SYMMETRIC SUBLATTICES OF A NOETHER LATTICE

MICHAEL E. DETLEFSEN

In this note we investigate questions about partitions of positive integers arising from multiplicative lattice theory and prove that the sublattice of $RL(A_i)$ (A_1, \dots, A_k) is a prime sequence in a local Noether lattice) generated by the elementary symmetric elements in the A_i 's is a π -lattice.

0. Introduction. If A_1, A_2, \dots, A_k is a prime sequence in L, a local Noether lattice, then the multiplicative sublattice it generates is isomorphic to RL_k , the distributive local Noether lattice with altitude k. We denote this sublattice of L by $RL(A_i)$. In $RL(A_i)$, every element is a finite join of products $A_1^{r_1}A_2^{r_2}\cdots A_k^{r_k}$ for $(r_1,\cdots,r_k)=$ (r_i) a k-tuple of nonnegative integers. Minimal bases for an element, T, in $RL(A_i)$ are unique and determined by the exponent k-tuples of the elements in the minimal base for T. We examine the sublattice of L generated by the elementary symmetric elements in the prime sequence A_1, \dots, A_k . This multiplicative sublattice is a π -domain (Theorem 7.1).

Unless otherwise stated, all k-tuples will be nonnegative integers. A k-tuple (r_i) is monotone if and only if $r_i \ge r_{i+1}$ for $1 \ge i > k$. $(r_i) = (s_i)$ and $(r_i) + (s_i)$ refer to componentwise equality and addition respectively. $(r_i) \ge_p (s_i)$ means $r_i \ge s_i$ for $i = 1, \dots, k$. We write $(r_i) \ge_l (s_i)$ to mean the first nonzero entry in $(r_i - s_i)$ is strictly positive (lexicographic order). If (e_i) is a k-tuple we write e_i^* for $\sum_{j=i}^k e_j$ and e_i^{**} for $\sum_{j=i}^k e_j^*$. Throughout this note A_1, \dots, A_k is a prime sequence in L and $RL(A_i)$ is the multiplicative sublattice it generates.

1. The symmetric sublattice. If T is a principal element in $RL(A_i)$ and g is in S_k , the permutation group on $1, \dots, k$, we define $T_g(T^g)$ to be the principal element in $RL(A_i)$ obtained by replacing $A_i^{t(i)}$ by the factor $A_g^{t(i)}(A_i^{t(g(i))})$ in T for each i from 1 to k. If $C_1 \vee \cdots \vee C_p$ is a minimal base for C in $RL(A_i)$, then $C_g = (C_1)_g \vee \cdots \vee (C_p)_g$. C^g is defined similarly. Note that for each g in S_k and for C in $RL(A_i)$, $(C_g)^g = (C^g)_g = C$. Hence $C_g = C^{g-1}$. An element C in $RL(A_i)$ is a symmetric element if and only if $C_g = C$ for each g in S_k .

THEOREM 1.1. The set of all symmetric elements in $RL(A_i)$ forms a multiplicative sublattice of $RL(A_i)$ which is closed under residuation.

Proof. We show that F_g , the set of elements fixed by the map ϕ from $RL(A_i)$ to $RL(A_i)$ defined $C \xrightarrow{\phi} C^g$ for g in S_k is a residuated multiplicative lattice. For then the set of symmetric elements which is the intersection of all of the F_g 's for g in S_k is also a multiplicative sublattice.

Let g be any permutation in S_k and ϕ be defined as above. ϕ is well defined and preserves join by definition. Since $(C_g)^g = (C^g)_g = C$ for each C in $RL(A_i)$, ϕ is a bijection.

Let $B = \Pi A_i^{b_i}$ and $C = \Pi A_i^{c_i}$ be principal elements in $RL(A_i)$. Then $(BC)^g = \Pi A_{g^{-1}(i)}^{b_i+c_i} = \Pi A_{g^{-1}(i)}^{b_i} \cdot \Pi A_{g^{-1}(i)}^{c_i} = B^g \cdot C^g$ and $(B \wedge C)^g = (\Pi A_i^{\max(b_i,c_i)})^g = \Pi A_{g^{-1}(i)}^{\max(b_i,c_i)} = \Pi A_{g^{-1}(i)}^{b_i} \wedge \Pi A_{g^{-1}(i)}^{c_i} = B^g \wedge C^g$. Since elements in $RL(A_i)$ are joins of principal elements and multiplication and meet distribute over join, ϕ preserves products and meet.

Finally, the fact that ϕ preserves residuals and that F_g is a multiplicative sublattice of $RL(A_i)$ readily follows from the fact that ϕ is a multiplicative lattice isomorphism.

REMARK. If B is a principal element in $RL(A_i)$ such that $B^g = B$, then B is a principal element in F_g . However, F_g contains enough principal elements to make it a Noether lattice only if g is the identity in S_k (cf § 7) for k > 1.

2. Elementary symmetric elements. For $t = 1, \dots, k, a_t$, the tth elementary symmetric element in A_1, \dots, A_k is the join of all products of A_1, \dots, A_k with t distinct factors. In this section we investigate the chain $0 < a_k < \dots < a_1 < I$ of elementary symmetric elements in $RL(A_i)$.

We say the *weight* of a principal element in $RL(A_i)$ is the maximum of its exponents. If J is a t-tuple (i_1, \dots, i_t) with $i_j < i_{j+1}$ and $t \leq k$ then we denote by (J) the set of all (k-t)-tuples (j_1, \dots, j_{k-t}) such that $\{j_1, \dots, j_{k-t}\} \cap \{i_1, \dots, i_t\}$ is empty.

