PACIFIC JOURNAL OF MATHEMATICS
Vol. 77, No. 2, 1973

A VANISHING THEOREM FOR THE MOD p
MASSEY-PETERSON SPECTRAL
SEQUENCE

MASAMITSU MORI

A vanishing theorem and periodicity theorem for the
classical mod2 Adams spectral sequence were originally
proved by Adams [1]. The results were extended to the
unstable range by Bousfield [2]. The purpose of this paper
is to show the analogue of Bousfield’s work for the mod p
unstable Adams spectral sequence of Massey-Peterson type
(called the mod p Massey-Peterson spectral sequence), where
p is an odd prime. The results generalized those obtained
by Liulevicius [5], [6] to the unstable range. As an immediate
topological application we have the estimation of the upper
bounds of the orders of elements in the p-primary component
of the homotopy groups of, for example, an odd dimensional
sphere, Stiefel manifold, or H-space.

1. The vanishing theorem. Let A denote the mod » Steenrod
algebra. Let A_# the category of unstable left A-modules and _Z A
thecategory of unstable right A-modules. We may define Ext? ,,s=0,
as the sth right derived functor of Hom, ., and similarly define Ext’,,,
since A_# and _#Z A are abelian categoriesw ith enough projectives.
Note that, if M e A_# is of finite type, then

Ext, (M, Z,) = Ext_, (Z,, M*).

Recall the mod p Massey-Peterson spectral sequence (see, for
example, [4]). Let X be a simply connected space with 7,(X) of
finite type. Suppose that H*(X; Z,)=UM), Mc A_#, where U(M) is
the free unstable A-algebra generated by M. Then there is a spectral
sequence {E.(X)} with

d,: Be(X) — B (X)),
such that
Ey(X) = BExty’ (M, Z,) ,
and
E(X) = Gr n.(X)/(torsion prime to p) .

Let 4 be the bigraded differential algebra over Z, introduced
by Bousfield et al [3], which has multiplicative generators \,; of

473



474 MASAMITSU MORI

bidegree (1, 2i(p — 1)—1) for 4+ > 0 and g, of bidegree (1, 2i(p — 1))
for 7 = 0.

For Ne _#Z A, let V(N)* be the subspace of NXA* generated by all
r @y, with y; =y, ---y, allowable and degx = 2¢ if vy, =2, and
degw = 21, + 1 if v, = p,. Then V(N) is the cochain complex with

o ®v;) = (—1)*= % 20" @ MYy
+ Ea RO QY+ (— 1)k Q) oy, .

Here @ v; is of bidegree (s, t) with ¢ = s + deg x + degvy;. Recall
that for Ne Z A

Extiri(Z, N) = H'(V(N))-, -

Let O(N) be the subcomplex of V(IN) generated by all t®v; €
V(N)* with y; =y, --- v, allowable and v, = \;. Let T(N) be the
quotient complex of V(N) such that

N @ for s=0,1,

T(N)* =
o NQ® s+ Npi@Qn ™t for s = 2.
>0

Then we have a long exact sequence

o — H(T(N)) — H(O(N)) . H(V(N))
L H(T(N) — -+,
which is induced from the natural isomorphism
H*O(N)) = H*(Ker q)

where j:O(N)—V(N) and q:V(N)— T(N) are the natural maps.
Remark that H*(T(N)) consists of towers in the sense that

H(T(N)) = H*(T(N)) ,
for s = 2, and thus H*(T(N)) is easily determined.
DEFINITION. A funetion ¢,(k), n = 2, k = 0, is defined as follows.
If n=23,4,

[k + 2)/2(p — 1)] for k=2p—1)—1

Pk = 1 for k< 2(p —1)—1

where [x] is the integer part of x, and if n=5,

pk) = pu(k) =1,
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where

2ip — 1Dk <200+ D(p—1)—-1 if 1# —1,0modp,
2ip — D)=k <20+ D(p —1)—2 if 1= —1modp,
2ip —D)—2<k<2t+Dp-1—-1 if ¢=0modp.

Now we state our main theorem.

THEOREM 1 (Vanishing). Let Ne .Z A with N, =0 for i <m,
where n = 2. Then

Ext 254 (Z,, N) = H(VIN))en —— H(T(N)) ,

1s an tsomorphism for s > ¢p,(k).

This will be proved in §4.

By virtue of our vanishing theorem the calculation of H*(V(N))
is reduced to that of H*(O(N)) in a large extent. Note that ¢* is epi-
morphic when U(M) is generated by a single element, where M=N.*

As an immediate topological corollary we have.

COROLLARY 2. Let X be a simply connected space with 7w (X)
of finite type. Suppose that H*(X; Z,) = U(M), where M 1is an
unstable A-module. If M: = 0 for © < n, then the orders of elements
wn the p-primary component of w,, . (X) are at most p»*,

This may be applied, for example, when X is an odd dimensional
sphere, Stiefel manifold, or H-space.

REMARK. If N, =0, ¢ > m, for some m, then H*(N), is zero for
dimensional reason when ¢ is large with respect to s. Hence in this
case Corollary 2 is slightly improved.

