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ON THE STRONG COMPACT-PORTED TOPOLOGY
FOR SPACES OF HOLOMORPHIC MAPPINGS

M. BlANCHINI, 0 . W. PAQUES AND M. C. ZAINE

Suppose E is a separated complex locally convex space,
U is non void open subset of E, F a complex normed space
and <^(U;F) the complex vector space of all holomorphic
mappings from U into F. On &?{U;F) we consider the
following topologies; a) τωs, the topology generated by the
seminorms p which are K — B ported for some KczU com-
pact and BcE bounded. A seminorm p is K — B ported if
for every ε > 0 , with K + εB c U9 there is c(ε) > 0, such that
P(f)^c(ε) sup{\\f(x)\\;xeK-fεB} for all fe^(U F); b) r0,
the compact open topology; c) τTOS the topology defined by
J. A. Barroso in "Topologias nόs espaςos de aplicaςδes holo-
morfas entre espaςos localmente convexos", An. Acad. Brasil.
Ci, 43, 1971. The topology τωs is an generalization of the
Nachbin topology (L. Nachbin, Topology on Spaces of Holo-
morphic Mappings, Springer-Verlag, 1968). The following
results are valid: 1. ^ c £t?{JJ\ F) is τ0-bounded if, and only
if, <%? is τ^-bounded. 2. ^a^f{TJ\F) is τ^-relatively com-
pact if, and only if, £? is r^-relatively compact. 3. Let E
be a quasi complete space. Then τ0 = τm on <%f(Em,C) if,
and only if E is a semi-Montel space. Moreover, the com-
pletion of &?(E\ C) on the τm topology and the bornological
topology associated to τ0 are caracterized via the Silva-
holomorphic mappings.

Throughout this article the following notations will be used. E
is a complex separated locally convex space; U is a non void open
subset of E; F is a complex normed space; 3ίf(JJ\ F) is the complex
vector space of all holomorphic mappings from U into F: ^{nE\ F)
is the complex vector space of all continuous ^-homogeneous poly-
nomials from E into F;{ljn\)dnf{t)e^(nE\F) is the nth coefficient
of the Taylor series of / at t, n = 0, l, , / e ^ ( t 7 ; F); r0 is the
compact open topology on 3$f{U\ F); rTO8 is the locally convex to-
pology on £ίf(TJ\F) generated by all seminorms of the type

Vκ,nM) = teK, ueB

where n = 0,1, , K is a compact subset of U, B is a bounded
balanced subset of E; ^8(

nE; F) is \0*(*E; F) endowed with the
locally convex topology of the uniform convergence on bounded
subsets of E. We will introduce a new locally convex topology, τωs9

on έ%f{TJ\F) which, in some cases, coincides with the Nachbin
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topology τω (Nachbin [8]). The topology τω has been extensively
studied in the theory of infinite dimensional holomorphy. (Nachbin
[7].) For example, τω8 = τω on g(f(E\ C) = Sff{E)} if E is normed.
Furthermore, τω8 = r0 (the compact-open topology) on βέ?(E), if E is
a Montel space (see Corollary 1.14). In the § 1, the rω8-continuous
seminorms are characterized and we generalize for locally convex
spaces a result of Dineen [5], which is true for Banach spaces. The
τω8-bounded subsets and the τω8-relatively compact subsets of
έ%f(JJ\F) are studied. In the §2, it is given a characterization of
the completion of {£^{Έ), τωg). In the § 3, it is given a characteriza-
tion of the τoh (bornological topology associated with τ0)-continuous
seminorms on H{E). (Here, H(E) denotes the set of all functions
f:E-*C, such that there is Pn in &*(nE), for n = 0,1, , so that,
for each KaE compact, B c E bounded, there is a = a(B) > 0, with
/ = ΣϊU Pn, uniformly on K + aB.)

For basic material on Infinite Dimensional Holomorphy we refer
to [6], [7], and [8].

1* The strong compact-ported topology*

DEFINITION 1.1. Let B be a bounded balanced subset of E and
K be a compact subset of Z7. A seminorm p on <!%f(U; F) is K— B
ported or strongly ported by K if for each ε > 0, with K + εB c U,
there is c(ε) > 0 such that

P(f) ^ c(e) sup (||/(ί) ||; t e K + εB}

for every fe βέ?(U; F). The locally convex topology τω8 on £έf(U\ F)
is generated by all seminorms which are strongly ported by com-
pact subsets of U. It is called the strong compact-ported topology.