THEOREM 2.1. The elementary symmetric elements together with 0 and I form a sublattice closed under residuation. In particular

$$(a_{\imath} {:} a_{p}) = egin{cases} I & if \quad t \leq p \ a_{\iota} & if \quad t > p \ . \end{cases}$$

Proof. From [8, p. 84] we have for t > p

$$(a_i:a_p) = \bigvee (J_1) \lor (J_2) \lor \cdots \lor (J_q)(A_{i_1} \cdot A_{i_2} \cdots A_{i_s} \land \cdots \land A_{q_1} \cdots A_{q_s})$$

where there are C(k, p) (the binomial coefficient) join symbols each having indices in $(J_1), \dots, (J_q)$ for J_i one of the C(k, p) ordered ptuples which can be chosen from $\{1, \dots, k\}$. Each intersection has weight one and by symmetry, $(a_t; a_p) = a_r$ for some r. Since $a_t \leq (a_t; a_p)$ we only need show that $a_{t-1} \leq (a_t; a_p)$.

Let $A_{i_1} \cdots A_{i_{t-1}}$ be any element in the minimal base for a_{i-1} and $A_{i_1} \cdots A_{i_p}$ be the product of the first p of these $(p \leq t-1)$. Then their product $A_{i_1}^2 \cdots A_{i_p}^2 \cdots A_{i_{t-1}}$ is an element which is not less than or equal to any element in the minimal base for a_i . Hence $a_{t-1} \leq (a_t; a_p)$.

REMARK. From the Reciprocity Theorem [9, Theorem 5.1] we can define a multiplication on the chain of elementary symmetric elements by $(a_i: a_p) \ge a_s$ if and only if $a_t \ge a_p \cdot a_s$, i.e., $a_p a_s = a_{\max\{p,s\}}$. This new multiplication makes every element in the chain idempotent and the order becomes $a \le b$ if and only if $a \cdot b = a$ for nonzero elements different from I.

3. The minimal base for πa_i^{*i} : majorization. In this section we determine the minimal base for a product of the elementary symmetric elements in $RL(A_i)$. We first dispense with the powers of the a_i .

LEMMA 3.1. For t < k, a_i^e is the join of all powers of the A_i 's whose exponents are bounded above by e and whose exponent sum is te. $a_k^e = A_1^e \cdots A_k^e$.

Proof. For k > 1, let (k_i) be any k-tuple of nonnegative integers summing to te and bounded above by e. By symmetry we assume (k_i) is monotone. There are at least t nonzero k_i 's no more than t of which are equal to e. Let

$$v_i = egin{cases} k_i - 1 & 1 \leq i \leq t \ k_i & t < i \leq k \end{cases} ext{ and } w_i = egin{cases} 1 & 1 \leq i \leq t \ 0 & t < i \leq k \end{cases}.$$

Then $(v_i) + (w_i) = (k_i)$ and by induction $\Pi A_i^{v_i}$ and $\Pi A_j^{w_i}$ are elements in the minimal base for a_t^{e-1} and a_t respectively. Hence their product which has (k_i) as its exponent k-tuple is in the minimal base for a_t^e . The converse follows by writing down a product in a_t^e and observing the conditions hold.

LEMMA 3.2. $\Pi A_j^{r_j}$ is in the minimal base for $\Pi a_i^{s_i}$ if and only if there is a nonnegative $k \times k$ matrix whose ith row sum is ie_i , whose ith row is bounded above by e_i , and whose jth column sum is r_j . **Proof.** If $\Pi A_j^{r_j} = C_1 \cdots C_k$ where C_i is in the minimal base for $a_i^{\epsilon_i}$, then $C_i = \Pi A_j^{r_{ij}}$ where $r_{ij} \leq e_i$ and $\sum_j r_{ij} = ie_i$. Then $\Pi_i C_i = \prod_j A_j^{r_j}$ where $r_j = \sum_i r_{ij}$ for $j = 1, \dots, k$. (r_{ij}) is the desired matrix. The converse follows easily.

The existence of the matrix described in Lemma 3.2 is determined by the following generalization of the Gale-Ryser theorem on (0, 1)matrices [7, p. 63].

DEFINITION 3.3. If $\mathfrak{M} = (e_1, e_2, \dots, e_k)$ is a k-tuple of nonnegative integers, an \mathfrak{M} -matrix is a matrix of nonnegative integers with k rows whose ith row entries are bounded above by e_i . A $k \times t$ \mathfrak{M} -matrix is maximal with row sums (f_i) if each row is maximal in the lexicographic order of t-tuples.

In Lemma 3.4 (r'_j) is the monotone permutation of (r_j) . If the condition of the lemma holds we say (r_j) is *majorized* by (s_j) and write $(r_j) < (s_j)$.

LEMMA 3.4. If (t_{ij}) is the maximal $k \times t$ M-matrix with row sums (f_i) and column sums (s_j) , then there exists an M-matrix (r_{ij}) with column sums (r_j) if and only if $\sum_{i=1}^{\nu} r'_j \leq \sum_{i=1}^{\nu} s_j$ for $\nu = 1, \dots, t-1$ with equality when $\nu = t$.

Proof. The proof follows mutatis mutandus from [5, p. 1030].

Lemmas 3.2 and 3.4 allow us to characterize the elements in the minimal base for $\Pi a_i^{e_i}$.

THEOREM 3.5. The minimal base for Πa_i^{*i} in $RL(A_i)$ is the join of all products of the A_i 's whose exponent k-tuples are majorized by (e_i^*) .

Proof. The maximal $k \times k$ (e_i) -matrix with row sums (ie_i) has column sums e_i^* . Hence $(r_i) \prec (e_i^*)$ if and only if there exists an (e_i) -matrix with row sums (ie_i) and column sums (r_i) . But this holds if and only if $\Pi A_i^{r_i}$ is an element in the minimal base for $\Pi a_i^{r_i}$.

REMARK. For $k \leq 3$ we have determined that the product $\Pi a_i^{\epsilon_i}$ has as a minimal base the join of all products of the A_i 's whose exponent k-tuples are bounded above by e_i^* , bounded below by e_k , sum to $\sum i e_i$ and whose breadth is less that or equal to $\sum_{i=1}^{k} (tk - t^2)e_i$. The breadth of $\Pi A_i^{r_i}$ is $\sum_{i < j} |r_i - r_j|$. However this characterization does not hold for k > 3.

