 4ω , then $r=\omega_2$ or $4\omega_2$. Since $(R_r,S_r)=1$, this is impossible. Thus $r=\omega_1$ or $\omega+\omega_1$. If $r=\omega_1$, we have $\omega_1|n$ and $n/\omega_1\equiv 1\ (\text{mod }3)$; if $r=\omega+\omega_1$, then $n=3\omega_1q+\omega+\omega_1=6\omega_2q+3\omega_2+2\omega_2=(6q+5)\omega_2$.

COROLLARY. Under the conditions of Theorem 3, we must have $n \equiv \omega_1 \pmod{3^{\nu+1}}$, where $3^{\nu} || \omega_1, \nu \geq 0$.

THEOREM 4. If m and n are integers such that (m, n) = 1, then $\omega_1(mn)$ exists if and only if $\omega_1(m)$ and $\omega_1(n)$ exist and $\omega_1(m) \equiv \omega_1(n)$ (mod $3^{\nu+1}$), where $3^{\nu} || \omega_1(m)$, $\nu \geq 0$.

Proof. Suppose $\Omega_1 = \omega_1(mn)$ exists; then clearly $\omega_1 = \omega_1(m)$ and $\omega_1^* = \omega_1(n)$ exist and

$$egin{aligned} arOmega_1 &\equiv oldsymbol{\omega}_1 \pmod{3^{
u+1}} & (3^{
u}||oldsymbol{\omega}_1) \ arOmega_1 &\equiv oldsymbol{\omega}_1^* \pmod{3^{
u+1}} & (3^{
u}||oldsymbol{\omega}_1) \ & (3^{
u}||oldsymbol{\omega}_1) \end{aligned}$$

It follows that $\nu = \nu^*$ and $\omega_1 \equiv \omega_1^* \pmod{3^{\nu+1}}$.

If ω_1 and ω_1^* exist and $\omega_1 \equiv \omega_1^* \pmod{3^{\nu+1}} (3^{\nu} || \omega_1)$, put $\Omega = [\omega_1, \omega_1^*]$. We see that

$$\frac{\Omega}{\omega_1} \equiv \frac{\Omega}{\omega_1^*} \not\equiv 0 \pmod{3}$$
.

If $\Omega/\omega_1 \equiv 1 \pmod{3}$, then $R_{\Omega} \equiv 0 \pmod{mn}$; if $\Omega/\omega \equiv -1 \pmod{3}$, then $S_{\Omega} \equiv R_{2\Omega} \equiv 0 \pmod{mn}$. In either case we see that $\omega_1(mn)$ must exist.

In order to continue our discussion of the existence of $\omega_1(m)$ and $\omega_2(m)$ it is necessary to consider the question of the existence of $\omega_1(p^n)$, $\omega_2(p^n)$, where p is a prime. This is done in the next section.

4. Some results modulo p. From the theory of Lucas functions we know that if $p^{\lambda} > 2$, and $p^{\lambda}||T_n$ then $p^{\lambda+\nu}||T_{np^{\nu}}$; also, if $p^{\lambda} = 2$ and $2|T_n$, then $4|T_{2n}$. We will attempt to discover similar results for R_n and S_n . We must deal with the special case p=3 separately.

LEMMA 3. If $3^{\nu}||R_m$ when $\nu \ge 1$, then $3^{\nu}||R_{mn}$ when $n \equiv 1 \pmod 3$; otherwise, $3 \nmid R_{mn}$.

Proof. Certainly $3^{\nu}|R_{mn}$ when $n\equiv 1\ (\text{mod }3)$ (Theorem 1); suppose $3^{\nu+1}|R_{mn}$. Now $3^{\nu+2}|T_{9m}$ and $3^{\nu+2}|T_{3mn}$; hence, $3^{\nu+2}|T_{3m}=(T_{9m},T_{3mn})$, which is impossible. If $3|R_{mn}$ when $n\not\equiv 1\ (\text{mod }3)$, then since $3|R_{mn}$, we have $3|(T_m,R_m)$ or $3|(R_m,S_m)$, neither of which is possible.

We deal now with any prime $p \neq 3$.