PROPOSITION 1.2. // K is a compact subset of U, B is a balanced
bounded subset of E and p is a seminorm on 3ίf{JJ\ F), then the
following conditions are equivalent:

(1) p is K — B ported
( 2 ) For each ε > 0, there is c(ε) > 0 such that

oo ί l 1 ^ )

p(f) ^ c ( e ) Σ ε * S U P ] — d n f ( t ) ;teK[
n=0 U n\ B )

for all

If U is balanced τωβ is generated by all seminorms p such that for
some KczU compact and BaE balanced and bounded, for each
ε > 0 there is c(ε) > 0 such that
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(*)

for all fe<%?(U;F).

»=0 II \K + ε

Proof. Let p be a K — B ported seminorm on Sίf(Jl\ F). Thus
for each ε > 0 such that K + εB c U there exists c(ε) > 0 satisfying

for all

Thus

p(f) ^ c(e) s u p { | | / ( ί ) | | ; teK + εB}

F). For t = k + εb e K + εB we have

^ c(e) Σ s" sup
n\

& e K, b e B |

and (1) implies (2).
Conversely, suppose that p is a seminorm on έ%f(JJ; F) as in

(2). Then

P(f) ^ sup ^ ^ d»f(h)(εb) \\;keK,beB\ .
n] II )

Let ε > 0 be such that K + εB c U. Let ε' = ε/2 > 0. By the Cauchy
integral formulas we get

sup
n\

Δ

;k&K,bzB\

•Xε'b)\\;keK,beB, |λ| = 2}

Hence

p(f) <: c(- | ) Σ A sup (11/(2/)|i; 2/ e JΓ +

- 2c(|-)

| ) Σ

sup ; y e K + εB}

and (2) implies (1).
Now we suppose that U is balanced and that p is K— B ported.

Thus for every ε > 0, with K + εB c Z7, we have the existence of
c(e) > 0 such that
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Vif) ^ Φ) sup {||/(ί) ||; 16 K + εB}

for all feβέ?(U;F). Since U is balanced

fik + eft) - Σ - l 4 /(0)(fc + e6).

for keK,be B. Hence

-±-dnf(O)(k + e&) fc e if, 6 e £

and it follows that

Conversely let p be a seminorm satisfying (*). Let p > 1 be
such that pKdU. For each ε > 0 such that ĴSΓ + ε ^ β c U , we
have by Cauchy inequalities

λs6)||; A eiΓ, beB, |λ | =

where ^ is the balanced hull of K. Hence

p(f) £ c(ε)
p-1

and p is pK — pB ported.

sup

LEMMA 1.3. Let f = Σ»=o (dnf(Q)/n[) e JT(J7; F) , w/iere UaE is
balanced. Then for each KaU balanced compact, BczE balanced
bounded and (α«)»=0 6 Ct, we have

(*)

Proof. Let /, if, JB and (#B)SU as above. By (4) Proposition 1.8,
there is s > 0 such that K + εBcU and Σ»=« I\dnf(0)/nl\\K+eB < «>.
Since (άB)"= oeCί, let w0 be a positive integer such that an ^ e for
•n, ^ %0. Then, we get
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dnf(O) II

37

n\ nl
for n0\\K+εB

Hence

Since

we have (*).

nl

dnf(Q)
nl

K+anL

K+an

LEMMA 1.4. If fe <%?(U; F) and U is balanced, then the Taylor
series of f at 0 converges to f in (£έf(JJ\ F), rω s).

PROPOSITION 1.5. // U is balanced, the topology τω8 in 3ίf{U\F)
is generated by all seminorms of the type

( 1 ) P(f) - Σ
n\

for all fe£έf{U\F), where (#»)?=<> €Cαy KaU is balanced compact
and BdE is bounded and balanced.