4. $P(a_1, a_2, \dots, a_k)$, A multiplicative sublattice. Let $P(a_1, \dots, a_k) = P(a_i)$ be the set of all finite joins of products of the elementary

symmetric elements in A_1, \dots, A_k . We will show that this set is the multiplicative sublattice generated by a_1, \dots, a_k .

If (u_i) and (v_i) are k-tuples we define the distance between them as $d((u_i), (v_i)) = \sum_i |u_i - v_i|$. The lemma which follows will aid us in identifying the minimal base for the meet of two products to the a_i 's.

LEMMA 4.1. Let (u_i) and (v_i) be k-tuples majorized by monotone k-tuples (r_i) and (s_i) , respectively. Then if $w_i = \max(u_i, v_i)$ for $i = 1, \dots, k$

(1) $d((u_i), (v_i)) = |r_1^* - s_1^*|$ if and only if $w_1^* = \max(r_1^*, s_1^*)$.

 $(2) \quad d((u_i), (v_i)) \ge |r_1^* - s_1^*|.$

(3) $d((u_i), (v_i)) > |r_1^* - s_1^*|$ implies there exist k-tuples (\bar{u}_i) and (\bar{v}_i) such that $(w_i) \ge_p (\max(\bar{u}_i, \bar{v}_i))$ and $d((\bar{u}_i), (\bar{v}_i)) = |r_1^* - s_1^*|$.

Proof. (1) $2 \cdot w_1^* = \sum_i (u_i + v_i + |u_i - v_i|) = r_1^* - s_1^* + |r_1^* - s_1^*| = 2(\max(r_1^*, s_1^*))$ if and only if $\sum |u_i - v_i| = |r_1^* - s_1^*|$ since for any two integers $a, b \ 2(\max(a, b)) = a + b + |a - b|$.

 $(2) |r_1^* - s_1^*| = |u_1^* - v_1^*| = |\sum_i (u_i - v_i)| \le \sum_i |u_i - v_i| = d((u_i), (v_i)).$

(3) $d((u_i), (v_i))| > |u_1^* - v_1^*|$ implies there exist indices i_1 and i_2 such that $u_{i_1} < v_{i_1}$ and $u_{i_2} > v_{i_2}$. Let $(u'_i), (v''_i)$ be the monotone representatives of $(u_i), (v_i)$ respectively. If $i'_1 < i'_2$ then $v''_{i_1} \ge u'_{i_2} > v'_{i_2}$ so that $v''_{i_1} \ge v''_{i_2} + 2$. Let (t''_i) be the k-tuple equal to (v''_i) for $i \neq i''_1$, $i''_2, t''_{i_1} = v''_{i_1} - 1$ and $t''_{i_2} = v''_{i_2} + 1$. Then (t''_i) is majorized by (r_i) . If (t_i) is obtained by reversing the permutation $(v_i) \to (v''_i)$ and applying it to (t''_i) then (t_i) is also majorized by (r_i) . So

$$\max{(u_i, t_i)} = egin{cases} \max{(u_i, v_i)}, & i
eq i_1 \ v_{i_1} - 1 \ , & i = i_1 \end{cases}$$

and $d((u_i), (t_i)) < d((u_i), (v_i))$. By induction on d, there exist $(\bar{u}_i), (\bar{v}_i)$ such that $d((\bar{u}_i), (\bar{v}_i)) = |r_1^* - s_1^*|$ and $\max(\bar{u}_i, \bar{v}_i) \le \max(u_i, t_i) \le \max(u_i, v_i)$ for $i = 1, \dots, k$. The proof is complete if $i'_1 < i'_2$.

Otherwise $i'_1 > i'_2$ which implies that $i''_1 < i''_2$. The proof is similar if the latter holds.

Now suppose that (e_i) and (f_i) are k-tuples, then $\Pi a_i^{e_i}$ and $\Pi a_i^{f_i}$ are elements of $P(a_i)$. The next theorem characterizes the elements in the base for their meet in terms of the exponents of the A_i 's.

THEOREM 4.2. If $\Pi a_i^{e_i}$ and $\Pi a_i^{f_i}$ are elements of $P(a_i)$ with $f_1^{**} \geq e_1^{**}$ then $\Pi a_i^{e_i} \wedge \Pi a_i^{f_i} = \{\Pi A_i^{v_i} | (v_i) \prec (f_i^*) \text{ and } (v_i) \geq_p (u_i) \text{ for some } (u_i) \prec (e_i^*)\}.$

Proof. Since $RL(A_i)$ is distributive, the meet described in the

theorem is the join of all products of the A_i whose exponent k-tuples are $(\max(u_i, v_i))$ for $(u_i) \prec (e_i^*)$ and $(v_i) \prec (f_i^*)$. If $d((u_i), (v_i))$ is greater than $f_1^{**} - e_1^{**}$, then $(\max(u_i, v_i)) \ge_p (\max(\bar{u}_i, \bar{v}_i))$ for some (\bar{u}_i) and (\bar{v}_i) majorized by (e_i^*) and (f_i^*) respectively. Hence the product of the A_i 's with exponent k-tuple $(\max(u_i, v_i))$ can be left out of the minimal base for the meet. But $d((u_i), (v_i)) > f_1^{**} - e_1^{**}$ if and only if $(v_i) \ge_p (u_i)$. Hence the elements left in the minimal base for the meet have the form desired.

To show that the meet of two products of the a_i 's is again such a product, we need

LEMMA 4.3. Let (e_i^*) and (f_i^*) be monotone k-tuples and $t_i^* = \max(e_i^{**}, f_i^{**}) - \max(e_{i+1}^{**}, f_{i+1}^{**})$ for $i = 1, \dots, k$ where we agree that $e_{k+1}^* = f_{k+1}^* = 0$. Then (t_i^*) is also monotone.

