SYMMETRIC SUBLATTICES OF A NOETHER LATTICE

Michael E. Detlefsen

Abstract

In this note we investigate questions about partitions of positive integers arising from multiplicative lattice theory and prove that the sublattice of $R L\left(A_{i}\right)\left(A_{1}, \cdots, A_{k}\right.$ is a prime sequence in a local Noether lattice) generated by the elementary symmetric elements in the A_{i} 's is a π-lattice.

0. Introduction. If $A_{1}, A_{2}, \cdots, A_{k}$ is a prime sequence in L, a local Noether lattice, then the multiplicative sublattice it generates is isomorphic to $R L_{k}$, the distributive local Noether lattice with altitude k. We denote this sublattice of L by $R L\left(A_{i}\right)$. In $R L\left(A_{i}\right)$, every element is a finite join of products $A_{1}^{r_{1}} A_{2}^{r_{2}} \cdots A_{k}^{r_{k}}$ for $\left(r_{1}, \cdots, r_{k}\right)=$ $\left(r_{i}\right)$ a k-tuple of nonnegative integers. Minimal bases for an element, T, in $R L\left(A_{i}\right)$ are unique and determined by the exponent k-tuples of the elements in the minimal base for T. We examine the sublattice of L generated by the elementary symmetric elements in the prime sequence A_{1}, \cdots, A_{k}. This multiplicative sublattice is a π-domain (Theorem 7.1).

Unless otherwise stated, all k-tuples will be nonnegative integers. A k-tuple (r_{i}) is monotone if and only if $r_{i} \geqq r_{i+1}$ for $1 \geqq i>k$. $\left(r_{i}\right)=\left(s_{i}\right)$ and $\left(r_{i}\right)+\left(s_{i}\right)$ refer to componentwise equality and addition respectively. $\left(r_{i}\right) \geqq_{p}\left(s_{i}\right)$ means $r_{i} \geqq s_{i}$ for $i=1, \cdots, k$. We write $\left(r_{i}\right) \geqq \geqq_{l}\left(s_{i}\right)$ to mean the first nonzero entry in ($r_{i}-s_{i}$) is strictly positive (lexicographic order). If (e_{i}) is a k-tuple we write e_{i}^{*} for $\sum_{j=i}^{k} e_{j}$ and $e_{i}^{* *}$ for $\sum_{j=i}^{k} e_{j}^{*}$. Throughout this note A_{1}, \cdots, A_{k} is a prime sequence in L and $R L\left(A_{i}\right)$ is the multiplicative sublattice it generates.

1. The symmetric sublattice. If T is a principal element in $R L\left(A_{i}\right)$ and g is in S_{k}, the permutation group on $1, \cdots, k$, we define $T_{g}\left(T^{g}\right)$ to be the principal element in $R L\left(A_{i}\right)$ obtained by replacing $A_{i}^{t(i)}$ by the factor $A_{g(i)}^{t(i)}\left(A_{i}^{t(g(i))}\right)$ in T for each i from 1 to k. If $C_{1} \vee \cdots \vee C_{p}$ is a minimal base for C in $R L\left(A_{i}\right)$, then $C_{g}=$ $\left(C_{1}\right)_{g} \vee \cdots \vee\left(C_{p}\right)_{g} . \quad C^{g}$ is defined similarly. Note that for each g in S_{k} and for C in $R L\left(A_{i}\right),\left(C_{g}\right)^{g}=\left(C^{g}\right)_{g}=C$. Hence $C_{g}=C^{g^{-1}}$. An element C in $R L\left(A_{i}\right)$ is a symmetric element if and only if $C_{g}=C$ for each g in S_{k}.

Theorem 1.1. The set of all symmetric elements in $R L\left(A_{i}\right)$ forms a multiplicative sublattice of $R L\left(A_{i}\right)$ which is closed under residuation.

Proof. We show that F_{g}, the set of elements fixed by the map ϕ from $R L\left(A_{i}\right)$ to $R L\left(A_{i}\right)$ defined $C \stackrel{\phi}{\mapsto} C^{g}$ for g in S_{k} is a residuated multiplicative lattice. For then the set of symmetric elements which is the intersection of all of the F_{g} 's for g in S_{k} is also a multiplicative sublattice.

Let g be any permutation in S_{k} and ϕ be defined as above. ϕ is well defined and preserves join by definition. Since $\left(C_{g}\right)^{g}=\left(C^{g}\right)_{s}=C$ for each C in $R L\left(A_{i}\right), \phi$ is a bijection.

Let $B=\Pi A_{i}^{b_{i}}$ and $C=\Pi A_{i}^{i}$ be principal elements in $R L\left(A_{i}\right)$. Then $(B C)^{g}=\Pi A_{g-1(i)}^{b_{i}+c_{i}}=\Pi A_{g^{b_{i}} 1_{(i)}}^{b_{i}} \cdot \Pi A_{g^{-1}(i)}^{c_{i}}=B^{g} \cdot C^{g}$ and $(B \wedge C)^{g}=$ $\left(\Pi \mathrm{A}_{i}^{\max \left(b_{i}, c_{i}\right)}\right)^{g}=\Pi A_{g=1(i)}^{\max \left(b_{i}, c_{i}\right)}=\Pi A_{g^{b_{i}} 1_{(1)}}^{b_{i}} \wedge \Pi A_{g^{c_{i-1}}{ }^{c_{(i)}}}=B^{g} \wedge C^{g}$. Since elements in $R L\left(A_{i}\right)$ are joins of principal elements and multiplication and meet distribute over join, ϕ preserves products and meet.

Finally, the fact that ϕ preserves residuals and that F_{g} is a multiplicative sublattice of $R L\left(A_{i}\right)$ readily follows from the fact that ϕ is a multiplicative lattice isomorphism.

Remark. If B is a principal element in $R L\left(A_{i}\right)$ such that $B^{g}=B$, then B is a principal element in F_{g}. However, F_{g} contains enough principal elements to make it a Noether lattice only if g is the identity in $S_{k}($ cf $\S 7)$ for $k>1$.
2. Elementary symmetric elements. For $t=1, \cdots, k, a_{t}$, the t th elementary symmetric element in A_{1}, \cdots, A_{k} is the join of all products of A_{1}, \cdots, A_{k} with t distinct factors. In this section we investigate the chain $0<a_{k}<\cdots<a_{1}<I$ of elementary symmetric elements in $R L\left(A_{i}\right)$.

We say the weight of a principal element in $R L\left(A_{i}\right)$ is the maximum of its exponents. If J is a t-tuple $\left(i_{1}, \cdots, i_{t}\right)$ with $i_{j}<i_{j+1}$ and $t \leqq k$ then we denote by (J) the set of all $(k-t)$-tuples $\left(j_{1}, \cdots, j_{k-t}\right)$ such that $\left\{j_{1}, \cdots, j_{k-t}\right\} \cap\left\{i_{1}, \cdots, i_{t}\right\}$ is empty.

Theorem 2.1. The elementary symmetric elements together with 0 and I form a sublattice closed under residuation. In particular

$$
\left(a_{t}: a_{p}\right)= \begin{cases}I & \text { if } t \leqq p \\ a_{t} & \text { if } t>p\end{cases}
$$

Proof. From [8, p. 84] we have for $t>p$

$$
\left(a_{t}: a_{p}\right)=\vee\left(J_{1}\right) \vee\left(J_{2}\right) \vee \cdots \vee\left(J_{q}\right)\left(A_{i_{1}} \cdot A_{i_{2}} \cdots A_{i_{s}} \wedge \cdots \wedge A_{q_{1}} \cdots A_{q_{s}}\right)
$$

where there are $C(k, p)$ (the binomial coefficient) join symbols each having indices in $\left(J_{1}\right), \cdots,\left(J_{q}\right)$ for J_{i} one of the $C(k, p)$ ordered p -
tuples which can be chosen from $\{1, \cdots, k\}$. Each intersection has weight one and by symmetry, $\left(a_{t}: a_{p}\right)=a_{r}$ for some r. Since $a_{t} \leqq$ ($a_{t}: a_{p}$) we only need show that $a_{t-1} \not \equiv\left(a_{t}: a_{p}\right.$).

Let $A_{i_{1}} \cdots A_{i_{t-1}}$ be any element in the minimal base for a_{t-1} and $A_{i_{1}} \cdots A_{i_{p}}$ be the product of the first p of these $(p \leqq t-1)$. Then their product $A_{i_{1}}^{2} \cdots A_{i_{p}}^{2} \cdots A_{i_{t-1}}$ is an element which is not less than or equal to any element in the minimal base for a_{t}. Hence $a_{t-1} \not \equiv\left(a_{t}: a_{p}\right)$.

Remark. From the Reciprocity Theorem [9, Theorem 5.1] we can define a multiplication on the chain of elementary symmetric elements by $\left(a_{t}: a_{p}\right) \geqq a_{s}$ if and only if $\alpha_{t} \geqq a_{p} \cdot a_{s}$, i.e., $a_{p} a_{s}=a_{\max \{p, s\}} \cdot$ This new multiplication makes every element in the chain idempotent and the order becomes $a \leqq b$ if and only if $a \cdot b=a$ for nonzero elements different from I.
3. The minimal base for $\pi a_{i}^{e_{i}}$: majorization. In this section we determine the minimal base for a product of the elementary symmetric elements in $R L\left(A_{i}\right)$. We first dispense with the powers of the a_{2}.