Proof. By Lemma 1.3, all seminorms of this type are well
defined. Then, it is obviously a seminorm on 3ίf(JJ\F). Now, we
show that p is rω8-continuous. Given ε > 0, choose nϋ a positive
integer such that an <̂  ε for all n ^ n0. As Lemma 1.4, we get

K+eBnl nl

for all f
For n = 0,1, , n0 - 1, there is δ > 0 such that δ(K + άκB) c

K + BB. SO, for all fe JZf(U; F) and n = 0,1, , n0 - 1,

d»f(0)
nl K+αnB

dnf(O)

nl K+εB

Therefore

Σ
dnf(0)

nl K+αnB

dnf(0)
n\ K+εB

Hence p is continuous on (J%f(U) F)τω8). Now let px be a continuous
seminorm on {^f(TJ\F\τω8). We show that px is dominated by a
norm of the form (1). By Proposition 1.2, for some KαU compact
and balanced and BczE balanced and bounded, px satisfies: for each



38 M. BIANCHINI, 0. W. PAQUES AND M. C. ZAINE

ε > 0, there is c(ε) > 0 such that

d»f(0)
nl K+εB

for nil feβέ?(U;F) .

Let δ > 1 such that δ Kcz U. For Pn e ̂ (nE; F)9 p,{Pn) ^ c(ε)\\Pn\\κ+εB.
For each n and ε > 0, let Kn(ε) be the smallest positive number or
zero such that px(PJ ^ Kn(ε)\\Pn\\κ+εB for all Pne^(nE;F). Since
Kn(ε) ^ c(s) for all n9 we get l im,^ sup Kn(ε)ί/n ^1 < δ.

Now choose a positive integer nx such that (iΓw(l))1/w ^ δ for all
n ^ ^ and by induction take nk such that nk > nk^ and (Kn(l/k))Un < 2
for w ̂  nk. Let

1 for ^ < n2

1/k for nktίn < wfc+1 .

Then («JΛ=o€Co
+ and jK:w(αΛ)

1/Λ ̂  δ for w ̂  nx. Hence there is C > 0
such that Kn(an)<C.δn for all n. Therefore by Lemma 1.4, we get

Σ Kn(an)
n=0

^ C.
n\

n=0 n\

PROPOSITION 1.6. Let

bounded if, and only if,
be a subset of 3ίf{XJ\ F). <%f is τωs-

is τrbounded.

Proof. It is suffices to show that if ^ is rebounded then
is τωs-bounded. Suppose <̂ Γ is τ0-bounded. By [2], Proposition 4,
for all KaU compact and BaE bounded, there are C2=0 and
c ^ 0 such that

sup
n\

xeK and feg?\ ^ Ccn , for all neN.
)

Therefore, for any p seminorm on £ίf(JJ\F), K — B ported, given
ε > 0, there is c(ε) > 0 such that

sup {p(/); / 6 JT} ̂  c(ε) Σ ε% sup 111— dnf(x) a; e K and / e JT]•

^ c(ε) Σ ε"CcΛ .
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Choose ε > 0 so that εc < 1, we obtain

sup {?(/);/ejr}< - ,

that is, <gf is r^-bounded.

REMARK 1.7. By [3] Example 3, and above proposition we get
?<os Φ τω is general .

PROPOSITION 1.8. Let gf'cz^f(U F) be τ0-bounded. Then the
uniform structures associated with τω8 and r^, induce the same
uniform structure in <%f. In particular, τω8 and ?«>, induce on
the same topology.

Proof. Let us assume first that 0 6 <%f and prove that a subset
of <3? is a neighborhood of 0 in the topology on ^ induced by τω8

if, and only if, it is a neighborhood of 0 in the topology on J2?
induced by ?«,,. One half of this assertion is clear from τ^* ̂  τω8.
Conversely, let p be any seminorm on 3ίf(JJ\ F) K — B ported. Then,
given ε > 0, there is c(ε) > 0 such that

Since <%f is τ0-bounded, there are C ^ O and c ^ 0 such that

sup
_1. •d«f{x) xeK and fe&Λ ^ C.cn ,

B )

for all neN. Next choose ε > 0 so that εc < 1 and n0 e N by

•C.c(e).Σ («>)-<-5"

Define the τ^8 continuous seminorm q by

<?(/) = Φ ) Σ e m s u p {I -±-d™f(x)\\;xeκ\.
m=o (I m\ WB )

It is then clear that, if / e J T and q(f) ^ 1/2, then p(f) ^ 1. This
proves that τω8 ]*, = τ^ U

If we next consider any subset ^ bounded for τ0, the set
^ — J2f is bounded for τ0, and it contains 0. Since the neighbor-
hoods of 0 in the topology on £f — <%f induced by τωs and τ^ are
identical, it follows that the uniform structures on J2f induced by
the uniform structures associated to τω8 and τ^ are identical.

