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SETS WITH (d — 2)-DIMENSIONAL KERNELS

MARILYN BREEN

This work is about the dimension of the kernel of a
starshaped set, and the following result is obtained: Let
S be a subset of a linear topological space, where S has
dimension at least d =2. Assume that for every (d + 1)-
member subset T of S there corresponds a collection of (d—2)-
dimensional convex sets {K,} such that every point of T sees
each K, via S, (aff K;) N S= K,, and distinct pairs aff K,
either are disjoint or lie in a d-flat containing 7. Further-
more, assume that when 7' is affinely independent, then the
corresponding set K, is exactly the kernel of T relative to
S. Then S is starshaped and the kernel of S is (d—2)-
dimensional.

We begin with some preliminary definitions: Let S be a subset
of a linear topological space, S having dimension at least d = 2.
For points «, ¥ in S, we say x sees ¥ via S if and only if the
corresponding segment [z, y] lies in S. Similarly, for TS S, we
say « sees T (and T sees x) via S if and only if x sees each point
of T via S. The set of points of S seen by T is called the kernel
of T relative to S and is denoted kerg T. Finally, if kery S = ker S
is not empty, then S is said to be starshaped.

This paper continues a study in [1] concerning sets having
(d — 2)-dimensional kernels. Foland and Marr [2] have proved that
a set S will have a zero-dimensional kernel provided S contains a
noncollinear triple and every three noncollinear members of S see
via S a unique common point. In [1], an analogue of this result is
obtained for subsets S of R? having (d — 2)-dimensional kernels.
Here it is proved that, with suitable hypothesis, these results may
be extended to include subsets S of an arbitrary linear topological
space.

As in [1], the following terminology will be used: Conv S, aff S,
el S, bdry S, rel int S and ker S will denote the convex hull, affine
hull, closure, boundary, relative interior and kernel, respectively,
of the set S. If S is convex, dim S will represent the dimension
of S.

2. Proof of the theorem.

THEOREM. Let S be a subset of a linear topological space, where
S has dimension at least d = 2. Assume that for every (d + 1)-
member subset T of S there corresponds a collection of (d — 2)-dimen-
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stonal convex sets {K,} such that every point of T sees each K, via
S, @f K;)NS = K,, and distinct pairs aff K, either are disjoint
or lie in a d-flat containing T. Furthermore, assume that when
T is affinely independent, then the corresponding set K, is exactly
the kernel of T relative to S. Then S is starshaped and the kernel
of S 18 (d — 2)-dimensional.

Proof. The proof of the theorem is motivated by an argument
in [2, Lemma 3], and it will be accomplished by a sequence of
lemmas.

LEMMA 1. Assume that conv (K U {z}) U conv (K U {y}) € S, where
K is a convex set of dimension d — 2, x¢aff K and y ¢ aff (K U {z}).
Then the set SN aff (KU {x, y}) is starshaped, and its kernel is a
(d — 2)-dimensional set containing K.

Proof. The argument is identical to the proof of the main
theorem in [1].

LEMMA 2. Assume that conv (K U {x}) U conv (K U {y}) € S, where
K is a convex set of dimension d — 2, x¢aff K and y ¢ aff (K U {x}).
Assume there exists some qe€ S ~ aff (KU {x, y}) such that q does not
see K via S. Then if z sees d — 1 affinely independent points of
K via S, zcaff (KU {z, y}).

Proof. By Lemma 1, the d-dimensional set S N aff (K U {«, y}) is
starshaped, and its kernel K’ is a (d — 2)-dimensional set containing
K. Hence without loss of generality we may assume that K = K'.
Let # =aff (KU {x}), ' = aff (KU {y}), and let &k, ---, k;_, be d — 1
affinely independent points in K seen by z. The affinely independent
points %, ---, ks_y, ¢, © see via S a unique (d — 2)-dimensional convex
set A=@fA)NS, and A< 7 by [1, Corollary 1 to Lemma 1].
Similarly k%, ---, k;_,q, ¥y see a (d — 2)-dimensional set A’, and
A" n'. Clearly each of A, A’ sees K via S. There are two cases
to consider.