Lemma 3.1. For $t<k$, a_{t}^{e} is the join of all powers of the A_{i} 's whose exponents are bounded above by e and whose exponent sum is te. $a_{k}^{e}=A_{\mathrm{i}}^{e} \cdots A_{k}^{e}$.

Proof. For $k>1$, let $\left(k_{i}\right)$ be any k-tuple of nonnegative integers summing to te and bounded above by e. By symmetry we assume $\left(k_{i}\right)$ is monotone. There are at least t nonzero k_{i} 's no more than t of which are equal to e. Let

$$
v_{i}=\left\{\begin{array}{ll}
k_{i}-1 & 1 \leqq i \leqq t \\
k_{i} & t<i \leqq k
\end{array} \quad \text { and } \quad w_{i}= \begin{cases}1 & 1 \leqq i \leqq t \\
0 & t<i \leqq k\end{cases}\right.
$$

Then $\left(v_{i}\right)+\left(w_{i}\right)=\left(k_{i}\right)$ and by induction $\Pi A_{i}^{v_{i}}$ and $\Pi A_{j}^{w_{i}}$ are elements in the minimal base for a_{t}^{e-1} and a_{t} respectively. Hence their product which has (k_{i}) as its exponent k-tuple is in the minimal base for a_{t}^{e}. The converse follows by writing down a product in a_{t}^{e} and observing the conditions hold.

Lemma 3.2. $\Pi A_{j}^{r_{j}}$ is in the minimal base for $\Pi \alpha_{i}^{e_{i}}$ if and only if there is a nonnegative $k \times k$ matrix whose ith row sum is $i e_{i}$, whose ith row is bounded above by e_{i}, and whose j th column sum is r_{j}.

Proof. If $\Pi A_{j}^{r_{j}}=C_{1} \cdots C_{k}$ where C_{i} is in the minimal base for $a_{i}^{e_{i}}$, then $C_{i}=\Pi A_{i}^{r_{i j}}$ where $r_{i j} \leqq e_{i}$ and $\sum_{j} r_{i j}=i e_{i}$. Then $\Pi_{i} C_{i}=$ $\Pi_{j} A_{j}^{r_{j}}$ where $r_{j}=\sum_{i} r_{i j}$ for $j=1, \cdots, k .\left(r_{i j}\right)$ is the desired matrix. The converse follows easily.

The existence of the matrix described in Lemma 3.2 is determined by the following generalization of the Gale-Ryser theorem on (0,1)matrices [7, p. 63].

DEFINITION 3.3. If $\mathfrak{M}=\left(e_{1}, e_{2}, \cdots, e_{k}\right)$ is a k-tuple of nonnegative integers, an \mathfrak{M}-matrix is a matrix of nonnegative integers with k rows whose i th row entries are bounded above by e_{i}. A $k \times t \mathfrak{M}$ matrix is maximal with row sums $\left(f_{i}\right)$ if each row is maximal in the lexicographic order of t-tuples.

In Lemma $3.4\left(r_{j}^{\prime}\right)$ is the monotone permutation of $\left(r_{j}\right)$. If the condition of the lemma holds we say $\left(r_{j}\right)$ is majorized by $\left(s_{j}\right)$ and write $\left(r_{j}\right) \prec\left(s_{j}\right)$.

Lemma 3.4. If $\left(t_{i j}\right)$ is the maximal $k \times t$ 으-matrix with row sums $\left(f_{i}\right)$ and column sums $\left(s_{j}\right)$, then there exists an \mathfrak{M}-matrix ($r_{i j}$) with column sums (r_{j}) if and only if $\sum_{1}^{\nu} r_{j}^{\prime} \leqq \sum_{1}^{\nu} s_{j}$ for $\nu=1, \cdots, t-1$ with equality when $\nu=t$.

Proof. The proof follows mutatis mutandus from [5, p. 1030].
Lemmas 3.2 and 3.4 allow us to characterize the elements in the minimal base for $\Pi a_{i}^{e_{i}}$.

Theorem 3.5. The minimal base for $\Pi a_{i}^{e_{i}}$ in $R L\left(A_{i}\right)$ is the join of all products of the A_{i} 's whose exponent k-tuples are majorized by (e_{i}^{*}).

Proof. The maximal $k \times k\left(e_{i}\right)$-matrix with row sums ($i e_{i}$) has column sums e_{i}^{*}. Hence $\left(r_{i}\right) \prec\left(e_{i}^{*}\right)$ if and only if there exists an $\left(e_{i}\right)$-matrix with row sums ($i e_{i}$) and column sums (r_{i}). But this holds if and only if $\Pi A_{i}^{r_{i}}$ is an element in the minimal base for $\Pi a_{i}^{e_{i}}$.

Remark. For $k \leqq 3$ we have determined that the product $\Pi a_{i}^{e_{i}}$ has as a minimal base the join of all products of the A_{i} 's whose exponent k-tuples are bounded above by e_{1}^{*}, bounded below by e_{k}, sum to $\sum i e_{i}$ and whose breadth is less that or equal to $\sum_{1}^{k}\left(t k-t^{2}\right) e_{t}$. The breadth of $\Pi A_{i}^{r_{i}}$ is $\sum_{i<j}\left|r_{i}-r_{j}\right|$. However this characterization does not hold for $k>3$.
4. $P\left(a_{1}, a_{2}, \cdots, a_{k}\right)$, A multiplicative sublattice. Let $P\left(a_{1}, \cdots\right.$, $\left.a_{k}\right)=P\left(a_{i}\right)$ be the set of all finite joins of products of the elementary
symmetric elements in A_{1}, \cdots, A_{k}. We will show that this set is the multiplicative sublattice generated by a_{1}, \cdots, a_{k}.

If (u_{i}) and (v_{i}) are k-tuples we define the distance between them as $d\left(\left(u_{i}\right),\left(v_{i}\right)\right)=\sum_{i}\left|u_{i}-v_{i}\right|$. The lemma which follows will aid us in identifying the minimal base for the meet of two products to the a_{i} 's.

Lemma 4.1. Let $\left(u_{i}\right)$ and $\left(v_{i}\right)$ be k-tuples majorized by monotone k-tuples $\left(r_{i}\right)$ and $\left(s_{i}\right)$, respectively. Then if $w_{i}=\max \left(u_{i}, v_{i}\right)$ for $i=1, \cdots, k$
(1) $d\left(\left(u_{i}\right),\left(v_{i}\right)\right)=\left|r_{1}^{*}-s_{1}^{*}\right|$ if and only if $w_{1}^{*}=\max \left(r_{1}^{*}, s_{1}^{*}\right)$.
(2) $d\left(\left(u_{i}\right),\left(v_{i}\right)\right) \geqq\left|r_{1}^{*}-s_{1}^{*}\right|$.
(3) $d\left(\left(u_{i}\right),\left(v_{i}\right)\right)>\left|r_{1}^{*}-s_{1}^{*}\right|$ implies there exist k-tuples $\left(\bar{u}_{i}\right)$ and $\left(\bar{v}_{i}\right)$ such that $\left(w_{i}\right) \geqq_{p}\left(\max \left(\bar{u}_{i}, \bar{v}_{i}\right)\right)$ and $d\left(\left(\bar{u}_{i}\right),\left(\bar{v}_{i}\right)\right)=\left|r_{1}^{*}-s_{1}^{*}\right|$.

Proof. (1) 2• $w_{1}^{*}=\sum_{i}\left(u_{i}+v_{i}+\left|u_{i}-v_{i}\right|\right)=r_{1}^{*}-s_{1}^{*}+\left|r_{1}^{*}-s_{1}^{*}\right|=$ $2\left(\max \left(r_{1}^{*}, s_{1}^{*}\right)\right)$ if and only if $\sum\left|u_{i}-v_{i}\right|=\left|r_{1}^{*}-s_{1}^{*}\right|$ since for any two integers $a, b 2(\max (a, b))=a+b+|a-b|$.
(2) $\left|r_{1}^{*}-s_{1}^{*}\right|=\left|u_{1}^{*}-v_{1}^{*}\right|=\left|\sum_{i}\left(u_{i}-v_{i}\right)\right| \leqq \sum_{i}\left|u_{i}-v_{i}\right|=d\left(\left(u_{i}\right),\left(v_{i}\right)\right)$.
(3) $d\left(\left(u_{i}\right),\left(v_{i}\right)\right)\left|>\left|u_{1}^{*}-v_{1}^{*}\right|\right.$ implies there exist indices i_{1} and i_{2} such that $u_{i_{1}}<v_{i_{1}}$ and $u_{i_{2}}>v_{i_{2}}$. Let $\left(u_{i}^{\prime}\right),\left(v_{i}^{\prime \prime}\right)$ be the monotone representatives of $\left(u_{i}\right),\left(v_{i}\right)$ respectively. If $i_{1}^{\prime}<i_{2}^{\prime}$ then $v_{i_{1}}^{\prime \prime}>u_{i_{1}}^{\prime} \geqq u_{i_{2}}^{\prime}>v_{1_{2}}^{\prime \prime}$ so that $v_{i_{1}}^{\prime \prime} \geqq v_{i_{2}}^{\prime \prime}+2$. Let $\left(t_{i}^{\prime \prime}\right)$ be the k-tuple equal to ($v_{i}^{\prime \prime}$)for $i \neq i_{1}^{\prime \prime}$, $i_{2}^{\prime \prime}, t_{i_{1}}^{\prime \prime}=v_{i_{1}}^{\prime \prime}-1$ and $t_{i_{2}}^{\prime \prime}=v_{i_{2}}^{\prime \prime}+1$. Then ($t_{i}^{\prime \prime}$) is majorized by $\left(r_{i}\right)$. If $\left(t_{i}\right)$ is obtained by reversing the permutation $\left(v_{i}\right) \rightarrow\left(v_{i}^{\prime \prime}\right)$ and applying it to $\left(t_{i}^{\prime \prime}\right)$ then $\left(t_{i}\right)$ is also majorized by $\left(r_{i}\right)$. So