2. Periodicity theorems. For a module M e A_# we define the
B-cohomology by H(M) = Ker 8/Im 8.

DEFINITION. A module M e A_# is called B-trivial if
0% M — Hi*(M)

is an isomorphism for all ¢ and H{(M) = 0 for k& # 0 mod 2p.
Remark that M e A_# is B-trivial if andonly if N = M*e #Z A
is towerless, i.e., H*(T(N)) = 0 for s > 0.
Let & denote the category of graded Z,-modules. Let L,F
denote the sth left derived functor of a functor F: A _#Z — Z.
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THEOREM 3 (Periodicity). Let F: A Z — & be a functor such
that F(M)=M/BM + o'M. If Mec A #Z s B-trivial, then there is a
natural map

P:LF(M)—> L,  F(M)*we-ntr

such that P is an isomorphism for s = 2 and a monomorphism for
s =1.

This will be proved in §3.

Additionally, we give here such a kind of periodicity theorems.

THEOREM 4. Let G(M)= M/o‘M for Mc A #, where 0 <1 < p.
Then there is a natural map
Q: LsGi(M)t E— Ls+2Gi(M)t+2p(p—1) ’
such that @ is an isomorphism for s = 2 and a monomorphism for
s=1.
THEOREM 5. Let G(M)= M/BM + oM for Mec A_#, where 0 <
1< p. If Me A # 1is B-trivial, then there is a natural map
Q: LG(M) — Ly G,
such that @ s am isomorphism for s = 2 and a monomorphism for
s = 1.
THEOREM 6. Let G(M)=M/o*+Bo'M for Mec A.#. If McA 7
18 B-trivial, then there is a natural map
R: L,G(M)' — L, ,,G(M)*****,
such that R is an isomorphism for s =2 and a monomorphism for

s=1.

3. Proofs of periodicity theorems. Suppose given a circular
sequence of functors from A_~ to & and natural transformations,

( # ) Ak—z Ak—f,i ..... Al A A0=Ak

satisfying R,R,,, =0 for ¢+ =0, ---, k — 1. Define functors Ker R,
Im R,, Coker R, H; = Ker R,/Im R,,, in a usual way.

DEFINITION. A module M e A_# is called trivial for the diagram
(%) if
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L.AM)=LHM)=0,
for all s>0and ¢=0, ---, bk — 1.

LEMMA. If Mec A # is trivial for the diagram (%), then there
18 a natural map

P: L, Coker R(M)* — L,., Coker R(M)*** ,
such that P is an isomorphism for s=2 and a monomorphism for
s=1. Here h = >k} hy h; = deg R,.
Proof. Let h(a) = Skth,. Since M is trivial for (%), we have
the following natural isomorphism

L,.,Coker R(M)"** = L,,;,_, Im R(M)***
= Loy Ker BR(M)"P® = ...
= L,Ker R, ,(M)** 0 = [, Tm R,_,(M)t+**= |

On the other hand the natural map
L, Coker Ry(M)t — L,Im R,_,(M)!+*¢ |

is an isomorphism for s = 2 and a monomorphism for s = 1.

We shall use the following circular sequence due to Toda [9]
(see, also, Oka [8]) to prove the periodicity theorems.

(8.1) M2y ey By
x /
M|BM+ M/BM
where R, = (1 + 1)Bp' — 10'8, R = (0'B, p") and R’ = p'8 — Bp'B.
3.2) M= M for 0<i<op,
. ‘DP—‘L
3.3) MRMZ=MBM  for 0<i<p,
‘op—z
1
(3.4) Mjo'M —f: Mjo'M .
o

Here M e A_# and the maps are induced from the left actions.

Proof of Theorem 8. We shall use the diagram (8.1). For con-
venience, we put R, =R, =R, R, , = R'. Let H,(M) denote the
cohomology Ker R,/Im R,,,. If M is a free unstable A-module, then:

(i) p: (M/BM)* = H¥**(M) if s=—1modp,

o M = H¥(M) if s —1modp,
% (BM)y»* = H¥** (M) if s —1modoyp,
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(ii) fori=1,-..,p — 2,
o': (MJEMY* = Hy»(M) ,
o' + Bo* (BMY** + (M|BM)*+ = H* (M),
0% (MIBM)y** = Hiw(M)
(iii) p*'+0: (M/BM)* + 0 = H¥* (M) ,
0+ 00+ (M/BM)** = HZ*HH(M)
for 5=0,1if s=0modyp,
0" + 0% (B 4 (MIBMY** = H3r (M)
for =0,1if s 0modp,
0+ 00+ (M/BM)»** = H2**(M) .
(iv) otherwise H*¥(M) = 0.
This unstable version of Toda’s exactness theorem is shown by long

but straightforward computations. Now Theorem 3 is proved by
applying lemma.

By using the diagrams (3.2), (3.3) and (3.4), Theorems 4,5 and
6 follow in a similar way, and thus we only state the following
facts.