THEOREM 5. Let p be any prime which is not 3 and suppose $\lambda > 1$. If $p^{\lambda} \neq 2$ and $p^{\lambda} || R_m$, then $p^{\lambda+\nu} || R_{mp^{\nu}}$ when $p^{\nu} \equiv 1 \pmod{3}$ and $p^{\lambda+\nu} || S_{mp^{\nu}}$ when $p^{\nu} \equiv -1 \pmod{3}$. If $p^{\lambda} \neq 2$ and $p^{\lambda} || S_m$, then $p^{\lambda+\nu} || S_{mp^{\nu}}$ when $p^{\nu} \equiv -1 \pmod{3}$ and $p^{\lambda+\nu} || R_{mp^{\nu}}$ when $p^{\nu} \equiv -1 \pmod{3}$. If $2 || R_m$, then $4 || S_{2m}$; if $2 || S_m$, then $4 || S_{2m}$.

Proof. From the definitions of R_n and S_n it is easy to show that

$$ho^2 S_{mp} -
ho R_{mp} = (
ho^2 S_m -
ho R_m)^p$$
 , $ho S_{mp} -
ho^2 R_{mp} = (
ho S_m -
ho^2 R_m)^p$.

Suppose $p \neq 2$. If $p^{\lambda} || R_m$, then

$$ho^2 S_{mp} -
ho R_{mp} \equiv
ho^{2p} S_m^p - p
ho^{2p-1} R_m S_m^{p-1} \ (ext{mod } p^{\lambda+2})$$
 , $ho S_{mp} -
ho^2 R_{mp} \equiv
ho^p S_m^p - p
ho^{p+1} R_m S_m^{p-1} \ (ext{mod } p^{\lambda+2})$;

therefore,

$$R_{mp} \equiv pR_m S_m^{p-1} \pmod{p^{\lambda+2}} \qquad ext{when} \quad p \equiv 1 \pmod{3}$$

and

$$S_{mp} \equiv p R_m S_m^{p-1} \, (ext{mod } p^{\lambda+2}) \qquad ext{when} \quad p \equiv -1 \, (ext{mod } 3)$$
 .

We get similar results when $p^2||S_m$. Thus the theorem is true for $\nu=1$. That it is true for a general ν can be easily shown by induction on ν . When p=2 we prove the theorem by using the identities (2.2).

When $p \neq 3$, we see that $\omega_1(p^n)$ and $\omega_2(p^n)$ both exist when $\omega_1(p)$ and $\omega_2(p)$ exist. We need now only consider the problem of when $\omega_1(p)$, $\omega_2(p)$ exist. Since $3 \mid T_3$, we see that $\omega_1(3^n)$ exists only if $3^n \mid R_1$ or $3^n \mid S_1$ and similarly for $\omega_2(3^n)$.

Let $p(\neq 3)$ be a prime. If $p \equiv 1 \pmod{3}$, let

$$\pi = r + s\rho$$
,

where $r \equiv -1 \pmod{3}$, $3 \mid s$ and $N(\pi) = \pi \overline{\pi} = r^2 - sr + s^2 = p$; if $p \equiv -1 \pmod{3}$, let $\pi = \overline{\pi} = p$, $N(\pi) = p^2$. We have π a prime in the Eisenstein field $Q(\rho)$ and we define $[\mu \mid \pi]$ to the cubic character of $\mu \in Q[\rho]$ modulo π . That is

$$\mu^{{\scriptscriptstyle (N(\pi)-1)/3}} \equiv \left[rac{\mu}{\pi}
ight] ({
m mod}\ \pi)$$

and

$$\left[rac{\mu}{\pi}
ight]=1\;, \qquad
ho, \quad {
m or} \quad
ho^{\scriptscriptstyle 2}\;.$$

THEOREM 6. If $p \equiv \varepsilon \pmod 3$, where $|\varepsilon| = 1$, and $[H\alpha|\pi] = \rho^{\eta}$, then $p \mid R_{(p-\varepsilon)/3}$ when $\eta = 2$, $p \mid S_{(p-\varepsilon)/3}$ when $\eta = 1$, and $\rho \mid T_{(p-\varepsilon)/3}$ when $\eta = 0$.

Proof. We consider two possible cases.