$$
\max \left(u_{i}, t_{i}\right)= \begin{cases}\max \left(u_{i}, v_{i}\right), & i \neq i_{1} \\ v_{i_{1}}-1, & i=i_{1}\end{cases}
$$

and $d\left(\left(u_{i}\right),\left(t_{i}\right)\right)<d\left(\left(u_{i}\right),\left(v_{i}\right)\right)$. By induction on d, there exist $\left(\bar{u}_{i}\right),\left(\bar{v}_{i}\right)$ such that $d\left(\left(\bar{u}_{i}\right),\left(\bar{v}_{i}\right)\right)=\left|r_{1}^{*}-s_{1}^{*}\right|$ and $\max \left(\bar{u}_{i}, \bar{v}_{i}\right) \leqq \max \left(u_{i}, t_{i}\right) \leqq$ $\max \left(u_{i}, v_{i}\right)$ for $i=1, \cdots, k$. The proof is complete if $i_{1}^{\prime}<i_{2}^{\prime}$.

Otherwise $i_{1}^{\prime}>i_{2}^{\prime}$ which implies that $i_{1}^{\prime \prime}<i_{2}^{\prime \prime}$. The proof is similar if the latter holds.

Now suppose that $\left(e_{i}\right)$ and $\left(f_{i}\right)$ are k-tuples, then $\Pi a_{i}^{e_{i}}$ and $\Pi a_{i}^{f_{i}}$ are elements of $P\left(a_{i}\right)$. The next theorem characterizes the elements in the base for their meet in terms of the exponents of the A_{i} 's.

ThEOREM 4.2. If $\Pi a_{i}^{e_{i}}$ and $\Pi a_{i}^{f_{i}}$ are elements of $P\left(a_{i}\right)$ with $f_{1}^{* *} \geqq e_{1}^{* *}$ then $\Pi a_{i}^{e_{i}} \wedge \Pi a_{i}^{f_{i}}=\left\{\Pi A_{i}^{v_{i}} \mid\left(v_{i}\right) \prec\left(f_{i}^{*}\right)\right.$ and $\left(v_{i}\right) \geqq_{p}\left(u_{i}\right)$ for some $\left.\left(u_{i}\right) \prec\left(e_{i}^{*}\right)\right\}$.

Proof. Since $R L\left(A_{i}\right)$ is distributive, the meet described in the
theorem is the join of all products of the A_{i} whose exponent k-tuples are $\left(\max \left(u_{i}, v_{i}\right)\right)$ for $\left(u_{i}\right)<\left(e_{i}^{*}\right)$ and $\left(v_{i}\right)<\left(f_{i}^{*}\right)$. If $d\left(\left(u_{i}\right),\left(v_{i}\right)\right)$ is greater than $f_{1}^{* *}-e_{1}^{* *}$, then $\left(\max \left(u_{i}, v_{i}\right)\right) \geqq_{p}\left(\max \left(\bar{u}_{i}, \bar{v}_{i}\right)\right)$ for some $\left(\bar{u}_{i}\right)$ and (\bar{v}_{i}) majorized by (e_{i}^{*}) and (f_{i}^{*}) respectively. Hence the product of the A_{i} 's with exponent k-tuple $\left(\max \left(u_{i}, v_{i}\right)\right)$ can be left out of the minimal base for the meet. But $d\left(\left(u_{i}\right),\left(v_{i}\right)\right)>f_{1}^{* *}-e_{1}^{* *}$ if and only if $\left(v_{i}\right) \not ¥_{p}\left(u_{i}\right)$. Hence the elements left in the minimal base for the meet have the form desired.

To show that the meet of two products of the a_{i} 's is again such a product, we need

Lemma 4.3. Let (e_{i}^{*}) and $\left(f_{i}^{*}\right)$ be monotone k-tuples and $t_{i}^{*}=$ $\max \left(e_{i}^{* *}, f_{i}^{* *}\right)-\max \left(e_{i+1}^{* *}, f_{i+1}^{* *}\right)$ for $i=1, \cdots, k$ where we agree that $e_{k+1}^{*}=f_{k+1}^{*}=0$. Then (t_{i}^{*}) is also monotone.

Proof.

$$
\begin{aligned}
\max & \left(e_{i}^{* *}, f_{i}^{* *}\right)+\max \left(e_{i+2}^{* *}, f_{i+2}^{* *}\right) \\
& \geqq \max \left(e_{i}^{* *}+e_{i+2}^{* *}, f_{i}^{* *}+f_{i+2}^{* *}\right) \\
& \geqq \max \left(2 e_{i+1}^{* *}, 2 f_{i+1}^{* *}\right) \\
& =2 \max \left(e_{i+1}^{* *}, f_{i+1}^{* *}\right) .
\end{aligned}
$$

So that $t_{i}^{*} \geqq t_{i+1}^{*}$ for $i=1, \cdots, k-1$.
Theorem 4.4. Let $\left(e_{i}\right)$ and $\left(f_{i}\right)$ be k-tuples, then the meet of $\Pi a_{i}^{e_{i}}$ and $\Pi a_{i}^{f_{i}}$ is the product $\Pi a_{i}^{t_{i}}$ where t_{i}^{*} is given in Lemma 4.3.

Proof. We may assume that $e_{1}^{* *} \geqq f_{1}^{* *}$. From above it suffices to show that the set $\mathfrak{B}=\left\{\left(u_{i}\right) \mid\left(u_{i}\right)<\left(e_{i}^{*}\right)\right.$ and $\left(u_{i}\right) \geqq_{p}\left(v_{i}\right)$ for some $\left.\left(v_{i}\right)<\left(f_{i}^{*}\right)\right\}$ is equal to the set $\mathfrak{C}=\left\{\left(u_{i}\right) \mid\left(u_{i}\right)<\left(t_{i}^{*}\right)\right\}$.
$\mathfrak{B} \subseteq \mathfrak{C}$. If $\left(u_{i}\right)$ is in \mathfrak{B} then $\left(u_{i}\right)<\left(e_{i}^{*}\right)$ and $\left(u_{i}\right) \geqq_{p}\left(v_{i}\right)$ for $\left(v_{i}\right) \prec\left(f_{i}^{*}\right)$. Then $d\left(\left(u_{i}\right),\left(v_{i}\right)\right)=e_{1}^{* *}-f_{1}^{* *}$ so that $w_{1}^{*}=e_{1}^{* *}$ where $w_{i}=\max \left(u_{i}, v_{i}\right)$ for $i=1, \cdots, k$. Moreover, for $j=2, \cdots, k, u_{j}^{*} \geqq$ $v_{j}^{*} \geqq f_{j}^{* *}$ since if $v_{j}^{*}<f_{j}^{* *}$, then $\sum_{1}^{j-1} v_{i}^{\prime} \geqq \sum_{1}^{j-1} v_{i}>\sum_{1}^{j-1} f_{i}^{*}$ where (v_{i}^{\prime}) is the monotone representative of (v_{i}) which contradicts $\left(v_{i}\right) \prec$ (f_{i}^{*}). Therefore $\sum_{1}^{j-1} u_{i}=e_{1}^{* *}-u_{j}^{*} \leqq e_{1}^{* *}-f_{1}^{* *}$. But

$$
\begin{aligned}
\sum_{l=1}^{j-1} t_{l}^{*} & =\sum_{l=1}^{j-1}\left[\max \left(e_{l}^{* *}, f_{l}^{* *}\right)-\max \left(e_{l+1}^{* *}, f_{l+1}^{* *}\right)\right] \\
& =\max \left(e_{1}^{* *}, f_{1}^{* *}\right)-\max \left(e_{j}^{* *}, f_{j}^{* *}\right) \\
& =\sum_{1}^{j-1} e_{i}^{*}-\left\{\begin{array}{lll}
0 & \text { if } & e_{j}^{* *} \geqq f_{j}^{* *} \\
f_{j}^{* *}-e_{j}^{* *} & \text { if } & f_{j}^{* *}>e_{j}^{* *}
\end{array}\right. \\
& =\left\{\begin{array}{lll}
\sum_{1}^{j-1} e_{i}^{*} & \text { if } & e_{j}^{*} \geqq f_{j}^{*} \\
e_{1}^{* *}-f_{j}^{* *} & \text { if } & f_{j}^{* *}>e_{j}^{* *}
\end{array}\right.
\end{aligned}
$$