COROLLARY 1.9. Let f e <3έf( U; F) for allceN and f e JT( U; F),
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then fe-+f for τωs as c —> oo %fy and only if, ft—>f for τ^ as c —> °o.

COROLLARY 1.10. Let £f c ^f{TJ\ F). Then <%f is τωs-relatively
compact if, and only if gf is τ ̂ -relatively compact.

PROPOSITION 1.11. Let F be complete and gf c <%f{U\ F) lacally
bounded. Then ^ is τω8-r datively compact if, and only if,
{(l/n\)dnf(t); / e < ^ } is relatively compact in &*,(*E; F), VneN,
vteU.

Proof. First we assume <%f is rωg-relatively compact. For each
ξ e U and neN, the mapping

f

is continuous. In fact, ?(/).— ||(l/w!)dw/(f)||5 is a seminorm {ζ} — B
ported. Choose p a seminorm on έ^8(

nE; F) such that p(P) = \\P\\B

for every P e ^(nE; F), we obtain p(φξ(f)) = q(f). Hence the image
of <%f Jis relatively compact in ^8(

nE; F) for every ^eiSΓ, that is,
{(l/n\)dnf(t); f e £f) is relatively compact in &*8(

nE;F)Vn e N, Vt e U.
Conversely, suppose that {(l/n\)dnf(t); f e<%?} is relatively com-

pact in ^8(
nE; F)Vn e N, and te U. Since <^ is locally bounded, it

is τωβ-bounded and £fτ<»s — <%fτ°°*. Hence to prove that <%f is rela-
tively compact for zω8 we shall show that ^ is relatively compact
for τωs topology. Let

φ: ^(U; F)—-> Πo ̂ (U; ^s(
nE) F))

/—(lav)
On ^tf(JJ\ F) consider the topology τ^ and on Π:=o ̂ T(C7; &β(*E; F))
we consider the product of the topologies τ0 on each factor. By [2],
Proposition 2.5, ^ ( ^ ( [ ί ; F)) c ΠΓ=o ̂ ( f ; ^ ( ^ ί7)). Φ is a con-
tinuous linear injection and φ"1 is also continuous.

To show that <%? is τω8-relatively compact it is equivalent to
show that .Φ(£f) is relatively compact for the product topology. It
is enough to show that ΐlnφ(<^) = {(l/nl)dnf;feJg?}, that is, the
projection in each (<3έ?(U; ^8(

nE; F)), τ0) is relatively compact.
By the assumption that <%f is locally bounded, we have. gf

equicontiήuous by [1], Proposition 3.4, and then ΐ[nφ(<£f) is equi-
continuous. So we have by assumption that Tlnφ(<£f) is pointwise
relatively compact. Hence by the Ascoli's theorem (Bourbaki-cap. X)
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is Γo-relatively compact.
Since F is complete the closure of φ(<£f) for the product to-

pology is contained in φ(3ίf(JJ\F))y so we have JPΓoo« is compact
for To,, topology.

The next proposition belongs to J. A. Barroso, [1], where the
proof contains some small mistakes and here they are corrected.

PROPOSITION 1.12. Suppose F Φ {0} and E be a locally convex
space such that corresponding to every bounded subset BczE there
is a compact subset KczE such that B is contained in the closure
of the absolutely convex hull of K, Γ(K). Then τ0 — τ^ on 3ίf{JJ\ F).
Conversely, ifr0 = τOO8 on £ίf(U) — J%*{U)C), then corresponding
to every bounded subset BaE, there is a compact subset KaE such
that B is contained in Γ(K).