Case 1. If K, z, and ¢ are not in a (d — 1)-dimensional flat,
then the affinely independent points %, ---, ks_y, 2, ¢ see a unique
(d — 2)-dimentional set R, (af RY\NS =R, and R must lie in
aff (KU {z}): Otherwise, {k, ---, k;_,, 2} UR would contain a set T
of d 4+ 1 affinely independent points with corresponding segments in
S, contradicting the fact that K, is a convex set of dimension d — 2.
Again by Lemma 1, the d-dimensional set Snaff (KU({z q}) is
starshaped, and its kernel must be R. Thus K sees R via S, so R,
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A, A’ all see KU {q} via S. Hence RU A U A’ cannot contain d + 1
affinely independent points, and R < aff (A U A’) < aff (x Ux’). Since
g sees R but not K via S, R = K, and aff (KU R) is (d — 1)-dimen-
sional. Then aff (KU {z}) = aff (KU R), and zeaff (KU R) € aff (x U
'), the desired result.

Case 2. If K, 2z, and ¢ lie in a (d — 1)-dimensional flat, then
since g¢aff (KU {«}) U aff (KU {y}), neither x nor y is in that flat.
However, K, z, q, x lie in a d-dimensional flat, and this flat is exactly
aff (KU AU ({z, q}) =aff (KU A U{q}). Since conv (KU 4A) U conv (4 U
{¢h) < S, by Lemma 1, A is the kernel of Snaff (KU A4 U {q}), and
z sees A via S. Since S cannot contain d + 1 affinely independent
points with corresponding segments in S, KU A U {2} must lie in a
(d — 1)-dimensional flat, and zeaff (KU A) S aff (x Ux'). (In fact,
z€ K.) This completes Case 2 and finishes the proof of Lemma 2.

LEMMA 8. Assume that conv (K U {x}) U conv (K U {y}) & S, where
K is a convex set of dimension d — 2, x ¢ aff K, and y ¢ aff (K U {x}).
If qe S ~ aff (KU {z, y}), then q sees K wia S.

Proof. Assume on the contrary that ¢ does not see K via S to
reach a contradiction. As in the previous lemma, we may assume
that K is the kernel of Snaff (KU {z, y}). Let m = aff (KU {x}),
' = aff (KU {y}), and let A, A’ denote the (d — 2)-dimensional subsets
of r, 7’ seen by k,, -+, ks_, ¢, x and by %, ---, k;_,, q, ¥, respectively,
where k,, ---, k;_, are affinely independent points in K. Then A and
A see KU{q} via S, so AU A’ cannot contain d + 1 affinely in-
dependent points, and A U A’ lies in a (d — 1)-dimensional flat. By
hypothesis, since A and A’ both correspond to K U {q} and KU {q} U
AU A’ does not lie in a d-flat, the distinct sets aff A and aff A’ are
disjoint, and these sets must be parallel in aff (4 U A’). Further-
more, since K and A’ lie in n/, af Knaff AZ aff (KU AN
af (AUA) =aff A, and af KNnaf Acaff A’Naff A= @. Hence
aff K and aff A are parallel in 7. Similarly, aff K and aff A’ are
parallel in 7/, and it is easy to see that af Knaff (AU A) = @.

Select some point % in rel int conv (4 U {q}), and examine the
d-dimensional flat aff (AU A’ U{u}), which contains gq. Clearly
aff (AU A’ U {u}) intersects aff (x U7’') in exactly aff (4 U A’). Hence
for any point #» in rel int conv (A'U{q}) S aff (AU A’ U{u}), the line
L(u, v) determined by % and v does not intersect aff K, and K, u, v
affinely span a full d-dimensional set. Furthermore, for any point
I in aff K, the plane aff (k, u, v) intersects aff (x Ux’) in a line
containing %, and this line cannot intersect aff (4 U A4’): Otherwise
k would lie in af (AU A" U {u, v}) naff (x Un') = aff (AU 4’), impos-
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sible. Hence aff (K U {u, v}) Naff (AU 4’) = @, and the d-dimensional
flats aff (K U {u, v}) and aff (x U @’) intersect in a (d — 1)-dimensional
flat in aff (x U #’) parallel to aff (4 U A").