Hence $\sum_{1}^{j-1} u_{i} \leqq \sum_{1}^{j-1} t_{i}^{*}$ and $\left(u_{i}\right)<\left(t_{i}^{*}\right)$, i.e., $\left(u_{i}\right)$ is in \mathfrak{C}.
$\mathfrak{C} \subseteq \mathfrak{B}$. Let $\left(u_{i}\right)$ be a k-tuple majorized by $\left(t_{i}^{*}\right)$. By symmetry, we may assume that $\left(u_{i}\right)$ is monotone. Since, $\left(t_{i}^{*}\right) \prec\left(e_{i}^{*}\right)$, we have $\left(u_{i}\right)<\left(e_{i}^{*}\right)$. For $i=1, \cdots, k$ let $v_{i}=\min \left(u_{i}, f_{1}^{*}+\cdots+f_{i}^{*}-\sum_{1}^{i-1} v_{j}\right)$ setting $v_{0}=0$. We claim
(\#) $\sum_{1}^{q} v_{i}=\min _{p}\left\{\sum_{0}^{p} f_{i}^{*}+\sum_{p+1}^{q} u_{i}\right\}$ where the minimum is taken for p ranging from 0 to q and $f_{0}=0=\sum_{s}^{r} u_{i}$ whenever $r<s$.
(\#) is clear if $q=1$. For $q>1$,

$$
\begin{aligned}
\sum_{1}^{q} v_{i} & =\sum_{1}^{q-1} v_{i}+\min \left(u_{q}, f_{1}^{*}+\cdots+f_{q}^{*}-\sum_{1}^{q-1} v_{i}\right) \\
& =\min \left(u_{q}+\sum_{1}^{q-1} v_{i}, \sum_{1}^{q} f_{i}^{*}\right) \\
& =\min \left(u_{q}+\min _{p=0, \cdots, q-1}\left\{\sum_{0}^{q} f_{i}^{*}+\sum_{p+1}^{q} u_{i}\right\}, \sum_{1}^{q} f_{i}^{*}\right) \\
& =\min _{p=0, \cdots, q}\left\{\sum_{0}^{p} f_{i}^{*}+\sum_{p+1}^{q} u_{i}\right\}
\end{aligned}
$$

where the third equality follows by induction. Therefore (\#) holds.
Moreover, $\left(v_{i}\right)$ is monotone: If q is any integer, $1 \leqq q<k-1$, then
(1) $2\left(\sum_{1}^{q} u_{i}\right) \geqq 2\left(\sum_{1}^{q-1} u_{i}\right)+u_{q}+u_{q+1}$
(2) $2\left(\sum_{1}^{p} f_{i}^{*}+\sum_{p+1}^{q} u_{i}\right) \geqq 2\left(\sum_{1}^{p} f_{i}^{*}+\sum_{p+1}^{q-1} u_{i}\right)+u_{q}+u_{q+1}$
(3) $2\left(\sum_{1}^{q} f_{i}^{*}\right) \geqq 2\left(\sum_{1}^{q-1} f_{i}^{*}\right)+f_{q}^{*}+f_{q+1}^{*}$
since $\left(u_{i}\right)$ and (f_{i}^{*}) are monotone. Hence each integer on the left of the inequalities of (1), (2), or (3) is greater than or equal to

$$
\begin{aligned}
& \min [\\
& \quad 2\left(\sum_{1}^{q-1} u_{i}\right)+u_{q}+u_{q+1}, 2\left(f_{1}^{*}+u_{2}+\cdots+u_{q-1}\right) \\
& \quad+u_{q}+u_{q+1}, \cdots, 2\left(f_{1}^{*}+\cdots+f_{q-1}^{*}\right) \\
& \left.\quad+f_{q}^{*}+u_{q+1}, 2\left(\sum_{1}^{q} f_{i}^{*}\right)+f_{q}^{*}+f_{q+1}^{*}\right] \\
& \quad \geqq
\end{aligned}
$$

So from (\#), $\sum_{1}^{q} v_{i} \geqq 1 / 2\left[\sum_{1}^{q+1} v_{i}+\sum_{1}^{q-1} v_{i}\right]$ and $v_{q}=\sum_{1}^{q} v_{i}-\sum_{1}^{q-1} v_{i} \geqq$ $\sum_{1}^{q+1} v_{i}-\sum_{1}^{q} v_{i}=v_{q+1}$ for $q=1, \cdots, k-1$. Hence (v_{i}) is monotone.

Finally, again from (\#) $v_{1}^{*}=\min _{j=1, \ldots, k}\left\{\sum_{1}^{j-1} f_{i}^{*}+u_{j}^{*}\right\}$ and since $u_{j}^{*} \geqq t_{j}^{* *}=\max \left(e_{j}^{* *}, f_{j}^{* *}\right) \geqq f_{j}^{* *}$ for $j=1, \cdots, k$, we have $f_{1}^{*}+\cdots+$ $f_{j-1}^{*}+u_{j}^{*} \geqq f_{1}^{* *}$ for each j. Hence $v_{1}^{*}=f_{1}^{* *}$. Therefore $\left(v_{i}\right)<\left(f_{i}^{*}\right)$ since by definition of the $v_{i}{ }^{\prime} \mathrm{s}, v_{1}+\cdots+v_{j} \leqq f_{1}^{*}+\cdots+f_{j}^{*}$ for each j. Since $\left(v_{i}\right)_{p} \leqq\left(u_{i}\right)$ and $\left(u_{i}\right) \prec\left(e_{i}^{*}\right)$, we have $\left(u_{i}\right)$ is in \mathfrak{B}.

It follows from the property in $R L\left(A_{i}\right)$ that multiplication in $P\left(a_{i}\right)$ distributes over joins. Consequently

Theorem 4.5. The set of all finite joins of products of the elementary symmetric elements in A_{1}, \cdots, A_{k} is a (distributive) multiplicative sublattice of $R L\left(A_{i}\right)$ and is the sublattice generated by a_{1}, \cdots, a_{k}.

In the next two sections we investigate the structure of the lattice $P\left(\alpha_{i}\right)$. In $\S 5$ we show that the factorization of products of the a_{i} is unique and in $\S 6$ we investigate the principal elements and the residual division in $P\left(a_{i}\right)$.
5. Unique factorization of products of elementary symmetric elements. If $\Pi a_{i}^{e_{i}}$ and $\Pi a_{i}^{f_{i}}$ are products in $P\left(a_{i}\right)$ and $\Pi a_{i}^{e_{i}} \leqq \Pi a_{i}^{f_{i}}$, then every element in the minimal base for $\Pi a_{i}^{e_{i}}$ must be less than or equal to one of the elements in the minimal base for $\Pi a_{i}^{f_{i}}$. That is, whenever $\left(r_{i}\right) \prec\left(e_{i}^{*}\right)$ then $\left(r_{i}\right) \geqq_{p}\left(s_{i}\right)$ for some $\left(s_{i}\right) \prec\left(f_{i}^{*}\right)$. When this occurs we say that (e_{i}^{*}) is dominated by (f_{i}^{*}) and write (e_{i}^{*}) dom (f_{i}^{*}). Hence, $\Pi a_{i}^{e_{i}} \leqq \Pi a_{i}^{f_{i}}$ if and only if (e_{i}^{*}) dom (f_{i}^{*}). Hence,

Lemma 5.1. Dom is a partial order on the set of monotone k-tuples.

Lemma 5.1 and the definition of dom establish the next theorem.
Theorem 5.2. The set of products of the a_{i} 's is order isomorphic to the poset of monotone k-tuples ordered by dom via the map $\Pi a_{i}^{e_{i}} \mapsto\left(e_{i}^{*}\right)$. In particular, since this mapping is well defined, factorization of a product of elementary symmetric elements is unique.

Using the order dom, we show that in $P\left(a_{i}\right)$ any product of the elementary symmetric elements is join irreducible.

TheOrem 5.3. Products of the elementary symmetric elements in $P\left(a_{i}\right)$ are join irreducible.