Proof. We prove the first part. Thus let E be a locally convex
space such that corresponding to every bounded subset BaE there
is a compact subset KczE such that B is contained in Γ(K). Since
τ0 ^ w it is enough to show that τ^ <; τ0 on 2ίf{JJ\ F). Let p be
a ΓooS continuous seminorm, KodU compact, B, such that

p{f) = sup \dnf(t)

n\

for all fe£έf(U;F), where J is a finite subset of N.
For each neN, we have that

Usupί
teκ0 \

<S sup
teK0

xel (K)

<; sup

dnf(t)

n\

dnf(t)
nl

O, •••, x)

dnf{t).

n\

By the polarization formula, we have for K (K be the balanced
hull of K), that

sup
teK0

By the Caμchy formula, we obtain

sup
d»f(t)

'+K
n\

(x)

supj
dnf(t)

nl

ι-± sup ||/(j/)||.
]Λ P yeKQ+p(K+ "+K)

If we take p > 0 such that Ko + ρ(K + + K) = L is contained
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in U, we obtain a compact subset of U and

therefore rMί ^ τ0 on J^(ί7; ί 7).
Conversely, if τ0 = rTO8 on Sίf{JJ\ then τo/£" = τJE'. There-

fore, the τ^-topology of uniform convergence on bounded subsets
of E is induced by τ^ in E' and τJE' = τβo. Hence if B c £7 is a
subset bounded of E, B° is the polar of B, there is a compact subset
K of E and ε > 0, such that if

then V£ B°. Therefore B c B o o c F°. But if xe V\ we claim
\T(x)\ ^ e'MIΓIU for all TeE'. In fact if 8 > 0 and TGJE', then
for G = εΓ/(||Γ|U + <5), we have | | G | | ^ ^ ε and so G e F and so
\G(x)\ ̂  1. This gives | T(x)\ ̂  ε-̂ H Γ|U + 8) and as δ is arbitrary,
it follows that | T{x)\ ̂  ε"1!! T\\κ for all TeE'. So if L is ΓOSΓ)
then |Γ(ea?)| ^ | | Γ | U ^ | | Γ | U , if α e F° and Γ e S ' . This implies, via
the separation theorem, that εxeL for x e V°. Thus V° c ε"1!/. So
B c 7 ° c ε " 1 ! / . This completes the proof.

REMARK 1.13. In the second part of this proof it is enough to
suppose that r0 = τu where τu is the locally convex topology generated
by all seminorms of the type:

for all fe Sίf{JJ\ F), where KaU is compact a n d ΰ c J Ϊ is bounded.

COROLLARY 1.14. Let E be a locally convex space so that the
closure of the absolutely convex hull of every compact is compact.
Then τ0 = τω8 on Sίf(Έ) if, and only if, E is a semi-Montel space.

One part of the proof of the Corollary 1.14 is given more di-
rectly by considering seminorms of the type

/ >suv{\\d1f(O)x\\;xeB},

for all feβέ?(E), where BaE is bounded. This seminorm is τ l8-
continuous, thus τω8-continuous and, by hypothesis, r0-continuous.
Therefore for all TeE' and xeB, \T(x)\ ^ c\\T\\κ ^ c\\T\\Γ{κ), for
some KaU compact and c > 0. Then, via the separation theorem,
we obtain that Bczc. Γ{K). Sence Γ(K) is compact by hypothesis,
this implies that E is a semi-Montel space.
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2* The completion of (3ίf(E), τωa). In here, the completions
are considered as subspaces of the space of the G-holomorphic func-
tions in E. We denote by 'gefjjsl) the set of all functions f:E->C
such that there is Pn in the completion of ^8{

nE), for n = 0,1, ,
so that for each KdE compact, BdE bounded there is α = α{B) > 0

with / = Σ -P» uniformly on K + αB. We use the notation ^E)

for the completion of {^f{E\ τωs) and &*8{
nE) for the completion of

^8(
nE). Here we prove that 3ίf8{E) = Sif^E). For this we need

the following lemma.

LEMMA 2.1. // feJg^E), there is Pn e &j(*E), for n = 0,l,
such that f(t) = Σ«=o Pn(t) for each teE. Furthermore, if p is a
τωs-continuous seminorm on Sίf(E), such that

P(f) = Σ
n\ K+anB

for all fe<%f(E), for some KdU balanced compact, BdE bounded

balanced and (αjSU e Ct9 then the extension p of p on £έf8(E) is
given by:

P(f) = Σ \\P«\\κ+«nB for all f ^

Proof. Let fej^8(E) and (fa)a9Λ a Cauchy net in (3ίf{E),τω8)
such that limaeΛfa ~ f. Note that in particular, for each teE,
limaeΛ fa(t) = f(t). Then, if p is a τωs-continuous seminorm on
{£έf(E), τωs) given KdE compact balanced, BdE bounded balanced,
(αft)?=0 6 Ct and ε > 0, there is λ 6 A such that, for a, β > λ,

n\ n\ K+anB

Hence for any positive integer m and a, β ^ λ, we have

_ d«fβ(0)
( 1 )

n\ n\
<ε .

