
PACIFIC JOURNAL OF MATHEMATICS
Vol. 77, No. 2, 1978

ON THE OSCILLATORY AND ASYMPTOTIC BEHAVIOR
OF SOLUTIONS OF FIFTH ORDER SELFADJOINT

DIFFERENTIAL EQUATIONS

W. E. TAYLOR, JR .

In this paper the fifth order selfadjoint differential
equation

(1) (z" " + 2p(x)z)' + 2p(x)z' = 0

is considered under the assumption that p(x) is a positive
continuous function defined on the half axis [0, oo). The
oscillation and asymptotic properties of certain solutions of
(1) will be discussed after which connections between the
solutions of (1) and the solutions of the fourth order
differential equation

(2) y""~-p{x)y^0

are investigated. More spcifically, it is shown that (1) is
oscillatory if and only if (2) is oscillatory.

While the literature is unusually scanty on the solutions of odd
order selfadjoint differential equations, oscillation properties of the
selfadjoint third order equation

( 3 ) (»" + 2b(x)yY + 2b(x)y' = 0

has been studied by several authors, including J. H. Barrett [3],
G. D, Jones [4] and S. C. Tef teller [7]. All of these works utilized
the fact that if u and v are solutions of

( 4 ) w" + b(x)w = 0 ,

then the functions u2, uv, and v2 are solutions of (3).
Recall that a nontrivial solution of (1) or (2) is said to be

oscillatory if it has arbitrarily large zeros, otherwise it is termed
nonoscillatory. In case (1) has an oscillatory solution we say that
(1) is oscillatory. A similar definition holds for equation (2). For
convenience, the term "solution" for the remainder of this work will
refer to nontrivial solutions unless otherwise noted.

Tefteller in [7] proved that (3) is oscillatory if and only if (4)
is oscillatory. While in [4] it was shown that if (3) is oscillatory
then the solution space of (3) has a basis with i oscillatory solutions
and 3 — i nonoscillatory solutions for i — 0,1, 2, 3. It is these ob-
servations and the aforementioned connections between the solutions
of (1) and (2) that motivates this study. Finally, we refer to the
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works of Ahmad [1] and Leighton and Nehari [5] on self ad joint
fourth order differential equations.

II* Zero properties of solutions* In order to facilitate our
study of (1), the following definitions are needed:

DEFINITION. A solution z of (1) is said to have an (ί, j)-distribu-
tion of zeros if it has a zero of multiplicity i followed by a zero
of multiplicity j . For t ^ 0, riά(t) is the infimum of the set of
numbers b > t such that there is a nontrivial solution of (1) having
an (i, ^-distribution of zeros on [£, &]. Equation (1) is termed (i, j)-
disconjugate if no solution has an (i, ^-distribution of zeros.

DEFINITION. The first conjugate point of t, Tj^t), is the smallest
number s > t such that there exists a nontrivial solution of (1)
which vanishes at t and has five zeros on [t, s].

In his paper [6], T. L. Sherman has established for nth order
linear differential equations that

7],{t) = min {rίβ(t)} .

Applying this result to (1) and using the selfadjointness of (1) it is
clear that

( 5 ) ηx(t) = min {rΛ(t)9 r4l(ί)} .

LEMMA 2.1. If z is a solution of (1), then

J(z) = z{z" " + 2p(x)z) - z'z"' + l/2z"2

is a constant determined by the initial values of z. Furthermore,
for a solution z of (1), the functional

F{z) = zz"' - 2z'z"

is nonincreasing on [0, ©o) whenever J(z) ^ 0.

Proof. Computing J\z) and making appropriate substitutions
from (1), we find that J\z) = 0, from which the first part of the
lemma follows. For the proof of the remaining part of the lemma,
note that F\z) - J(z) - 5/2zm - 2p(x)z2.

THEOREM 2.2. Equation (1) is both (2, 2>)-disconjugate and (3, 2)-
disconjugate on (0, °°).
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Proof. Suppose z is a solution of (1) having a zero of multi-
plicity at least three at x = α, a > 0. Then J(z) = 0 and consequent-
ly, F[z] is decreasing. Thus 0 < x < a implies F[z(x)\ > 0 and a < x
implies F[z(x)] < 0, from which it follows easily that z cannot have
a multiple zero to the right nor left of x = a.