Proof. Suppose that $\Pi a_{i}^{g_{i}}=\Pi a_{i}^{e_{i}} \vee \cdots \vee \Pi a_{i}^{f_{i}}$. Since minimal bases in $R L\left(A_{i}\right)$ are unique, the element $\Pi A_{i}^{g_{i}}{ }^{*}$ which is in the minimal base for $\Pi a_{i}^{g_{i}}$ must appear in the minimal base for one of the products of the a_{i} 's on the right, say $\Pi a_{i}^{e_{i}}$. Then $\left(g_{i}^{*}\right) \prec\left(e_{i}^{*}\right)$. But since $\Pi a_{i}^{e_{i}} \leqq \Pi a_{i}^{g_{i}}$, (e_{i}^{*}) dom ($\left.g_{i}^{*}\right)$. So $\left(e_{i}^{*}\right) \geqq{ }_{p}\left(v_{i}\right)$ where $\left(v_{i}\right)<\left(g_{i}^{*}\right)$. Therefore $\left(e_{i}^{*}\right)=\left(v_{i}\right)$ and $\left(e_{i}^{*}\right) \prec\left(g_{i}^{*}\right)$. Consequently $\left(e_{i}^{*}\right)=\left(g_{i}^{*}\right)$; and $\Pi a_{i}^{g_{i}}$ is join irreducible.

Corollary 5.4. Elements in $P\left(a_{i}\right)$ have unique minimal bases as joins of products of the a_{i} 's.

Proof. [2, p. 183].
6. Residuation and join principal elements in $P\left(a_{i}\right)$. In Lemma 4.1 we used the technique of subtracting one from a position in a k-tuple and adding one further to the right in such a way that monotonicity of the k-tuple was maintained. We call this process a monotone ($-1,1$)-change and remark that these changes characterize majorization [cf. 4].

Proposition 6.1. Let $\left(r_{i}\right)$ and $\left(s_{i}\right)$ be manotone k-tuples such that $\left(r_{i}\right)<\left(s_{i}\right)$ and $\left(\bar{r}_{i}\right)$ be obtained from $\left(r_{i}\right)$ by a monotone $(-1,1)$ change. Then $\left(\bar{r}_{i}\right) \prec\left(s_{i}\right)$.

Proposition 6.2. Every mototone k-tuple majorized by a monotone k-tuple $\left(s_{i}\right)$ can be obtained from $\left(s_{i}\right)$ by a sequence of monotone $(-1,1)$-changes.

Proof. Let $\left(r_{i}\right)$ be a monotone k-tuple such that $\left(r_{i}\right) \prec\left(s_{i}\right)$. We show that $\left(r_{i}\right)$ can be obtained by a sequence of $(-1,1)$-changes by induction on $d\left(\left(r_{i}\right),\left(s_{i}\right)\right)=\sum_{1}^{k}\left|r_{i}-s_{i}\right|=t$. If $t=0,\left(r_{i}\right)=\left(s_{i}\right)$. For $t>0$, let $\mathfrak{D}=\left\{i: s_{i}>r_{i}\right\}$. If \mathfrak{D} is empty, then $\left(s_{i}\right)_{p} \leqq\left(r_{i}\right)$ and $\left(r_{i}\right)=$ $\left(s_{i}\right)$ since $r_{1}^{*}=s_{1}^{*}$. Hence \mathfrak{D} is nonempty. Set $i_{0}=\max (D$. Moreover, $i_{0}<k$ since $i_{0}=k$ implies $\sum_{1}^{k-1} r_{i}>\sum_{1}^{k-1} s_{i}$ contradicting $\left(r_{i}\right) \prec$ (s_{i}). Now let $j_{0}=\max \left(\mathfrak{F}\left(i_{0}\right)\right)$ where $\mathfrak{F}\left(i_{0}\right)=\left\{j: j>i_{0}\right.$ and $\left.s_{j}<r_{j}\right\}$. If $\mathfrak{F}\left(i_{0}\right)$ is empty and $i_{0}=1$, then $j>1$ implies $s_{j} \geqq r_{j}$ so that $s_{j}=r_{j}$ for $j>1$. But then $s_{1}=r_{1}$, a contradiction. If $\mathfrak{F}\left(i_{0}\right)$ is empty and $i_{0}>1$, then

$$
\sum_{1}^{i_{0}} s_{j}+r_{i_{0}+1}^{*} \geqq \sum_{1}^{i_{0}} r_{j}+r_{i_{0}+1}^{*}=s_{1}^{*} \geqq \sum_{1}^{i_{0}} s_{j}+r_{i_{0}+1}^{*}
$$

and $s_{i_{0}+1}^{*}=r_{i_{0}+1}^{*}$. But then $s_{q}=r_{q}$ for $i_{0}+1 \leqq q \leqq k$. Therefore $\sum_{1}^{i_{0}} r_{j}=\sum_{1}^{i_{0}} s_{j}$ with $s_{i_{0}}>r_{i_{0}}$. This implies $\sum_{1}^{i_{0}-1} r_{j}>\sum_{1}^{i_{0}-1} s_{j}$. Again this is a contradiction. Hence $\mathfrak{F}\left(i_{0}\right)$ is nonempty.

Let $\left(\bar{s}_{i}\right)$ be obtained from (s_{i}) by a monotone ($-1,1$)-change at the i_{0}, j_{0} places. Then $\left(\bar{s}_{i}\right)$ is monotone and we claim that $\left(r_{i}\right)<\left(\bar{s}_{i}\right)$. Since $\left(r_{i}\right) \prec\left(s_{i}\right)$ and $\bar{s}_{i_{0}}=s_{i_{0}}-1 \geqq r_{i_{0}}$ the desired inequality holds for $1 \leqq q \leqq i_{0}$. If $i_{0}<q<j_{0}$ and $\sum_{1}^{q} r_{i}>\sum_{1}^{q} \bar{s}_{i}$, then $\sum_{1}^{q} r_{i}=\sum_{1}^{q} s_{i}$. There is some $p>q$ such that $\sum_{1}^{p} r_{i}<\sum_{1}^{p} s_{i}$. Let p_{0} be the least such p. Then $\left(r_{q+1}, \cdots, r_{p_{0}-1}\right)=\left(s_{q+1}, \cdots, s_{p_{0}-1}\right)$ and $r_{p}<s_{p}$. This contradicts the choice of i_{n} if $p_{0}>q+1$. If $p_{0}=q+1$, then $r_{q+1}<s_{q+1}$ again gives a contradiction to the choice of i_{0}. Hence for $1 \leqq q<j_{0}$, the sum of the first $q r_{i}$'s is less than or equal to the sum of the first \bar{s}_{i} 's. The inequalities are clear if $j_{0} \leqq q \leqq k$ so
that $\left(r_{i}\right) \prec\left(\bar{s}_{i}\right)$. Since $d\left(\left(r_{i}\right),\left(\bar{s}_{i}\right)\right)<d\left(\left(r_{i}\right),\left(s_{i}\right)\right)$, the theorem follows by induction.

Note that if $\left(r_{i}\right)$ can be obtained from (s_{i}) by a sequence of monotone ($-1,1$)-changes, then we can obtain $\left(s_{i}\right)$ from (r_{i}) by a sequence of ($1,-1$)-changes.

PROPOSITION 6.4. If $\left(r_{i}\right)$ is a monotone k-tuple, then each monotone k-tuple which majorizes (r_{i}) can be obtained from $\left(r_{i}\right)$ by a finite sequence of monotone (1, -1)-changes.

Our next objective is to show that $P\left(a_{i}\right)$ is closed under residuation. Since $P\left(a_{i}\right)$ is distributive and a product of the a_{i} 's is join irreducible, the following lemma tells us that to check closure of residuation in $P\left(a_{i}\right)$ we only need check the residuation of a product of the a_{i} 's by another such product.

Lemma 6.5. If every element in a distributive multiplicative lattice L is a join of join irreducibles and join irreducibles are closed under multiplication, then for Z join irreducible and X, Y in L,

$$
(X \vee Y: Z)=(X: Z) \vee(Y: Z)
$$

Proof. If W is join irreducible such that $W Z \leqq X \vee Y$, then $W Z=(W Z \wedge X) \vee(W Z \wedge Y)$. Hence $W Z \leqq X$ or $W Z \leqq Y$ and $W \leqq(X: Z) \vee(Y: Z)$. Therefore $(X \vee Y: Z) \leqq(X: Z) \vee(Y: Z)$. Since the opposite inequality holds, the lemma is proved.

Corollary 6.6. $P\left(a_{i}\right)$ is closed under residuation if and only if $(X: Y)$ is in $P\left(a_{i}\right)$ for any join irreducibles X, Y in $P\left(a_{i}\right)$.

Proof. If $X_{1}, \cdots, X_{m}, Y_{1}, \cdots, Y_{n}$ are products of the a_{i} 's in $P\left(a_{i}\right)$, then

$$
\left(X_{1} \vee \cdots \vee X_{m}: Y_{1} \vee \cdots \vee Y_{n}\right)=\bigwedge_{j=1}^{n}\left(\bigvee_{i=1}^{m}\left(X_{i}: Y_{j}\right)\right)
$$

by Lemma 6.5.
Technical Lemmas 6.7 and 6.8 allow us to prove $P\left(a_{i}\right)$ is closed under residuation.