Let Me A # be a free unstable module. Fix 7 such that

0<e < p.
If HM) = Ker (0*: M — M)/Im (0*~%: M — M), then:
(i) o' M*>* = H»**i(M) for 7=0,1,
Bo* + o' M*iTt + M*t = H***(M) for j=2,---,20—1,
Bots M**i~t= H*?ti(]M) for §=21,20 + 1.

(ii) otherwise H*(M) = 0.

If HM) = Ker (0*~%: M/BM — M/R,M)/Im (0': M/|R.M — M|BM),
then:

(1) e (M/BM)**i = H***{(M)

for j=0,1,.--,7—1and s=0,1, ---,7 — 1mod p,

(ii) otherwise H*(M) = 0.

Next put H(M) = Ker (0: M/R.M — M|BM)/Im (o*~%: M/BM —
M/R;M), then:

(i) if s = 0mod p,

0% (M[BM)***i = H***i(M) for 7=0,1,
Blos + ps: (M/BM)28+j—1 + (M/BM)28+j =~ H23p+j(M)
for 7=2,.-.,2¢0—1,
B (M/BM)*+i—t = H**+i(M) for j=2¢,21+ 1,

(iiz ifs=1---,p—1%— 1lmodp,
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0% (MBMy*+i = H*»+i(M) for j=0,1,
Bo* + p's M+ 4+ (MIBMY*+ = H»* (M) for j=2 -+, 2 —1,
Bo*: M+i=t = H»»+i(}) for j=26,2+1,

(iii) if s = p — 1 mod p,
Bot: M+t = H**i(M) for 7=2,---,20—1,

(iv) otherwise H¥M) = 0.
Finally, if H(M) = Ker (Bp": M/o'M — M/o'M)/Im (Bo*: M/0*'M —
M/o'M), then:

(i) o7 M*+i = H*?™*i(M) for 7=0,1,
340“ + ‘ops: (M/BM)““ + M+ ~ sz2+z(M) ,
(ii) otherwise H*(M) = 0.

4. Proof of the vanishing theorem. Let F(n) denote a free
unstable A-module on one generator ¢,. We define an unstable A-
module N(n) to be the quotient of F(n) by the relation B¢, = 0. Next
define M(n) to be the subcomplex of N(n) by ommitting the ¢, from
N(n) if » odd and ommitting the ¢,, (¢,)?, -+, (¢,)?", -+ from N(n) if
n even. Note that M(n) is B-trivial.

First we suppose that n is odd. Then by the long exact sequence
induced from a short exact sequence

0— M(n)— Nn)— Z,—0,
we have an isomorphism
B8 = Exty2N(Z,, Z,) = Extie'"(M(n), Z,) ,

for t # s. Let C(n) be a minimal resolution of M(n). By virtue of
Theorem 3 we can prove the vanishing theorem for Z, by analysing
C(n). Namely, Exti,*"(M(n), Z,)(t # s) vanishes for s > ¢,(t — s).
Furthermore we can observe the periodicity phenomenon in a range
near the vanishing line. In fact, by Theorems 3,4 and 5 we have
two periodicity operators P and @ of bidegree (p, 2p(p — 1) + )
and (2, 2p(p — 1)), respectively.

For lower dimensional sphere we shall give periodic families.
Let l<m=Zp+1. In Ep*+*™'(S*™!) there appear nontrivial elements
when (s, t — s) is as follows:

(i) Lg—1)

1, pqg — 1) for m=p+1,

(i) (8,89 — 1), (s, (m + 5 — 2)q — 2)
for s=2,-+-,p—m+1 and m=*p,p+1,
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(s, 8¢ — 1), (s, pg — 2), (s, pg — 1)
for s=p—m+2 and m#p+1,
(s, 8¢ — 1), (s, pg — 2), (5, pg — 1), (5, (m + s — 2)q — 2)
fors=p—-—m+3,---,p—1 and p*3,
(p, g — 2), (p, pg — 1), (B, (P + M — 2)q — 2),
pP+L+Dg—1,@+L®»+m—1)q—2),

where ¢ = 2(p —1). Applying the periodicity operators P and @ repea-
tedly, we can determine the behavior of all E,(S*~') near the vanishing
line. (Possibly other elements appear in a range apart from the
vanishing line when we apply the iteration of the operator Q.)

We next suppose that » is even. Let L(n; t)(0 <t < =) be an
unstable A-module with elements o,, (0,)? +--, (¢,)”" where deg 7, =
n. By the long exact sequence induced from short exact sequences

0 — M(n) + L(p'*'; o) — N(n) — L(n; t)— 0,
0 — M(p**'n) — N(p*"'n) — L(p*"'n; ) — 0,

we have an isomorphism

Exty':"(L(n; t), Z,)
= Exti*"(M(n), Z,) + Exti**(M(p**'n), Z,) ,

for t s, 8+ (p" — )n — 1. Thus in a similar way we have the
required results for L(n; t).
Now we have shown that

0% H(V(N))isn — H(T(N)iy »

is an isomorphism for s > ¢,(k), when N* = H*(S*; Z,) = Z,(n odd)
and N* = L(n; t)(n even). The general case follows inductively using
the five lemma.
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