COROLLARY 2.3. Let u and v be independent solutions of (1)
having triple zeros at x = c. Then W(u, v)(x) — u(x)v'(x) — v(x)u'(x)Φύ
for x Φ c. Consequently, the zeros of u and v separate each other
on [0, c) and (c, oo).

From (5) and Theorem 2.2 we can now obtain more precise in-
formation about how the first conjugate points are determined,
namely

THEOREM 2.4. If η^t) exists for t ^ 0, then η^t) = r41(t).

III. Oscillation properties. Using J(z) and F(z) defined above
we now group the solutions of (1) into three distinct classes. A
solution z of (1) is termed Type A if J(z) == 0 and F[z] > 0 on [0, oo),
Type B if J(z) ^ 0 and F\z] ̂ 0 on [6, oo), for some b > 0. Finally,
a Type C solution is any solution z with J(z) > 0.

To obtain results concerning the solutions in these various classes
we will need the so-called "double zero" lemma.

LEMMA 3.1. Suppose u, v e C[a, b] and satisfies u(ά) = u(β) = 0,
a < a < β < 6, u{x) Φ 0 on (a, β) and v(x) Φ 0 on [a, β]. Then some
nontrivial linear combination of u and v has a double zero in (a, β).

The condition r4l(ί) < ^ for each t ^ 0 is both necessary and
sufficient for the oscillation of (1) as we see in our next result.

THEOREM 3.2. Equation (1) is oscillatory if and only if rn(t) < oo
for each t.

Proof. Suppose (1) is oscillatory and that r^it) — co for some
t. Then rA1(s) — oo for all s > t and so (1) is disconjugate on (t, oo),
contradicting the fact that (1) has an oscillatory solution.

For the converse suppose rn(t) < oo for all t. We will show
that Type B solutions are oscillatory.

Suppose there is a nonoscillatory Type B solution. Then there
is a number b and a solution y(x) of (1) satisfying y(χ) > 0 on [6, oo),
F[y(x)]<0 on [b, oo) and J(τ/)^O. Let u(x) be a solution of (1) having
a (4, l)-distribution of zeros, say at x = c and x — d, where b ^
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c <̂  d and u(x) Φ 0 on (c, d). We assume without loss of generality
that u""{c) = 1. Since y(x) > 0 on (c, d) and u(x) > 0 on (c, d), there
is a positive constant k such that ι (α ) = y(x) — ku(x) has a double
zero in (c, d). Since F[v(x)] is decreasing (J(t;) ^ 0) it follows that
F[v(c)] > 0. But f ^ c ) ] = F[y(c)] < 0, a contradiction. Consequently,
it follows that y{x) must be oscillatory. Using the fact that r41(ί) =
r14(£) and making some easy modifications in the above argument
we can show that Type A solutions must oscillate.

COROLLARY. If (1) is oscillatory then every Type A and Type B
solution is oscillatory.

COROLLARY. If (1) is oscillatory then a nonoscillatory solution
is Type C.

While it is clear that Type B and Type C solutions exist, our
next result shows that equation (1) always has a Type A solution.

THEOREM 3.4. There exists a Type A solution of equation (1).

Proof. Suppose a ^ 0. Let {xn}n=ι be an increasing sequence of
points such that a < x1 and lim^o xn = °o.

Let Zj{x), z2(x), z3(x)9 Zt(x), zδ(x) be five independent solutions of
(1).

Define
tt.W = Ci»«i(a?) + c2nz2(x) + cdnzd(x) + cinz,(x) + cδnzb(x)

where

un(a) = 0 ,

un{xn) = u'n(xn) = u'ή(xn) = 0

and

cln + cL + cl + cU + c|n - 1 .

Note that J(un(x)) = 0 and F[un(x)] > 0 on [0, xj, for each n.
The sequences {cίn}^=ι for ΐ = 1, 2, 3, 4, 5 are bounded and hence

we can assume without loss of generality that lim^oo cin = ci9 n —
1, 2, 3, 4, 5. Since c\ + cj + c\ + ci + c6

2 = 1, it follows that

u{x) = ^^(a?) + c22;2(x) + c3z3(α0 + c4«4(aj) + cδzδ(x)

is a nontrivial solution of (1).
We claim that u(x) is Type A. First note that F[un(x)] > 0 on

[0, xn)f consequently, F[u(x)] ^ 0 on [0, oo).
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If F[u(x0)] = 0 for some xQ ^ 0, then F[u(x)] == 0 on [x0, oo), but
this implies F'[u(x)] = — 5/2%"2(x) — 2p{x)u2)x) = 0, contradicting the
fact that %(a?) is nontrivial. Therefore we must have F[u(x)] > 0
on [0, oo).