Lemma 6.7. If $\left(q_{i}\right) \prec\left(g_{i}\right)$ and $\left(g_{i}\right) \geqq_{p}\left(b_{i}\right)$ for some $\left(b_{i}\right) \prec\left(e_{i}^{*}\right)$, then $\left(q_{i}\right) \geqq_{p}\left(a_{i}\right)$ for some $\left(a_{i}\right) \prec\left(e_{i}^{*}\right)$.

Proof. First we assume $\left(q_{i}\right)$ is monotone and we may assume
that $\left(b_{i}\right)$ is monotone. Let $\left(\bar{q}_{i}\right)$ be obtained from $\left(q_{i}\right)$ by a monotone $(-1,1)$-change at the l, m places where $l<m$. If $\left(\bar{q}_{i}\right) \geqq_{p}\left(b_{i}\right)$, let $\left(a_{i}\right)=\left(b_{i}\right)$. If not, then $\bar{q}_{i} \geqq b_{i}$ for $i \neq l$ implies that $\bar{q}_{l}<b_{l}$. Since $q_{l} \geqq b_{l}$, we have $q_{l}=b_{l}$ and $b_{l+1}<b_{l}$. (If $b_{l+1}=b_{l}$ then $b_{l}=b_{l+1} \leqq$ $q_{l+1}<q_{l}=b_{l}$, a contradiction.) Let $\bar{b}_{l}=b_{l}-1$ and $\bar{b}_{i}=b_{i}$ for $i \neq l$. If $\bar{b}_{m-j}<\bar{b}_{m-(j+1)}$ and $q_{m-j}>\bar{b}_{m-j}$ for some $0 \leqq j \leqq m-l+1$ then $\left(a_{i}\right)$ defined by

$$
a_{i}= \begin{cases}\bar{b}_{i} & \text { for } i \neq m-j \\ \bar{b}_{i}+1 & \text { for } \quad i+m-j\end{cases}
$$

satisfies the conclusion of the lemma. Otherwise $\bar{b}_{m-1}=\bar{b}_{m}$ so that $q_{m-1} \geqq \bar{q}_{m}>\bar{b}_{m}=\bar{b}_{m-1}$. Then we can construct $\left(a_{i}\right)$ as desired unless $\bar{b}_{m-1}=\bar{b}_{m-2}$ in which case $q_{m-2} \geqq \bar{q}_{m-1}>\bar{b}_{m-1}=\bar{b}_{m-2}$. Again we can construct the desired (a_{i}) unless $\bar{b}_{m-2}=\bar{b}_{m-3}$. Continuing, we conclude all of the \bar{b}_{i} 's for i from l to m are equal if $\left(a_{i}\right)$ cannot be constructed. But we know that $\bar{b}_{m}<\bar{q}_{m}=q_{m}+1 \leqq \bar{q}_{l}-q_{l}-1=b_{l}-1=\bar{b}_{l}$; that is, $\bar{b}_{m}<\bar{b}_{l}$, a contradiction. Hence $\left(a_{i}\right)$ exists such that $\left(a_{i}\right) \prec$ $\left(e_{i}^{*}\right)$ and $\left(\bar{q}_{i}\right) \geqq_{p}\left(a_{i}\right)$. Since any monotone k-tuple majorized by $\left(g_{i}\right)$ can be obtained by a finite sequence of monotone ($-1,1$)-changes, the lemma is proved for (q_{i}) monotone.

If $\left(q_{i}\right)$ is not monotone, let (q_{i}^{\prime}) be its monotone representative. Then for some $\left(a_{i}^{\prime}\right)<\left(e_{i}^{*}\right),\left(q_{i}^{\prime}\right) \geqq_{p}\left(a_{i}^{\prime}\right)$. But then $\left(q_{i}\right) \geqq_{p}\left(a_{i}\right)$ and $\left(a_{i}\right)<\left(e_{i}^{*}\right)$.

Lemma 6.8. Let $\left(u_{i}\right),\left(f_{i}^{*}\right),\left(b_{i}\right)$, and ($\left.e_{i}^{*}\right)$ be monotone k-tuples with $\left(u_{i}\right)+\left(f_{i}^{*}\right) \geqq_{p}\left(b_{i}\right)$ for some $\left(b_{i}\right) \prec\left(e_{i}^{*}\right)$ and suppose $\left(q_{i}\right) \prec\left(f_{i}^{*}\right)$, then $\left(u_{i}\right)+\left(q_{i}\right) \geqq_{p}\left(c_{i}\right)$ for some $\left(c_{i}\right) \prec\left(e_{i}^{*}\right)$.

Proof. Since $\left(q_{i}\right)<\left(f_{i}^{*}\right),\left(u_{i}+q_{i}\right) \prec\left(u_{i}+f_{i}^{*}\right)$. Moreover, since $\left(u_{i}\right)+\left(f_{i}^{*}\right)=\left(u_{i}+f_{i}^{*}\right) \geqq_{p}\left(b_{i}\right)$ for some $\left(b_{i}\right) \prec\left(e_{i}^{*}\right)$, by Lemma 6.7 $\left(u_{i}+q_{i}\right)=\left(u_{i}\right)+\left(q_{i}\right) \geqq_{p}\left(c_{i}\right)$ for some $\left(c_{i}\right) \prec\left(e_{i}^{*}\right)$.

Corollary 6.9. If $\left(u_{i}\right)$ is a monotone k-tuple then $\Pi A_{i}^{u_{i}} \leqq$ $\Pi a_{i}^{e_{i}}: \Pi a_{i}^{f i}$ if and only if $\left(u_{i}+f_{i}^{*}\right) \geqq_{p}\left(b_{i}\right)$ for some $\left(b_{i}\right) \prec\left(e_{i}^{*}\right)$.

Proof. If $\left(\bar{q}_{i}\right)$ is the monotone representative for $\left(q_{i}\right)$ and $\left(\overline{u_{i}+q_{i}}\right)$ is the monotone representative for $\left(u_{i}+q_{i}\right)$ for some $\left(q_{i}\right)<\left(f_{i}^{*}\right)$, then

$$
\sum \overline{u_{i}+q_{i}} \leqq \sum u_{i}+\sum \bar{q}_{i} \leqq \sum u_{i}+\sum f_{i}^{*}=\sum\left(u_{i}+f_{i}^{*}\right)
$$

where the indices run from 1 to j for $1 \leqq j \leqq k-1$ and $\left(u_{1}+q_{1}\right)^{*}=$ $u_{1}^{*}+q_{1}^{*}=u_{1}^{*}+f_{1}^{* *}=\left(u_{1}+f_{1}^{*}\right)^{*}$. Hence the condition is sufficient.

Necessity is clear.
Note that a symmetric element E in $R L\left(A_{i}\right)$ is the join of pro-
ducts of the a_{i} 's if and only if whenever $\Pi A_{i}^{r_{i}} \leqq E$ with (r_{i}) monotone and (s_{i}) is obtained from (r_{i}) by a sequence monotone ($-1,1$)changes, then $\Pi A_{i}^{s_{i}} \leqq E$; for then $E=\mathrm{V}\left\{\Pi a_{i}^{t_{i}-t_{i+1}}:\left(t_{i}\right)\right.$ is monotome and $\Pi A_{i}^{t_{i}}$ is in the minimal base for $\left.E\right\}$. As before we set $t_{k+1}=0$.

THEOREM 6.10. $P\left(a_{i}\right)$ is closed under residuation.
Proof. Suppose that $\left(u_{i}\right)$ is monotone and that $\Pi A_{i}^{u_{i}} \leqq\left(\Pi a_{i}^{e_{i}}: \Pi a_{i}^{f_{i}}\right)$. Let $\left(v_{i}\right)$ be obtained from $\left(u_{i}\right)$ by a monotone ($-1,1$)-change. Then $\Pi a_{i}^{u_{i}} \cdot \Pi A_{i}^{f_{i}^{*}} \leqq \Pi a_{i}^{e_{i}}$ so that $\left(u_{i}\right)+\left(f_{i}^{*}\right) \geqq_{p}\left(b_{i}\right)$ for some $\left(b_{i}\right) \prec\left(e_{i}^{*}\right)$. So by Lemma $6.8\left(v_{i}\right)+\left(f_{i}^{*}\right) \geqq_{p}\left(c_{i}\right)$ for some $\left(c_{i}\right)<\left(e_{i}^{*}\right)$ since $\left(v_{i}\right)+\left(f_{i}^{*}\right)$ is obtained from $\left(u_{2}\right)+\left(f_{i}^{*}\right)$ by a monotone ($-1,1$)-change. Hence $\Pi A_{i}^{v_{i}} \leqq\left(\Pi a_{i}^{e_{i}}: \Pi a_{i}^{f i}\right)$ by Corollary 6.9. Therefore $\Pi a_{i}^{u_{i}-u_{i+1}} \leqq\left(\Pi a_{i}^{e_{i}}: \Pi a_{i}^{f_{i}}\right)$ so the residual is the join of all such products $\Pi a_{i}^{u_{i}-u_{i+1}}$ where (u_{i}) is monotone and $\Pi A_{i}^{u_{i}} \cdot \Pi a_{i}^{f_{i}} \leqq a_{i}^{e_{i}}$. (We set $u_{k+1}=0$.) Since this is an element in $P\left(\alpha_{2}\right)$ our proof is complete.