Case 1.
$$arepsilon=+1$$
. In this case $N(\pi)=p$, $lpha^p\equivlpha\ ({
m mod}\ p)\ , \ \ {
m and}\ \ (lpha H)^{(p-1)/3}\equiv
ho^{\gamma}\ ({
m mod}\ \pi)\ ;$

hence,

$$\alpha^{2(p-1)/3}\beta^{(p-1)/3} \equiv \rho^{\eta} \pmod{\pi}$$

and

$$\alpha^{(p-1)/3} \equiv \rho^{2\eta} \beta^{(p-1)/3} \pmod{\pi}$$
.

The theorem follows easily from this result and the definition of R_n , S_n and T_n .

Case 2.
$$\varepsilon = -1$$
. In this case $N(\pi) = p^2$, $\alpha^p \equiv \beta \pmod{p}$, $(\alpha H)^{(p^2-1)/3} \equiv \alpha^{(p^2-1)/3} \equiv (\alpha^{p-1})^{(p+1)/3} \equiv (\beta/\alpha)^{(p+1)/3} \pmod{p}$.

It follows that

$$\alpha^{(p+1)/3} \equiv \rho^{2\eta} \beta^{(p+1)/3} \pmod{p}.$$

If $\eta=0$ and $p\not\equiv\varepsilon\pmod{9}$, then $\omega_1(p)$ and $\omega_2(p)$ can not exist; for, in this case, $\omega\mid(p-\varepsilon)/3$ and $3\not\vdash\omega$. If, on the other hand, $\eta\neq0$, then ω_1 and ω_2 do exist and

$$egin{aligned} \omega_{_1} &\equiv 2\eta(p-arepsilon)/3 \ (\mathrm{mod} \ 3^{arepsilon}) \ \omega_{_2} &\equiv \eta(p-arepsilon)/3 \ \ (\mathrm{mod} \ 3^{arepsilon}) \end{aligned}$$

where $3^{\flat}||p-\varepsilon$. The question of whether $\omega_1=2\omega_2$ or $\omega_1=\omega_2/2$ seems to be rather difficult. We can give some simple results on this but we first require

THEOREM 7. If p is a prime such that $p \equiv \varepsilon \pmod{6}$, $|\varepsilon| = 1$, $\lambda = (p - \varepsilon)/6$, and $\sigma = (H|p)$ (Legendre symbol), then one and only one of W_{λ} , X_{λ} , Y_{λ} , R_{λ} , S_{λ} , T_{λ} is divisible by p and that one is given in the table below according to the value of σ and η .

σ η	0	1	2
-1	W_{λ}	X_{λ}	Y_{λ}
1	T_{λ}	R_{λ}	S_{λ}

Proof. If $\varepsilon = 1$, $\alpha^{p-\varepsilon} \equiv \beta^{p-\varepsilon} \equiv 1 \pmod{p}$; if $\varepsilon = -1$, $\alpha^{p-\varepsilon} \equiv \beta^{p-\varepsilon} \equiv \alpha\beta = H \pmod{p}$; hence, we easily obtain the result that

$$R_{
m 6\lambda}\equiv H^{{\scriptscriptstyle (1-arepsilon)/2}}$$
 , $S_{
m 6\lambda}\equiv -H^{{\scriptscriptstyle (1-arepsilon)/2}}$, $T_{
m 6\lambda}\equiv 0\,({
m mod}\,\,p)$.

Thus, $W_{{\scriptscriptstyle 6}{\scriptscriptstyle \lambda}}\equiv 2H^{{\scriptscriptstyle (1-arepsilon)/2}}$ and

$$2H^{_{(1-arepsilon)/2}}\equiv W_{_{3\lambda}}^{_2}-2H^{_{(p-arepsilon)/2}}\equiv W_{_{3\lambda}}^{_2}-2\sigma H^{_{(1-arepsilon)/2}}\pmod{p}$$
 .

If $\sigma = -1$, then $p \mid W_{3\lambda}$ and since

$$W_n^2 + 3T_n^2 = 4H^n$$
,

 $p \nmid T_{3\lambda}$. Now $p \mid W_{\lambda}X_{\lambda}Y_{\lambda}$ and the prime p can divide only one of W_{λ} , X_{λ} or Y_{λ} ; for, if it divided any two of these it would divide the third. It follows that it would also divide R_{λ} , S_{λ} , and T_{λ} , which is impossible. If $p \mid W_{\lambda}$, then $p \mid T_{2\lambda}$ and $\eta = 0$; if $p \mid X_{\lambda}$, then $p \mid S_{2\lambda}$ and $\eta = 1$; if $p \mid Y_{\lambda}$, then $p \mid R_{2\lambda}$ and $\eta = 2$.