Since {fβ)β&Λ is a Cauchy net in (Sίf{Έ), τω8), for n = 0 , 1 , •••,

(dnfβ/n\)βeΛ is a Cauchy n e t in ^8(
nE). F o r each w = 0 , 1 , •••, let

P Λ = limjei4c£*/j(())/w!. If we take a^X and the limit in (1) for

βeΛ, we g e t

( 2 ) - P . < e f

for any positive integer m.
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In particular we get

m °° dnf CO)
n=0 n n=0 Ύl\ K+anB

Thus

( 3 ) + ε <
\K+anB

By (3) we have in particular that Σ2U PJf) *s finite for each t e E.
If we take the limit in (2) for m -> °o f we get in particular for
each t e E;

n=0 Til
< ε for a ^ λ and ε > 0 ,

that is,

/«(*)-ΣP.(«)

Therefore, for each ί eJS', • ]imaeAfa(t) = Σ*n=oPn(t), that is, /(ί) =
Σ?=o-P»(*) T^is Proves the first part of the lemma.

By (3), wehave p(f) is finite for each fe£έf8(E). Now, to prove
that p(f) = Σ£=o\\P»\\κ+aHBf it- is enough to prove that, for ε > 0
there is noeN and λ e Λ, such that for m ^ n0 and a: ;> λ,

Σ ll-PίJ
K+anB

<s .

But by (2), for a ^ λ, m 6 JV and ε > 0,

n\

I p || _

n\ K+anB

< e
n\ Wκ+anB

REMARK 2.2. On SίfJJsl) we may define the rωs-topology and
show in the same way as Proposition 1.5 that this topology is equi-
valent to the topology defined by the seminorms of the type used
there. Furthermore as in the Lemma 1.4, we obtain that if fe

β^c(E)y there is Pn in ^8(
nE) for each n = 0,1, , so that ΣSU P*

converges to / in (£έfc{E),τωs).

PROPOSITION 2.3.
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Proof. By definition, we have SίfJ^E) c βero(β). Let now fe

J%?£E). Then by the remark above, there is Pne^8(
nE) for each

n = 0,1, ., such that ΣϊU>P» converges to / in {Sίfc{E\ τωs). For

each fc=0,1, ••-, n, Phe^J^E)c:^E). Therefore Σϊ=oP*e^5lS) .

Since (Σ*=o P*)»=o is a Cauchy sequence in (gίfJJS), τω8) we have by

the remark above and the previous lemma, that (Σ5=oP*)2U is a

Cauchy sequence in ggfJίJS). Therefore, / = 'Σ?=oP* belongs to

3* The rQb topology on H(E). We denote by H(E) the set of
all functions f:E->C such that there is Pn in &*(nE) for n = 0,1, ,
so that for each KcE compact, BaE bounded, there is a = a(B) > 0
with. / = ΣSU-P» uniformly on X + aB. δnf(0)/n\ denotes the nth
coefficient of the Taylor series of / at 0, n = 0,1, •••, for each fe
H(E). We may define the τ^-topology on H(E) as in 1, and obtain
similar results to Propositions 1.2 and 1.5. τQh denotes the bornological
topology on H(E) associated with τ0.

PROPOSITION 3.1. Let / = Σ =o-P pointwise, with Pn

ne N. Then the following three conditions are equivalent:
(1) feH(E).
(2) For each KaE compact balanced, BczE bounded balanced

and (ίO"= 0eC0

+, we have

!*+«.* <

(3) For each KaE compact balanced, BczE bounded balanced

and (α«)ΪU e Cf, we have

LEMMA 3.2. <^aH(E) is τ^bounded if, and only if, is τω8-
bounded.

LEMMA 3.3. Let (Λ)?=o be a bounded subset of (H(E), τωs), then

LEMMA 3.4. Let <%f he a bounded subset of (H(E), τω8) then the

set (n*$*f(fl)/nl)Z=o,feχ> is bounded in (H(E),τ0).