Proposition 6.11. Each product of the elementary symmetric elements is a weak join principal element in $P\left(a_{i}\right)$.

Proof. Let $k>1$. It suffices to show that $\left(\Pi a_{i}^{e_{i}}: a_{t}\right)=\Pi_{i \neq t} a_{i}^{e_{i}} \cdot a_{t}^{e_{t}-1}$ whenever $e_{t} \geqq 1$. And since the product on the right is clearly less than or equal to the residual, we only need demonstrate the opposite inequality. So suppose that $\Pi A_{i}^{t_{i}} \leqq\left(a_{i}^{e_{i}}: a_{t}\right)$ where $e_{t} \geqq 1$. By symmetry we assume $\left(t_{i}\right)$ is monotone. Let $\left(f_{i}^{*}\right)=(1,1, \cdots, 1,0, \cdots, 0)$ with 1's in the first t positions. Then

$$
\left(t_{i}\right)+\left(f_{i}^{*}\right) \geqq_{p}\left(b_{i}\right) \text { for some }\left(b_{i}\right) \prec\left(e_{i}^{*}\right) .
$$

Let $\left(u_{i}\right)$ be the lexicographic maximum of the p-minimal k-tuples which are ${ }_{p} \leqq\left(t_{i}\right)$ and satisfy (V) with $\left(u_{i}\right)$ in place of $\left(t_{i}\right)$. Note that $\left(u_{i}\right)$ is monotone since if (\bar{u}_{i}) is the monotone representative of $\left(u_{i}\right)$ then $\left(\bar{u}_{i}\right)_{p} \leqq\left(t_{i}\right)$ and by symmetry $\Pi A_{i}^{\bar{u}_{i}} \leqq\left(\Pi a_{i}^{e_{i}}: a_{t}\right)$. But $\left(\bar{u}_{i}\right) \geqq_{l}\left(u_{i}\right)$ and since $\left(\bar{u}_{i}\right)$ is p-minimal $\left(u_{i}\right)=\left(\bar{u}_{i}\right)$. Moreover, $\left(u_{i}\right)+$ $\left(f_{i}^{*}\right)=\left(u_{i}+f_{i}^{*}\right)$ is monotone so we can choose $\left(b_{i}\right)$ monotone and l-maximum satisfying ($\bar{\nabla}$) with $\left(t_{i}\right)$ replaced by $\left(u_{i}\right)$.

Claim. $\quad\left(u_{i}\right) \prec\left(\left(e_{i}-f_{i}\right)^{*}\right)$. For then $\Pi A_{i}^{t_{i}} \leqq \Pi A_{i}^{u_{i}} \leqq \Pi_{i \neq t} a_{i}^{e_{i}} \cdot a_{t}^{e_{t} t^{-1}}$. First suppose that $\sum_{1}^{r} b_{i}=\sum_{1}^{r} e_{i}^{*}$ for some $r<k$. $\operatorname{Set}\left(g_{1}, \cdots, g_{r}\right)=$ $\left(f_{1}, \cdots, f_{r-1}, f_{r}^{*}\right)$ and $\left(h_{1}, \cdots, h_{r}\right)=\left(e_{1}, \cdots, e_{r-1}, e_{r}^{*}\right)$. Then $\left(h_{i}\right) \geqq_{p}\left(g_{i}\right)$. Also $g_{i}^{*}=f_{i}^{*}$ and $h_{i}^{*}=e_{i}^{*}$ for $i=1, \cdots, r$. So ($u_{1}+g_{1}^{*}, \cdots, u_{r}+g_{r}^{*}$) \geqq_{p} $\left(b_{1}, \cdots, b_{r}\right)$ with $\left(b_{1}, \cdots, b_{r}\right) \prec\left(h_{i}^{*}\right)$. By induction on $k\left(u_{1}, \cdots, u_{r}\right) \geqq_{p}$ $\left(c_{1}, \cdots, c_{r}\right)$ for some $\left(c_{1}, \cdots c_{r}\right) \prec\left(h_{1}^{*}-g_{1}^{*}, \cdots, h_{r}^{*}-g_{r}^{*}\right)$. Also by induction on k, since $\left(u_{r+1}, \cdots, u_{k}\right)+\left(f_{r+1}^{*}, \cdots, f_{k}^{*}\right) \geqq_{p}\left(b_{r+1}, \cdots, b_{k}\right)$ for
$\left(b_{r+1}, \cdots, b_{k}\right) \prec\left(e_{r+1}^{*}, \cdots, e_{k}^{*}\right)$ there is a $k-r$-tuple $\left(c_{r+1}, \cdots, c_{k}\right)$ such that $\left(c_{r+1}, \cdots, c_{k}\right) \prec\left(\left(e_{r+1}-f_{r+1}\right)^{*}, \cdots,\left(e_{k}-f_{k}\right)^{*}\right)$ and $\left(u_{r+1}, \cdots, u_{k}\right) \geqq_{p}$ $\left(c_{r+1}, \cdots, c_{k}\right)$. But then $\left(u_{i}\right) \geqq_{p}\left(c_{i}\right)$ with $\left(c_{i}\right) \prec\left(\left(e_{i}-f_{i}\right)^{*}\right)$. Hence we may assume that $\sum_{1}^{r} b_{i}<\sum_{1}^{r} e_{i}^{*}$ for any $r<k$.

If $\left(b_{i}\right)=\left(u_{i}+f_{i}^{*}\right)$, then $\left(u_{i}\right)=\left(b_{i}-f_{i}^{*}\right)$ and $\left(u_{i}\right)<\left(\left(e_{i}-f_{i}\right)^{*}\right)$. So suppose there exists some i such that $b_{i}<u_{i}+f_{i}^{*}$. Let i_{0} be the first such i. Then for any $j, 1 \leqq j \leqq i_{0}-1, b_{j}=u_{j}+f_{j}^{*}$ and by the l-maximality of $\left(b_{i}\right)$, either $b_{i_{0}-1}=b_{i_{0}}, i_{0}=1$, or if $b_{i_{0}-1}>b_{i_{0}}$, then for all $q>i_{0}, b_{q}=0$ since otherwise we could perform a mototone ($1,-1$)-change on (b_{i}). Moreover, by the p-minimality of (u_{i}), $u_{i_{0}}$ cannot be reduced in any coordinate so that $u_{i_{0}}+f_{i_{0}}^{*}>b_{i_{0}}$ implies that $u_{i_{0}}=0$. Since f_{i}^{*} is either 0 or 1 for each i, we conclude that $1=f_{i_{0}}>b_{i_{0}}=0$. Hence $i_{0} \neq 1$ (for if $i_{0}=1$ then $\left(b_{i}\right)=(0, \cdots, 0)$) and $b_{i_{0}} \neq b_{i_{0}-1}$ (for if $b_{i_{0}-1}=b_{i_{0}}$, then $b_{i_{0}-1}=0<1+u_{i_{0}-1}=f_{i_{0}-1}^{*}+u_{i_{0}-1}$ contradicting the choice of i_{0}). So $b_{i_{0}-1}>b_{i_{0}}$ and $q>i_{0}$ implies that $b_{q}=0$. Since $e_{i_{0}}^{*}>f_{i_{0}}^{*}, e_{i_{0}}^{*}>0$. Therefore $e_{1}^{*}+\cdots+e_{i_{0}-1}^{*}<e_{1}^{* *}=$ $b_{1}^{*}=b_{1}+\cdots+b_{i_{0}-1} \leqq e_{1}^{*}+\cdots+e_{i_{0}-1}^{*}$, a contradiction. Therefore the i_{0} does not exist and the theorem is proved.

Corollary 6.12. Each product of the elementary symmetric elements is join principal in $P\left(a_{i}\right)$.

Proof. If A, B, and C are in $P\left(a_{i}\right)$ with A a product of the a_{i} 's, then $(A B \vee C: A)=(A B: A) \vee(C: A)=B \vee(C: A)$ since B and C are joins of join irreducibles in $P\left(a_{i}\right)$.

Remark. In general if A and B are join irreducible in $P\left(a_{i}\right)$, $A: B$ is not join irreducible; for example, $a_{2}^{2}: a_{1}=a_{2}^{2} \vee a_{3}$ in $P\left(a_{1}, a_{2}, a_{3}\right)$. Of course the residual $A: B$ is join irreducible if $A=C B$ for some C in $P\left(a_{i}\right)$.
7. Principal elements in $P\left(a_{i}\right)$. In general a product of elementary symmetric elements in $P\left(a_{i}\right)$ is not a principal element in $P\left(a_{i}\right)$. In particular a_{1} is not weak meet principal if $k>1$ since from $\S 2\left(a_{k}: a_{1}\right)=a_{k}$ so $\left(a_{k}: a_{1}\right) a_{1}=a_{1} a_{k}$ while $a_{k} \wedge a_{1}=a_{k} \neq a_{1} a_{k}$. However, there is a nontrivial principal element, a_{k}, in $P\left(a_{i}\right)$ since a_{k} is a principal element in $R L\left(A_{i}\right)$. We show that a_{k} and its powers are the only nontrivial principal elements in $P\left(a_{i}\right)$.