Proof.

$$egin{aligned} \max{(e_i^{**},\,f_i^{**})} &+ \max{(e_{i+2}^{**},\,f_{i+2}^{**})} \ &\geq \max{(e_i^{**} + e_{i+2}^{**},\,f_i^{**} + f_{i+2}^{**})} \ &\geq \max{(2e_{i+1}^{**},\,2f_{i+1}^{**})} \ &= 2\max{(e_{i+1}^{**},\,f_{i+1}^{**})} \ . \end{aligned}$$

So that $t_i^* \geq t_{i+1}^*$ for $i = 1, \dots, k-1$.

THEOREM 4.4. Let (e_i) and (f_i) be k-tuples, then the meet of $\Pi a_i^{\epsilon_i}$ and $\Pi a_i^{f_i}$ is the product $\Pi a_i^{\epsilon_i}$ where t_i^* is given in Lemma 4.3.

Proof. We may assume that $e_1^{**} \ge f_1^{**}$. From above it suffices to show that the set $\mathfrak{B} = \{(u_i) | (u_i) \prec (e_i^*) \text{ and } (u_i) \ge_p (v_i) \text{ for some } (v_i) \prec (f_i^*)\}$ is equal to the set $\mathfrak{C} = \{(u_i) | (u_i) \prec (t_i^*)\}.$

 $\mathfrak{B} \subseteq \mathfrak{C}. \quad \text{If } (u_i) \text{ is in } \mathfrak{B} \text{ then } (u_i) < (e_i^*) \text{ and } (u_i) \geq_p (v_i) \text{ for } (v_i) < (f_i^*). \quad \text{Then } d((u_i), (v_i)) = e_1^{**} - f_1^{**} \text{ so that } w_1^* = e_1^{**} \text{ where } w_i = \max(u_i, v_i) \text{ for } i = 1, \dots, k. \quad \text{Moreover, for } j = 2, \dots, k, \ u_j^* \geq v_j^* \geq f_j^{**} \text{ since if } v_j^* < f_j^{**}, \text{ then } \sum_{i=1}^{j-1} v_i' \geq \sum_{i=1}^{j-1} v_i > \sum_{i=1}^{j-1} f_i^* \text{ where } (v_i') \text{ is the monotone representative of } (v_i) \text{ which contradicts } (v_i) < (f_i^*). \quad \text{Therefore } \sum_{i=1}^{j-1} u_i = e_1^{**} - u_j^* \leq e_1^{**} - f_1^{**}. \quad \text{But}$

$$\sum_{l=1}^{j-1} t_l^* = \sum_{l=1}^{j-1} [\max{(e_l^{**}, f_l^{**})} - \max{(e_{l+1}^{**}, f_{l+1}^{**})}] = \max{(e_l^{**}, f_1^{**})} - \max{(e_j^{**}, f_j^{**})} = \sum_{1}^{j-1} e_i^* - \begin{cases} 0 & ext{if} & e_j^{**} \ge f_j^{**} \ f_j^{**} - e_j^{**} & ext{if} & f_j^{**} > e_j^{**} \ e_1^{**} - f_j^{**} & ext{if} & f_j^{**} > e_j^{**} \ e_1^{**} - f_j^{**} & ext{if} & f_j^{**} > e_j^{**} \ \end{cases}$$

Hence $\sum_{i=1}^{j-1} u_i \leq \sum_{i=1}^{j-1} t_i^*$ and $(u_i) \prec (t_i^*)$, i.e., (u_i) is in \mathbb{C} .

 $\mathfrak{C} \subseteq \mathfrak{B}$. Let (u_i) be a k-tuple majorized by (t_i^*) . By symmetry, we may assume that (u_i) is monotone. Since, $(t_i^*) \prec (e_i^*)$, we have $(u_i) \prec (e_i^*)$. For $i = 1, \dots, k$ let $v_i = \min(u_i, f_1^* + \dots + f_i^* - \sum_{i=1}^{i-1} v_i)$ setting $v_0 = 0$. We claim

(#) $\sum_{i=1}^{q} v_i = \min_p \left\{ \sum_{i=1}^{p} f_i^* + \sum_{p+1}^{q} u_i \right\}$ where the minimum is taken for p ranging from 0 to q and $f_0 = 0 = \sum_{s=1}^{r} u_i$ whenever r < s.

(#) is clear if q = 1. For q > 1,

$$egin{aligned} &\sum_1^q v_i = \sum_1^{q-1} v_i + \min\left(u_q, f_1^* + \cdots + f_q^* - \sum_1^{q-1} v_i
ight) \ &= \min\left(u_q + \sum_1^{q-1} v_i, \sum_1^q f_i^*
ight) \ &= \min\left(u_q + \min_{p=0,\cdots,q-1} \left\{\sum_0^q f_i^* + \sum_{p+1}^q u_i
ight\}, \sum_1^q f_i^*
ight) \ &= \min_{p=0,\cdots,q} \left\{\sum_0^p f_i^* + \sum_{p+1}^q u_i
ight\} \end{aligned}$$

where the third equality follows by induction. Therefore (#) holds.