To complete the proof, we will find some nonempty subset F' of
S contained in aff (AU A’) Naff (KU {u, v}), giving the desired contradic-
tion. Let E = (aff E) N S denote the (d — 2)-dimensional subset of
S seen by k, ---, ks, w, and v. By Lemma 2, each point of FE lies
in aff (x U 7'), and since K is the kernel of SN aff (x Ux’), each point
of E sees K via S. Hence E U K cannot contain d + 1 affinely
independent points, and dimaff (FUK)<d — 1. Clearly K= E:
Otherwise # and v would see K via S and by Lemma 2, u,ve
aff (K U {x, ¥}), impossible by our choice of # and w». Therefore
aff (F U K) is a (d — 1)-dimensional subset of aff (x U ©’), and E, K, {q}
affinely span a d-flat. By selecting d affinely independent points in
E U K, these points together with ¢ see a (d — 2)-dimensional sub-
space F' of S, and it is easy to see that FC aff (KU K) S aff (x U x').
Hence F sees K via S. We conclude that F, 4, A’ all see KU {q}
via S, so FFU A U A’ cannot contain d + 1 affinely independent points,
and FCaff (AU A4").

Finally, we show that F & aff (KU {u, v}). Observe that u¢
aff (x Un’), so the set KU E U {u} contains d + 1 affinely independent
points, and by Lemma 1, the kernel of Snaff (KU E U{u}) is E.
Also, there exist points in S ~ aff (KU E U {«}) which do not see E
via S: In particular, at least one of the sets A, A’ cannot lie in
the d-flat aff (KU FE U{u}), for otherwise unecaff (KUEU {u}) =
aff (KUAU A) =aff (xUx’), impossible. If A ZLaff (KU E U {u}),
then A cannot see E via S (for otherwise KU E U A would contain
d + 1 affinely independent points with corresponding segments in S).
Similarly, if A" &£ aff (KU E U {u}), then A’ cannot see E via S.
Thus the set conv (K U E) U conv (F U {u}) satisfies the hypothesis of
Lemma 2, and we may apply that lemma to conclude that ve
aff (KU E U {u}). Therefore KU E U F U {u, v} lies in a d-flat, and
since K U {u, v} contains d + 1 affinely independent points, this flat
must be exactly aff (KU {u, v}). Hence F C aff (K U {u, v}).

We conclude that F < aff(AU A")Naff (KU {u, v}) = @. This
yields the desired contradiction, our opening assumption is false, and
q sees K via S, finishing the proof of Lemma 3.

The rest of the proof is easy. Select a set T consisting of
d + 1 affinely independent points of S, and let K = kery T. Since
dim K = d — 2, we may select points «, ¥ in T with x¢aff K and
yeaff (KU {x}). Then K, x, ¥ satisfy the hypotheses of Lemmas 1
and 3, and by the lemmas, K < ker S. Since ker S S ker; T = K,
we conclude that K = ker S. Hence S is a starshaped set whose
kernel is (d — 2)-dimensional, completing the proof of the theorem.
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We conclude with the following analogue of [1, Corollary 3]:

COROLLARY. The hypothesis of the theorem above provides a
characterization of subsets S of a linear topological space, S having
dimension at least d = 2, for which K = ker S has dimension d — 2,
af K)NS = K, and the maximal convex subsets of S have dimen-
siton d — 1.

Proof. 1If S satisfies the properties above, then to each (d + 1)-
member subset T of S, the set K = ker S will be a suitable K, set.
For K, and K, distinet K, sets, we assert that T, K,, and K, lie
in a d-flat: At least one of the sets K,, K, is not K, so without
loss of generality assume that K, # K. Since maximal convex sub-
sets of S have dimension d — 1, clearly each K, set liesina (d — 1)-
dimensional flat containing K, ¢ =1, 2, and it is easy to see that
each point of 7T lies in the (d — 1)-flat aff (K, U K). Furthermore,
if T K, then K, must also lie in aff (K, U K), finishing the
argument. In case T & K, then since both K, and K, lie in (d — 1)-
flats containing K, the set K, U K, U K lies in a d-flat, and this flat
contains K, U K, U T, again the desired result.

The remaining steps of the proof are identical to those of [1,
Corollary 3].

REFERENCES

1. Marilyn Breen, Sets in R? having (d — 2)-dimensional kernels, Pacific J. Math., 75

(1977), to appear.
2. N.E. Foland and J. M. Marr, Sets with zero dimensional kernels, Pacific J. Math.,

19 (1966), 429-432,
Received June 20, 1977 and in revised form November 7, 1977.

UNIVERSITY OF OKLAHOMA
NorMAN, OK 73019