A Π-domain is a multiplicative lattice, L^{\prime}, which contains a subset, S, of elements of L^{\prime} which generates L^{\prime} under joins such that every element of S is a product of prime elements and in which 0 is a prime element $[1, \S 4]$.

Theorem 7.1. $P\left(a_{i}\right)$ is a II-domain in which the only principal
elements are 0 , a_{k}^{t} for $t \geqq 1$, and I.
Proof. 0 is a prime element in $P\left(a_{i}\right)$ since 0 is a prime element in $R L\left(A_{i}\right)$. Moreover, $P\left(a_{i}\right)$ is a multiplicative lattice which is generated under joins by products of the elementary symmetric elements.

If A and B are joins of products of the a_{i} 's such that $A \nsubseteq a_{j}$ and $B \nsubseteq a_{j}$ for a fixed $j, 1 \leqq j \leqq k$, then there are products $\Pi a_{i}^{e_{i}}$ and $\Pi a_{i}^{f_{i}}$ in the minimal bases in $P\left(a_{i}\right)$ respectively such that $\Pi a_{i}^{e_{i}} \nsubseteq a_{j}$ and $\Pi a_{i}^{f_{i}} \not \equiv a_{j}$. Then there exist $\left(r_{i}\right)<\left(e_{i}^{*}\right)$ and $\left(s_{i}\right) \prec\left(f_{i}^{*}\right)$ such that both $\left(r_{i}\right)$ and (s_{i}) have fewer than j nonzero integers. By symmetry (r_{i}^{\prime}) and (s_{j}^{\prime}), the monotone representatives of (r_{i}) and $\left(s_{i}\right)$ are in the minimal bases for $\Pi a_{i}^{e_{i}}$ and $\Pi a_{i}^{f i}$ respectively and $\left(r_{i}^{\prime}\right)+\left(s_{i}^{\prime}\right)$ has fewer than j nonzero entries. Therefore $\Pi A_{i}^{r^{\prime}} \cdot \Pi A_{i}^{s_{i}^{\prime}} \neq a_{j}$ and hence $A B \not \equiv a_{j}$. Hence a_{j} is a prime element in $P\left(a_{i}\right)$.

0 and I are principal elements in $P\left(a_{i}\right)$. The fact that any weak meet principal element in $P\left(a_{i}\right)$ is join irreducible follows from [1, Theorem 1.2]. So in $P\left(a_{i}\right)$ the only nontrivial candidates for principal elements are products of the a_{i} 's. Moreover, since $A B$ principal implies that A is principal and $a_{1} \cdots, a_{k-1}$ are not principal elements in $P\left(a_{i}\right)$, the only principal elements in $P\left(a_{i}\right)$ are powers of $a_{k}, 0$, and I.
8. Remarks (multiplicative lattices). Elements in $R L\left(A_{i}\right)$ and $P\left(a_{i}\right)$ are joins of unique products of their generators. Moreover, both of these multiplicative lattices have a partial order which naturally induces an order on k-tuples associated with their exponent k-tuples. If we define $\phi: R L\left(A_{i}\right) \rightarrow P\left(a_{i}\right)$ by sending A_{i} to a_{i} for each i and extending ϕ via products and joins, we see that ϕ is a join-morphism which preserves products, primes, and join principalness. However $R L\left(A_{i}\right)$ is the lattice of ideals of a semigroup while $P\left(a_{i}\right)$ is not [1]. The problem in $P\left(a_{i}\right)$ is the absence of weak meet principal generators.

In $P\left(a_{i}\right)(k>1)$ every prime contains the only principal prime element, a_{k}.
9. Remarks (partitions of integers). Brylawski [4] has studied certain sublattices of $P\left(a_{i}\right)$. He defined L_{k} to be the lattice of monotone partitions of k of length k. Extending Brylawski's notation, we write L_{n}^{k} for the lattice of monotone partitions of n with the understanding that the last $n-k$ entries are zero if $n \geqq k$ and the last $k-n$ entries are zero if $n<k$.

For $\mathfrak{B}, \mathfrak{C} \subseteq P\left(a_{i}\right)$, we write $\mathfrak{B} \cdot \mathfrak{C}$ for $\{A B \mid A \in \mathfrak{B}$ and $B \in \mathfrak{C}\}$.
Proposition 9.1. $P\left(a_{i}\right)$ is the disjoint union of isomorphic
images of $L_{n}^{k}, \bigcup_{n \geqq 0 \text { or } n=\infty} \psi\left(L_{n}^{k}\right)$ where we set $L_{0}^{k}=\{(0, \cdots, 0)\}$ and $L_{\infty}^{k}=\{(\infty, \cdots, \infty)\}$ with $\psi\left(s_{1}, \cdots, s_{k}\right)=\Pi a_{i^{s_{i} s_{i+1}}}$ and $s_{k+1}=0$. Moreover $\psi\left(L_{n_{1}}^{k}\right) \cdot \psi\left(L_{n_{2}}^{k}\right)=\psi\left(L_{n_{1}+n_{2}}^{k}\right)$ if $n_{1}, n_{2} \geqq k$.

Proof. That L_{n}^{k} and $\psi\left(L_{n}^{k}\right)$ are isomorphic as lattices follows from Theorem 5.2 and the fact that dom restricted to L_{n}^{k} is simply majorization. Clearly $\psi\left(L_{n_{1}}^{k}\right) \cap \psi\left(L_{n_{2}}^{k}\right)=\phi$ for $n_{1} \neq n_{2}$ and $U_{n} \psi\left(L_{n}^{k}\right)=$ $P\left(a_{i}\right)$ if we agree $\psi\left(L_{0}^{k}\right)=I$ and $\psi\left(L_{\infty}^{k}\right)=0$. That $\psi\left(L_{n_{1}}^{k}\right) \cdot \psi\left(L_{n_{2}}^{k}\right)=$ $\psi\left(L_{n_{1}+n_{2}}^{k}\right)$ if $n_{1}, n_{2} \geqq k$ follows from the addition of exponents of the a_{i} 's in $P\left(a_{i}\right)$ under multiplication.
10. Remarks (symmetric elements). We asked whether the multiplicative sublattice of symmetric elements, \mathfrak{N} (§1) can be generated naturally by a proper subset of generators. We note here that a large subset of \mathfrak{R} does not generate \mathfrak{R} under products and joins.

If $\left(s_{i}\right)$ is a k-tuple of nonzero integers then in $R L\left(A_{i}\right), A_{1}^{s_{1}}$, $A_{2}^{s_{2}}, \cdots, A_{k}^{s_{k}}$ is a prime sequence [6]. So $P\left(a_{1}^{\left(s_{1}\right)}, \cdots, a_{k}^{\left(s_{k}\right)}\right)$ is a Π domain isomorphic with $P\left(a_{i}\right)$ where $a_{i}^{\left(s_{i}\right)}$ is the i th elementary symmetric element in $A_{1}^{s_{1}}, \cdots, A_{k}^{s_{k}}$. Moreover, in terms of the A_{i} 's, $\Pi_{i=1}^{k}\left(a_{i}^{\left(s_{i}\right)}\right)^{e_{i}}=\left\{\Pi A_{i}^{t_{i}} \mid t_{i}=s_{i} r_{i}\right.$ for some $\left.\left(r_{i}\right) \prec\left(e_{i}^{*}\right)\right\}$. Elements in $P\left(a_{i}^{\left(s_{i}\right)}\right)$ are all symmetric. However, $\bigcup_{\left(s_{i}\right)} P\left(a_{i}^{\left(s_{i}\right)}\right)$ generates a proper subset of $\mathfrak{\Re}$. For example, if $C=A_{1}^{5} A_{2}^{3} A_{3}$ in $R L\left(A_{1}, A_{2}, A_{3}\right)$, then $V_{g \in S_{3}} C^{g}$ is a symmetric element which is not the join of products of any of the $a_{i}^{\left(s_{i}\right)}$'s.

References

1. D. D. Anderson, R-lattices, Algebra Universalis, 6 (1976), 131-145.
2. G. Birkhoff, Lattice theory, (Third Ed.), Amer. Math. Soc., 1967.
3. K. P. Bogart, Distributive local Noether lattices, Michigan Math. J., 16 (1969), 215-223.
4. Thomas Brylawski, The lattice of integer partitions, Discrete Math., 6 (1973), 201-219.
5. D. Gale, A theorem on flows in networks, Pacific J. Math., 7 (1957), 1073-1082.
6. E. W. Johnson, and M. Detlefsen, Prime sequences and distributivity in local Noether lattices, Fund. Math., 86 (1974), 149-156.
7. H. J. Ryser, Combinatorial mathematics, Math. Assoc. Amer., 1963.
8. G. Szasz, Lattice Theory, Academic Press, 1963.
9. M. Ward, and R. P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc., 45 (1939), 335-354.

Received June 23, 1977.
Slippery Rock State College
Slippery Rock, PA 16057