If $\sigma=1$, then $p \nmid W_{3\lambda}$ and since $T_{6\lambda}\equiv 0 \pmod p$, we must have $p \mid T_{3\lambda}$; thus, $p \mid T_{\lambda}S_{\lambda}R_{\lambda}$. If $p \mid T_{\lambda}$, then $p \mid T_{2\lambda}$ and $\eta=0$; if $p \mid S_{\lambda}$ then $p \mid R_{2\lambda}$ and $\eta=2$; if $p \mid R_{\lambda}$, then $p \mid S_{2\lambda}$ and $\eta=1$.

When p is a prime, $p \equiv 1 \pmod{12}$, and (H|p) = 1, we can obtain a further refinement of the results of Theorem 7. We first require

LEMMA 4. If $p \equiv 1 \pmod{12}$, $\alpha = a + b\rho$, $p \nmid a^2 - ab + b^2$, $\pi_p = r + s\rho$ and $\tau = (as - br \mid p)$ (Legendre symbol), then in $Q(\rho)$

$$\alpha^{(p-1)/2} \equiv \tau \pmod{\pi_p}$$
.

Proof. The proof of this result is completely analogous to the proof given by Dirichlet [1] of a similar result concerning the value of $\alpha^{(p-1)/2} \pmod{\pi}$, when $\alpha, \pi \in Q(i)$, $i^2 = 1$.

Theorem 8. Let p be a prime such that $p\equiv 1\ (\text{mod }12)$, (H|p)=1, $\pi_p=r+s\rho$. If $\tau=(as-br|p)$, $\nu=\tau(H|p)_4$, and $\mu=(p-1)/12$, then one and only one of W_μ , X_μ , Y_μ , R_μ , S_μ , T_μ is divisible by p and that one is given in the table below according to the value of ν and η .

ν	0	1	2
-1	W_{μ}	$Y_{\scriptscriptstyle \mu}$	X_{μ}
1	T_{μ}	S_{μ}	R_{μ}

Proof. Since $W_{(p-1)/2} = \alpha^{(p-1)/2} + \beta^{(p-1)/2}$ and $\alpha^{(p-1)2}\beta^{(p-1)/2} \equiv 1 \pmod{p}$, we see that $W_{(p-1)/2} \equiv 2\tau \pmod{\pi_p}$ and consequently $W_{(p-1)/2} \equiv 2\tau \pmod{p}$.

Now

$$W_{(p-1)/2} = W_{(p-1)/4}^2 - 2H^{(p-1)/4}$$
;

thus, $p \mid W_{3\mu}$ when $\nu = -1$ and $p \mid T_{3\mu}$ when $\nu = 1$.

The remainder of the theorem follows by using reasoning similar to that used in the proof of Theorem 7.

Using Theorem 7, we see that if $\eta \neq 0$, $\sigma = -1$, and if $(p - \varepsilon)/3$ has no prime divisors which are of the form 6t - 1, then $\omega_1 = \omega_2/2$

when $\eta=2$ and $\omega_2=\omega_1/2$ when $\eta=1$. For suppose $\eta=2$, $\sigma=-1$ and $2\lambda=(p-\varepsilon)/3$. Since $Y_\lambda\equiv 0\ (\text{mod }p)$ we see that $S_\lambda\not\equiv 0\ (\text{mod }p)$ and $R_{2\lambda}\equiv 0\ (\text{mod }p)$.

$$2\lambda = \omega_1(3k+1) ,$$

or

Hence

$$2\lambda = \omega_2(6k-1)$$
, where $\omega_1 = 2\omega_2$.

Since no prime factor of the form 6t-1 divides λ , we must have

$$2\lambda = \omega_{\scriptscriptstyle 1}(3k+1)$$
.

If $\omega_1 = 2\omega_2$, $\lambda = (3k+1)\omega_2$ and $p \mid S_\lambda$ which is not so; thus, $\omega_1 = \omega_2/2$.