Moreover, (v_i) is monotone: If q is any integer, $1 \leq q < k-1$, then

$$\begin{array}{ll} (1) & 2(\sum_{i=1}^{q} u_{i}) \geq 2(\sum_{i=1}^{q-1} u_{i}) + u_{q} + u_{q+1} \\ (2) & 2(\sum_{i=1}^{p} f_{i}^{*} + \sum_{p+1}^{q} u_{i}) \geq 2(\sum_{i=1}^{p} f_{i}^{*} + \sum_{p+1}^{q-1} u_{i}) + u_{q} + u_{q+1} \\ (3) & 2(\sum_{i=1}^{q} f_{i}^{*}) \geq 2(\sum_{i=1}^{q-1} f_{i}^{*}) + f_{q}^{*} + f_{q+1}^{*} \end{array}$$

since (u_i) and (f_i^*) are monotone. Hence each integer on the left of the inequalities of (1), (2), or (3) is greater than or equal to

$$\min \left[2 \left(\sum_{1}^{q-1} u_i \right) + u_q + u_{q+1}, 2 (f_1^* + u_2 + \dots + u_{q-1})
ight. \ + u_q + u_{q+1}, \dots, 2 (f_1^* + \dots + f_{q-1}^*)
ight. \ + f_q^* + u_{q+1}, 2 \left(\sum_{1}^{q} f_i^* \right) + f_q^* + f_{q+1}^*
ight] \ \ge \sum_{1}^{q+1} v_i + \sum_{1}^{q-1} v_i \;.$$

So from (#), $\sum_{i=1}^{q} v_i \ge 1/2[\sum_{i=1}^{q+1} v_i + \sum_{i=1}^{q-1} v_i]$ and $v_q = \sum_{i=1}^{q} v_i - \sum_{i=1}^{q-1} v_i \ge \sum_{i=1}^{q+1} v_i - \sum_{i=1}^{q} v_i = v_{q+1}$ for $q = 1, \dots, k-1$. Hence (v_i) is monotone.

Finally, again from $(\ddagger) v_1^* = \min_{j=1,\dots,k} \{\sum_{i=1}^{j-1} f_i^* + u_j^*\}$ and since $u_j^* \ge t_j^{**} = \max(e_j^{**}, f_j^{**}) \ge f_j^{**}$ for $j = 1, \dots, k$, we have $f_1^* + \dots + f_{j-1}^* + u_j^* \ge f_1^{**}$ for each j. Hence $v_1^* = f_1^{**}$. Therefore $(v_i) < (f_i^*)$ since by definition of the v_i 's, $v_1 + \dots + v_j \le f_1^* + \dots + f_j^*$ for each j. Since $(v_i)_p \le (u_i)$ and $(u_i) < (e_i^*)$, we have (u_i) is in \mathfrak{B} .

It follows from the property in $RL(A_i)$ that multiplication in $P(a_i)$ distributes over joins. Consequently

THEOREM 4.5. The set of all finite joins of products of the elementary symmetric elements in A_1, \dots, A_k is a (distributive) multiplicative sublattice of $RL(A_i)$ and is the sublattice generated by a_1, \dots, a_k .

In the next two sections we investigate the structure of the lattice $P(a_i)$. In § 5 we show that the factorization of products of the a_i is unique and in § 6 we investigate the principal elements and the residual division in $P(a_i)$.

5. Unique factorization of products of elementary symmetric elements. If $\Pi a_i^{e_i}$ and $\Pi a_i^{f_i}$ are products in $P(a_i)$ and $\Pi a_i^{e_i} \leq \Pi a_i^{f_i}$, then every element in the minimal base for $\Pi a_i^{e_i}$ must be less than or equal to one of the elements in the minimal base for $\Pi a_i^{f_i}$. That is, whenever $(r_i) < (e_i^*)$ then $(r_i) \geq_p (s_i)$ for some $(s_i) < (f_i^*)$. When this occurs we say that (e_i^*) is dominated by (f_i^*) and write (e_i^*) dom (f_i^*) . Hence, $\Pi a_i^{e_i} \leq \Pi a_i^{f_i}$ if and only if (e_i^*) dom (f_i^*) . Hence,

LEMMA 5.1. Dom is a partial order on the set of monotone k-tuples.

Lemma 5.1 and the definition of dom establish the next theorem.

THEOREM 5.2. The set of products of the a_i 's is order isomorphic to the poset of monotone k-tuples ordered by dom via the map $\Pi a_i^{e_i} \mapsto (e_i^*)$. In particular, since this mapping is well defined, factorization of a product of elementary symmetric elements is unique.

Using the order dom, we show that in $P(a_i)$ any product of the elementary symmetric elements is join irreducible.

THEOREM 5.3. Products of the elementary symmetric elements in $P(a_i)$ are join irreducible.

Proof. Suppose that $\Pi a_i^{g_i} = \Pi a_i^{e_i} \vee \cdots \vee \Pi a_i^{f_i}$. Since minimal bases in $RL(A_i)$ are unique, the element $\Pi A_i^{g_i*}$ which is in the minimal base for $\Pi a_i^{g_i}$ must appear in the minimal base for one of the products of the a_i 's on the right, say $\Pi a_i^{e_i}$. Then $(g_i^*) \prec (e_i^*)$. But since $\Pi a_i^{g_i} \leq \Pi a_i^{g_i}$, (e_i^*) dom (g_i^*) . So $(e_i^*) \geq_p (v_i)$ where $(v_i) \prec (g_i^*)$. Therefore $(e_i^*) = (v_i)$ and $(e_i^*) \prec (g_i^*)$. Consequently $(e_i^*) = (g_i^*)$; and $\Pi a_i^{g_i}$ is join irreducible.

COROLLARY 5.4. Elements in $P(a_i)$ have unique minimal bases as joins of products of the a_i 's. Proof. [2, p. 183].

6. Residuation and join principal elements in $P(a_i)$. In Lemma 4.1 we used the technique of subtracting one from a position in a k-tuple and adding one further to the right in such a way that monotonicity of the k-tuple was maintained. We call this process a monotone (-1, 1)-change and remark that these changes characterize majorization [cf. 4].

PROPOSITION 6.1. Let (r_i) and (s_i) be manotone k-tuples such that $(r_i) < (s_i)$ and (\bar{r}_i) be obtained from (r_i) by a monotone (-1, 1)-change. Then $(\bar{r}_i) < (s_i)$.

PROPOSITION 6.2. Every mototone k-tuple majorized by a monotone k-tuple (s_i) can be obtained from (s_i) by a sequence of monotone (-1, 1)-changes.