In the previous proof note that the Type A solution u construct-
ed vanished at x = a. If x — b is a point such that w(6) ^ 0, then
a Type A solution which vanishes at x = δ can be constructed which
is clearly independent of the one which vanished at x = α. Thus
equation (1) has at Zeαsί two independent Type A solutions.

We now list some properties of Type A solutions.

THEOREM 3.5. Suppose (1) has an oscillatory solution. Let z
be a Type A solution of (1), then the following hold:

( i ) \°° z"\x)dx < oo,

S oo

p{x)z\x)dx < oo, and
(iii) zf is bounded.

Proof. Since J(z) Ξ= 0, F[z(x)] is decreasing. By differentiating
F[z(x)] and then integrating from 0 to x, we obtain

0 < F[z(x)] - F[z(0)] - A ί V W ί _ i . {" p{t)z\t)dt
2 Jo 2 Jo

from which (i) and (ii) follow.
To prove (iii) note that

0 < F[z(x)] = z(x)z"'(x) - 2z\x)z"(x) = \[z{x)zn{x) - —s'2(

Clearly i^[^(x)] —> 0 as ίc—> oo, for if not, we would have z{x)zn{x) —
2>j2zf\x) -> oo as α; —> oo which is obviously impossible since z{x) is
oscillatory. Since z(x)z"{%) — 3/2z'2(x) is negative and increasing,
letting x —> oo along the zeros of z'\x) we see that z\x) is bounded.

For Type B solutions we offer the following result, but omit the
proof.

THEOREM 3.6. Suppose (1) has an oscillatory solution. Let z
be a Type B solution with J(z) < 0, then

S oo rco

p{x)z\x)dx = oo or I z"\x)dx = oo, and
(jii) lim sups-^ z\x) = oo, i.e., zr{x) is unbounded.
For the case p{x) = 1, the resulting equation for (1) is

(6) s""' + 4s' = 0 .
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A basis for the solution space of (6) is

{ex sin x, ex cos x, e~x sin x, e~x cos x, 1} .

Note that the solutions e~x sin x and ex sin x are Type A and Type B
solutions of (6), respectively, and satisfy the conclusions of Theorems
3.5 and 3.6.

In the preceding example we note that (6) has a nonoscillatory
solution. To show that this is true in general we proceed through
equation (2).

THEOREM 3.7. Let u and v be independent solutions of

y"" -p(χ)v = 0.

Then z(x) = u(x)v\x) — v(x)uf(x) is a solution of (1).

It is well known [1] that (2) has a pair of solutions u and v
satisfying

(7) u(x) > 0 , u\x) > 0 , u'\x) > 0 , u"\x) > 0 ,

and

(8) v(x) > 0 , v\x) < 0 , v"(x) > 0 , v"\x) < 0

on [0, oo). Clearly the Wronskian of this pair of solutions does not
vanish on fO, oo) and we have proven

THEOREM 3.8. Equation (1) has a nonvanishing solution.

Actually (1) always has at least three independent nonoscillatory
solutions. Whether or not three is the maximum possible when (1)
is oscillatory remains an open question.

Finally, we establish a connection between the oscillation of (1)
and the oscillation of (2).

THEOREM 3.9. Equation (1) is oscillatory if and only if (2) is
oscillatory.

Proof. Suppose (2) is oscillatory. Let u be an oscillatory solu-
tion of (2). Suppose v is a nonoscillatory solution of (1) satisfying
either (7) or (8). Then z = uvf — vu' is an oscillatory solution of

(1).
For the converse, suppose (2) is nonoscillatory, then (2) is even-

tually disconjugate, see [5]. So there exists α ^ O so that no solu-
tion of (2) has more than three zeros on [α, oo). Let yγ and y2 be
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independent solutions of (2) having double zeros at x = a. Then
W(y19 y2)(x) Φ 0 for x > α, for if W(y19 y^){x) = 0 for some x > α,
then some combination of ^ and y2 has four zeros on [a, x] contra-
dicting the fact that (2) is disconjugate on [α, oo). But z = W(yu y2)
is a solution of (1) having a zero of order four at x = a. Thus
Vi(a) — r4i(°0 = °° since z does not vanish on (α, oo). Consequently,
(1) is nonoscillatory, in fact, disconjugate on (α, oo).
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