5. Primality testing and pseudoprimes. In this section we require the symbol $[A + B\rho | C + D\rho]$ of Williams and Holte [7]. In [7] it is shown how this symbol may be easily evaluated. It is also pointed out that if $C + D\rho$ is a prime of $Q(\rho)$, then $[A + B\rho | C + D\rho]$ is the cubic character of $A + B\rho$ modulo $C + D\rho$. We are now able to give the main result of this paper.

THEOREM 9. Let $N=2^n3^mA-1$, where n>1, A is odd, and $A<2^{n+1}3^m-1$. If (H|N)=-1 (Jacobi symbol), $[a+b\rho|N]=\rho^n$ $(\eta\neq 0)$, then N is a prime if and only if

$$X_L \equiv 0 \pmod{N}$$
 when $\eta = 1$

or

$$Y_{\scriptscriptstyle L} \equiv 0 \, ({
m mod} \, N) \qquad when \quad \eta = 2$$
 .

Here L = (N+1)/6.

Proof. If N is a prime, $[a + b\rho | N]$ is the cubic character of αH modulo N; hence, $N | X_L$ when $\eta = 1$ and $N | Y_L$ when $\eta = 2$.

If $N|X_L$, then $N|T_{6L}$. If p is any prime divisor of T_{2L} or T_{3L} , then p must divide one of T_L , W_L , R_L , S_L . From the simple identities which relate R_k , S_k , T_k to W_k , X_k , Y_k , we see that if $p|X_L$, then p must divide two of R_L , S_L , and T_L , which is impossible; hence $(N, T_{2L}) = (N, T_{3L}) = 1$. Let p be any prime divisor of N and let $\omega = \omega(p)$. We have $\omega|6L$ but $\omega \nmid 2L$ and $\omega \nmid 3L$; thus, $2^n|\omega$ and $3^m|\omega$. Since $\omega|p \pm 1$, we have

$$p=2^n3^mu\pm 1.$$

Since N = pS for some S, we have $S = 2^n 3^m v \pm 1$ and $A = 2^n 3^m uv \pm 1$

(v-u). Now A is odd and n>1; hence, one of u, v must be even and $A \ge 2^{n+1}3^m-1$, which is not possible; thus, N is a prime. Similarly, it can be shown that if $N|Y_L$, then N is a prime.

This criterion for the primality of N can be easily implemented on a computer by making use of the identities

$$egin{aligned} R_{2k} &= -S_k (2R_k + S_k) \ S_{2k} &= R_k (2S_k + R_k) \ R_{k+1} &= aR_k + bS_k \ S_{k+1} &= (a-b)S_k - bR_k \; . \end{aligned}$$

The values of a, b can be easily found by trial and then R_L , S_L determined modulo N by using the above identities in conjunction with a power technique such as that of Lehmer [3].

It is of some interest to determine whether there exist composite values of $N=2^n3^mA-1$ such that $A\geq 2^{n+1}3^m-1$, $[a+b\rho\,|\,N]=\rho^{\eta}$, $\eta\neq 0$, $(H\,|\,N)=-1$, and

$$X_L \equiv 0 \pmod{N}$$
 when $\eta = 1$

or

$$Y_L \equiv 0 \pmod{N}$$
 when $\eta = 2$ $(L = (N+1)/6)$.

Such values of N can be considered as a type of pseudoprime. In fact, if $N \equiv -1 \pmod{3}$, $[H(a+b\rho)|N] = \rho^{\gamma}$, $\sigma = (H|N)$, we define N to be an α -pseudoprime to base $\alpha + b\rho$ if it divides the appropriate entry of Table 1 with $\lambda = (N+1)/6$. For example, if $\sigma = -1$, $\rho = 2$, N is an α -pseudoprime if

$$Y_{(N+1)/6} \equiv 0 \pmod{N}$$
.