Proof. Let (r_i) be a monotone k-tuple such that $(r_i) < (s_i)$. We show that (r_i) can be obtained by a sequence of (-1, 1)-changes by induction on $d((r_i), (s_i)) = \sum_{i=1}^{k} |r_i - s_i| = t$. If t = 0, $(r_i) = (s_i)$. For t > 0, let $\mathfrak{D} = \{i: s_i > r_i\}$. If \mathfrak{D} is empty, then $(s_i)_p \leq (r_i)$ and $(r_i) = (s_i)$ since $r_1^* = s_1^*$. Hence \mathfrak{D} is nonempty. Set $i_0 = \max \mathfrak{D}$. Moreover, $i_0 < k$ since $i_0 = k$ implies $\sum_{i=1}^{k-1} r_i > \sum_{i=1}^{k-1} s_i$ contradicting $(r_i) < (s_i)$. Now let $j_0 = \max(\mathfrak{F}(i_0))$ where $\mathfrak{F}(i_0) = \{j: j > i_0$ and $s_j < r_j\}$. If $\mathfrak{F}(i_0)$ is empty and $i_0 = 1$, then j > 1 implies $s_j \geq r_j$ so that $s_j = r_j$ for j > 1. But then $s_1 = r_1$, a contradiction. If $\mathfrak{F}(i_0)$ is empty and $i_0 > 1$, then

$$\sum\limits_{1}^{i_{0}} s_{j} + r_{i_{0}+1}^{*} \geqq \sum\limits_{1}^{i_{0}} r_{j} + r_{i_{0}+1}^{*} = s_{1}^{*} \geqq \sum\limits_{1}^{i_{0}} s_{j} + r_{i_{0}+1}^{*}$$

and $s_{i_0+1}^* = r_{i_0+1}^*$. But then $s_q = r_q$ for $i_0 + 1 \leq q \leq k$. Therefore $\sum_{i_1}^{i_0} r_j = \sum_{i_1}^{i_0} s_j$ with $s_{i_0} > r_{i_0}$. This implies $\sum_{i_1}^{i_0-1} r_j > \sum_{i_1}^{i_0-1} s_j$. Again this is a contradiction. Hence $\mathfrak{F}(i_0)$ is nonempty.

Let (\bar{s}_i) be obtained from (s_i) by a monotone (-1, 1)-change at the i_0, j_0 places. Then (\bar{s}_i) is monotone and we claim that $(r_i) \prec (\bar{s}_i)$. Since $(r_i) \prec (s_i)$ and $\bar{s}_{i_0} = s_{i_0} - 1 \ge r_{i_0}$ the desired inequality holds for $1 \le q \le i_0$. If $i_0 < q < j_0$ and $\sum_{1}^{q} r_i > \sum_{1}^{q} \bar{s}_i$, then $\sum_{1}^{q} r_i = \sum_{1}^{q} s_i$. There is some p > q such that $\sum_{1}^{p} r_i < \sum_{1}^{p} s_i$. Let p_0 be the least such p. Then $(r_{q+1}, \dots, r_{p_0-1}) = (s_{q+1}, \dots, s_{p_0-1})$ and $r_p < s_p$. This contradicts the choice of i_0 if $p_0 > q + 1$. If $p_0 = q + 1$, then $r_{q+1} < s_{q+1}$ again gives a contradiction to the choice of i_0 . Hence for $1 \le q < j_0$, the sum of the first qr_i 's is less than or equal to the sum of the first \bar{s}_i 's. The inequalities are clear if $j_0 \le q \le k$ so that $(r_i) \prec (\bar{s}_i)$. Since $d((r_i), (\bar{s}_i)) < d((r_i), (s_i))$, the theorem follows by induction.

Note that if (r_i) can be obtained from (s_i) by a sequence of monotone (-1, 1)-changes, then we can obtain (s_i) from (r_i) by a sequence of (1, -1)-changes.

PROPOSITION 6.4. If (r_i) is a monotone k-tuple, then each monotone k-tuple which majorizes (r_i) can be obtained from (r_i) by a finite sequence of monotone (1, -1)-changes.

Our next objective is to show that $P(a_i)$ is closed under residuation. Since $P(a_i)$ is distributive and a product of the a_i 's is join irreducible, the following lemma tells us that to check closure of residuation in $P(a_i)$ we only need check the residuation of a product of the a_i 's by another such product.

LEMMA 6.5. If every element in a distributive multiplicative lattice L is a join of join irreducibles and join irreducibles are closed under multiplication, then for Z join irreducible and X, Y in L,

$$(X \lor Y: Z) = (X: Z) \lor (Y: Z)$$
.

Proof. If W is join irreducible such that $WZ \leq X \lor Y$, then $WZ = (WZ \land X) \lor (WZ \land Y)$. Hence $WZ \leq X$ or $WZ \leq Y$ and $W \leq (X:Z) \lor (Y:Z)$. Therefore $(X \lor Y:Z) \leq (X:Z) \lor (Y:Z)$. Since the opposite inequality holds, the lemma is proved.

COROLLARY 6.6. $P(a_i)$ is closed under residuation if and only if (X: Y) is in $P(a_i)$ for any join irreducibles X, Y in $P(a_i)$.

Proof. If $X_1, \dots, X_m, Y_1, \dots, Y_n$ are products of the a_i 's in $P(a_i)$, then

$$(X_1 \vee \cdots \vee X_m: Y_1 \vee \cdots \vee Y_n) = \bigwedge_{j=1}^n \left(\bigvee_{i=1}^m (X_i: Y_j) \right)$$

by Lemma 6.5.

Technical Lemmas 6.7 and 6.8 allow us to prove $P(a_i)$ is closed under residuation.

LEMMA 6.7. If $(q_i) \prec (g_i)$ and $(g_i) \ge_p (b_i)$ for some $(b_i) \prec (e_i^*)$, then $(q_i) \ge_p (a_i)$ for some $(a_i) \prec (e_i^*)$.