The proof of the Lemma 3.2 is the same as Proposition 1.6.
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Proposition 3.1 and Lemma 3.3 are proved in the same way Dineen
proves Proposition 2 and Lemma 5 [4] with minor modifications.
Lemma 3.4 is proved in a similar way as Lemma 1.2 [5].

PROPOSITION 3.5. Let p be a seminorm on H(E) with the fol-
lowing properties:

(1) For each n = 0, 1, , p induces on ^(nE) a topology
weaker than or equal to the τ ̂ -topology.

(2) Σ?«OP(S / ( O ) / Λ ! ) < oo for every f = ΣSU$ /(0)M! eH(E).
Then, Pi(f) = Έ*n=o p(δnf(0)/n\) is a continuous seminorm on

), τob).

Proof. Since τob is a bornological topology it is suffices, to show
that for each bounded set £f on (H(E), τ0), we have sup / e j r p^f) < °°.
By condition (1), we get for each n that

Now suppose sup/βirPi(/) = °°. By (*) and the definition of p19

we thus have for each positive integer nQ

sup Σ

Choose Λ such that Σ?=oί>(δ%/i(O)M!) ̂  2 and take ^ such that

By induction, choose for each k, fk such that

oo

_Σ

and take n
k
 such that

2 p(
 Jn
^ \ :> i (n

k
^k).

Let /i for 0 <^ n ^ nt,

/» for ^_ x <n<>nk (k ^ 2)

By Lemma 3.3,
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But

which contradicts (2). Then sup / 6 ? Pι{f) < °° and pι is a continuous
seminorm on (H(E), τob).

PROPOSITION 3.6. Let p be a continuous seminorm on (H(E), τQb).
Then:

( i ) For each n = 0, 1, , p induces on ^(nE) a topology
weaker than or equal to the τob topology.

(ϋ) ! / / = Σ?=o?w/(O)M! eH(E), then Σ^oP(^/(O)M!) < <*>.

LEMMA 3.7. If feH(E), then the Taylor series of f at 0 con-
verges to f in (H(E), τob).

Lemma 3.7 is proved in the same way Dineen proves Proposi-
tion 7, [4] with minor modifications.

PROPOSITION 3.8. The topology τQb on H(E) is generated by all
seminorms which satisfy the following conditions:

(1) P(f) = Σ-oP0nf(O)/n\) for all feH(E).
(2) For each n — 0, 1, -- , p induces on ,^{nE) a topology

weaker than or equal to the τob-topology.

Proof. By Proposition 3.5, if p satisfy (1) and (2), then p is
τoδ-continuous on H{E).

Let q be a τoδ-continuous seminorm on H(E). Proposition 3.6
gives that

±g(tM) < oo for each / =
w=o \ n\ /

n=ϋ n\

By Proposition 3.6,

n\ '

is a continuous seminorm on (H(E), τob). Lemma 3.7 gives

Hence every continuous seminorm on (H(E), τob) is dominated by a
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continuous seminorm with satisfies the required conditions. This
proves the proposition.

REMARK 3.9. If U is an open balanced subset in E, we obtain
the same results on H{U).

PROPOSITION 3.10. The topology τob on £ίf(E) is generated by
all seminorms which satisfy the following conditions:

(1) P(f) = Σ?=o p(3*/(0)/n!) for all fe H(E).
(2) For each n = 0,1, , p induces on ^(nE) a topology

weaker than or equal to the τQb-topology.

Proof. If p is a seminorm on ^f{E) satisfying (1) and (2) then
it can be defined in H{E) and, by Proposition 3.8, p is roδ-continuous.
Hence p is bounded on the τ0-bounded subsets of H(E), thus on the
Γo-bounded subsets of <%?(E). This implies that p is τoδ-continuous
on Sίfiβ). Now, if p is τ06-continuous seminorm on £%f(E), then
it is clear that (2) holds. If feH(E),J?f = {f} is rebounded in
H(E). By Lemma 3.4, (n2(dnf(0)ln\))~=0 is ^-bounded in H(E), hence
in serίβ). Thus

and

Therefore

n\

defines a seminorm on £ίf{E) satisfying (1) and (2), hence τorcon-
tinuous (by first part of the proof). Thus, since p <; p19 τoh can be
defined by seminorms satisfying (1) and (2).

We wish to thank professor M. C. Matos for the suggestions and
fruitful discussions at all article.
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