A systematic search of all composite α -pseudoprimes (<10 $^{\rm s}$) to base 2 + 3 ρ produced the following:

$$egin{array}{lll} N=5777=53\cdot 109 & \eta=1 \;, & \sigma=1 \;, \ N=31877=127\cdot 251 & \eta=0 \;, & \sigma=-1 \;, \ N=513197=41\cdot 12517 & \eta=0 \;, & \sigma=-1 \;, \ N=915983=47\cdot 19489 & \eta=1 \;, & \sigma=1 \;. \end{array}$$

None of these has both $\sigma=-1$ and $\eta\neq 0$. Such α -pseudoprimes seem to be rather rare; however, they do exist. For example, let q, p_1 , be primes such that $q\equiv 1\ (\text{mod }3), \ p_1=6q-1$ and select a, b such that $[a+b\rho\,|\,p_1]=\rho^2$ and $(H\,|\,p_1)=-1$. If p_2 is prime such that $p_2\equiv 13\ (\text{mod }36), \ (p_2,\,p_1(2b-a))=1$ and $Y_q\equiv 0\ (\text{mod }p_2)$, then $N=p_1p_2$ is an α -pseudoprime to base $a+b\rho$ and

$$N|X_{(N+1)/6}$$
,

(N|H) = -1, [a + b
ho|N] =
ho. To prove this we first note that $p_1|Y_q$ and $p_2|Y_q$; hence, $N|Y_q$. We also have $p_2|R_{2q}$, $p_2
mid S_q$ and $p_2
mid R_2 = Y_1S_1$; therefore, $\omega_1(p_2) = 2q$, $\omega_2(p_2) = 4q$ and $\omega(p_2) = 6q$. Since $\omega(p_2)|p_2 - 1$, we see that $12q|p_2 - 1$ and $(p_2 - 1)/12q \equiv 1 \pmod{3}$; consequently, $R_{(p_2-1)/6} \equiv 0 \pmod{p_2}$, $(H|p_2) = +1$, and $[H(a+b
ho)|\pi_2] = \rho$. Now $p_1p_2 + 1 \equiv 0 \pmod{6q}$ and $(p_1p_2 + 1)/6q \equiv -1 \pmod{6}$; hence,

$$X_{(p_1p_2+1)/6} \equiv 0 \, (ext{mod } p_1p_2)$$
 ,

$$(H | p_1 p_2) = (H | p_1)(H | p_2) = -1$$
, and

$$egin{aligned} \left[rac{a+b
ho}{p_1p_2}
ight] &= \left[rac{a+b
ho}{p_1}
ight]\!\!\left[rac{H(a+b
ho)}{\pi_2}
ight]\!\!\left[rac{H(a+b
ho)}{\overline{\pi}_2}
ight] &= \left[rac{(a+b
ho)^2(a+b
ho^2)}{\overline{\pi}_2}
ight] \ &= \left[rac{(a+b
ho^2)^2(a+b
ho)}{\pi_2}
ight] &= \left[rac{(a+b
ho)^2(a+b
ho^2)}{\pi_2}
ight]^{-1} &=
ho \;. \end{aligned}$$

If we put q=5449, $p_1=32693$, a=2, b=3, we have $(H|p_1)=-1$, $[a+b\rho|p_1]=\rho^2$. We also find that the prime 653881 divides Y_{5449} ; hence, $N=32693\cdot653881=21377331533$ is an α -pseudoprime to base $2+3\rho$ and $N|X_{(N+1)/6}$.

6. Acknowledgment. The author gratefully acknowledges the help of the referee in improving the presentation of this material and for correcting many typographical errors.

REFERENCES

- 1. G. L. Dirichlet, Demonstration d'une propriété analogue à la loi de réciprocité qui existe entre deux nombres premiers quelconques, J. reine angew. Math., 9 (1832), 379-389.
- 2. D. H. Lehmer, An extended theory of Lucas' functions, Ann. of Math., (2), 31 (1930), 419-448.
- 3. ———, Computer technology applied to the theory of numbers, M.A.A. Studies in Mathematics, 6 (1969), 117-151.
- 4. P. M. MacMahon, Combinatory Analysis, Chelsea Publishing Co., New York, 1960.
- 5. H. Riesel, Lucasian criteria for the primality of $N = h \cdot 2^n 1$, Math. Comp., 23 (1969), 869-875.
- 6. H. C. Williams, The primality of $N=2A3^n-1$, Canad. Math. Bull., 15 (1972), 585-589.
- 7. H. C. Williams and R. Holte, Computation of the solution of $x^3 + Dy^3 = 1$, Math. Comp., 31 (1977).

Received March 29, 1977 and in revised form November 21, 1977.

THE UNIVERSITY OF MANITOBA WINNIPEG, CANADA R3T 2N2