Proof. First we assume (q_i) is monotone and we may assume

that (b_i) is monotone. Let (\overline{q}_i) be obtained from (q_i) by a monotone (-1, 1)-change at the l, m places where l < m. If $(\overline{q}_i) \geq_p (b_i)$, let $(a_i) = (b_i)$. If not, then $\overline{q}_i \geq b_i$ for $i \neq l$ implies that $\overline{q}_l < b_l$. Since $q_l \geq b_l$, we have $q_l = b_l$ and $b_{l+1} < b_l$. (If $b_{l+1} = b_l$ then $b_l = b_{l+1} \leq q_{l+1} < q_l = b_l$, a contradiction.) Let $\overline{b}_l = b_l - 1$ and $\overline{b}_i = b_i$ for $i \neq l$. If $\overline{b}_{m-j} < \overline{b}_{m-(j+1)}$ and $q_{m-j} > \overline{b}_{m-j}$ for some $0 \leq j \leq m - l + 1$ then (a_i) defined by

$$a_i = egin{cases} ar{b}_i & ext{for} \quad i
eq m-j \ ar{b}_i+1 & ext{for} \quad i+m-j \end{cases}$$

satisfies the conclusion of the lemma. Otherwise $\bar{b}_{m-1} = \bar{b}_m$ so that $q_{m-1} \ge \bar{q}_m > \bar{b}_m = \bar{b}_{m-1}$. Then we can construct (a_i) as desired unless $\bar{b}_{m-1} = \bar{b}_{m-2}$ in which case $q_{m-2} \ge \bar{q}_{m-1} > \bar{b}_{m-1} = \bar{b}_{m-2}$. Again we can construct the desired (a_i) unless $\bar{b}_{m-2} = \bar{b}_{m-3}$. Continuing, we conclude all of the \bar{b}_i 's for *i* from *l* to *m* are equal if (a_i) cannot be constructed. But we know that $\bar{b}_m < \bar{q}_m = q_m + 1 \le \bar{q}_l - q_l - 1 = b_l - 1 = \bar{b}_l$; that is, $\bar{b}_m < \bar{b}_l$, a contradiction. Hence (a_i) exists such that $(a_i) < (e_i^*)$ and $(\bar{q}_i) \ge_p (a_i)$. Since any monotone *k*-tuple majorized by (g_i) can be obtained by a finite sequence of monotone (-1, 1)-changes, the lemma is proved for (q_i) monotone.

If (q_i) is not monotone, let (q'_i) be its monotone representative. Then for some $(a'_i) \prec (e^*_i)$, $(q'_i) \geq_p (a'_i)$. But then $(q_i) \geq_p (a_i)$ and $(a_i) \prec (e^*_i)$.

LEMMA 6.8. Let (u_i) , (f_i^*) , (b_i) , and (e_i^*) be monotone k-tuples with $(u_i) + (f_i^*) \geq_p (b_i)$ for some $(b_i) \prec (e_i^*)$ and suppose $(q_i) \prec (f_i^*)$, then $(u_i) + (q_i) \geq_p (c_i)$ for some $(c_i) \prec (e_i^*)$.

Proof. Since $(q_i) < (f_i^*)$, $(u_i + q_i) < (u_i + f_i^*)$. Moreover, since $(u_i) + (f_i^*) = (u_i + f_i^*) \ge_p (b_i)$ for some $(b_i) < (e_i^*)$, by Lemma 6.7 $(u_i + q_i) = (u_i) + (q_i) \ge_p (c_i)$ for some $(c_i) < (e_i^*)$.

COROLLARY 6.9. If (u_i) is a monotone k-tuple then $\Pi A_i^{u_i} \leq \Pi a_i^{e_i}$: $\Pi a_i^{f_i}$ if and only if $(u_i + f_i^*) \geq_p (b_i)$ for some $(b_i) \prec (e_i^*)$.

Proof. If (\bar{q}_i) is the monotone representative for (q_i) and $(\overline{u_i+q_i})$ is the monotone representative for (u_i+q_i) for some $(q_i) \prec (f_i^*)$, then

$$\sum \overline{u_i + q_i} \leq \sum u_i + \sum \overline{q}_i \leq \sum u_i + \sum f_i^* = \sum (u_i + f_i^*)$$

where the indices run from 1 to j for $1 \le j \le k-1$ and $(u_1 + q_1)^* = u_1^* + q_1^* = u_1^* + f_1^{**} = (u_1 + f_1^*)^*$. Hence the condition is sufficient. Necessity is clear.

Note that a symmetric element E in $RL(A_i)$ is the join of pro-

ducts of the a_i 's if and only if whenever $\Pi A_i^{r_i} \leq E$ with (r_i) monotone and (s_i) is obtained from (r_i) by a sequence monotone (-1, 1)-changes, then $\Pi A_i^{s_i} \leq E$; for then $E = \bigvee \{\Pi a_i^{t_i - t_i + 1}: (t_i) \text{ is monotome and } \Pi A_i^{t_i} \text{ is in the minimal base for } E\}$. As before we set $t_{k+1} = 0$.

THEOREM 6.10. $P(a_i)$ is closed under residuation.

Proof. Suppose that (u_i) is monotone and that $\Pi A_i^{u_i} \leq (\Pi a_i^{e_i}: \Pi a_i^{f_i})$. Let (v_i) be obtained from (u_i) by a monotone (-1, 1)-change. Then $\Pi a_i^{u_i} \cdot \Pi A_i^{f_i^*} \leq \Pi a_i^{e_i}$ so that $(u_i) + (f_i^*) \geq_p (b_i)$ for some $(b_i) < (e_i^*)$. So by Lemma 6.8 $(v_i) + (f_i^*) \geq_p (c_i)$ for some $(c_i) < (e_i^*)$ since $(v_i) + (f_i^*)$ is obtained from $(u_i) + (f_i^*)$ by a monotone (-1, 1)-change. Hence $\Pi A_i^{v_i} \leq (\Pi a_i^{e_i}: \Pi a_i^{f_i})$ by Corollary 6.9. Therefore $\Pi a_i^{u_i - u_{i+1}} \leq (\Pi a_i^{e_i}: \Pi a_i^{f_i})$ so the residual is the join of all such products $\Pi a_i^{u_i - u_{i+1}}$ where (u_i) is monotone and $\Pi A_i^{u_i} \cdot \Pi a_i^{f_i} \leq a_i^{e_i}$. (We set $u_{k+1} = 0$.) Since this is an element in $P(a_i)$ our proof is complete.

PROPOSITION 6.11. Each product of the elementary symmetric elements is a weak join principal element in $P(a_i)$.

Proof. Let k > 1. It suffices to show that $(\Pi a_i^{e_i}: a_i) = \Pi_{i \neq i} a_i^{e_i} \cdot a_i^{e_i-1}$ whenever $e_i \ge 1$. And since the product on the right is clearly less than or equal to the residual, we only need demonstrate the opposite inequality. So suppose that $\Pi A_i^{e_i} \le (a_i^{e_i}: a_i)$ where $e_i \ge 1$. By symmetry we assume (t_i) is monotone. Let $(f_i^*) = (1, 1, \dots, 1, 0, \dots, 0)$ with 1's in the first t positions. Then

$$(\nabla) \qquad (t_i) + (f_i^*) \ge_p (b_i) \text{ for some } (b_i) \prec (e_i^*).$$

Let (u_i) be the lexicographic maximum of the *p*-minimal *k*-tuples which are $_{p} \leq (t_i)$ and satisfy (\mathcal{V}) with (u_i) in place of (t_i) . Note that (u_i) is monotone since if (\bar{u}_i) is the monotone representative of (u_i) then $(\bar{u}_i)_{p} \leq (t_i)$ and by symmetry $\prod A_i^{\bar{u}_i} \leq (\prod a_i^{e_i}:a_i)$. But $(\bar{u}_i) \geq_l (u_i)$ and since (\bar{u}_i) is *p*-minimal $(u_i) = (\bar{u}_i)$. Moreover, $(u_i) +$ $(f_i^*) = (u_i + f_i^*)$ is monotone so we can choose (b_i) monotone and *l*-maximum satisfying (\mathcal{V}) with (t_i) replaced by (u_i) .

Claim. $(u_i) \prec ((e_i - f_i)^*)$. For then $\Pi A_i^{t_i} \leq \Pi A_i^{u_i} \leq \Pi_{i \neq i} a_i^{e_i} \cdot a_i^{e_i - 1}$. First suppose that $\sum_{i=1}^{r} b_i = \sum_{i=1}^{r} e_i^*$ for some r < k. Set $(g_1, \dots, g_r) = (f_1, \dots, f_{r-1}, f_r^*)$ and $(h_1, \dots, h_r) = (e_1, \dots, e_{r-1}, e_r^*)$. Then $(h_i) \geq_p (g_i)$. Also $g_i^* = f_i^*$ and $h_i^* = e_i^*$ for $i = 1, \dots, r$. So $(u_1 + g_1^*, \dots, u_r + g_r^*) \geq_p (b_1, \dots, b_r)$ with $(b_1, \dots, b_r) \prec (h_i^*)$. By induction on k $(u_1, \dots, u_r) \geq_p (c_1, \dots, c_r)$ for some $(c_1, \dots, c_r) \prec (h_1^* - g_1^*, \dots, h_r^* - g_r^*)$. Also by induction on k, since $(u_{r+1}, \dots, u_k) + (f_{r+1}^*, \dots, f_k^*) \geq_p (b_{r+1}, \dots, b_k)$ for $(b_{r+1}, \dots, b_k) \prec (e_{r+1}^*, \dots, e_k^*)$ there is a k - r-tuple (c_{r+1}, \dots, c_k) such that $(c_{r+1}, \dots, c_k) \prec ((e_{r+1} - f_{r+1})^*, \dots, (e_k - f_k)^*)$ and $(u_{r+1}, \dots, u_k) \ge_p (c_{r+1}, \dots, c_k)$. But then $(u_i) \ge_p (c_i)$ with $(c_i) \prec ((e_i - f_i)^*)$. Hence we may assume that $\sum_{i=1}^r b_i < \sum_{i=1}^r e_i^*$ for any r < k.

If $(b_i) = (u_i + f_i^*)$, then $(u_i) = (b_i - f_i^*)$ and $(u_i) < ((e_i - f_i)^*)$. So suppose there exists some *i* such that $b_i < u_i + f_i^*$. Let i_0 be the first such *i*. Then for any *j*, $1 \le j \le i_0 - 1$, $b_j = u_j + f_j^*$ and by the *l*-maximality of (b_i) , either $b_{i_0-1} = b_{i_0}$, $i_0 = 1$, or if $b_{i_0-1} > b_{i_0}$, then for all $q > i_0$, $b_q = 0$ since otherwise we could perform a mototone (1, -1)-change on (b_i) . Moreover, by the *p*-minimality of (u_i) , u_{i_0} cannot be reduced in any coordinate so that $u_{i_0} + f_{i_0}^* > b_{i_0}$ implies that $u_{i_0} = 0$. Since f_i^* is either 0 or 1 for each *i*, we conclude that $1 = f_{i_0} > b_{i_0} = 0$. Hence $i_0 \ne 1$ (for if $i_0 = 1$ then $(b_i) = (0, \dots, 0)$) and $b_{i_0} \ne b_{i_0-1}$ (for if $b_{i_0-1} = b_{i_0}$, then $b_{i_0-1} = 0 < 1 + u_{i_0-1} = f_{i_0-1}^* + u_{i_0-1}$ contradicting the choice of i_0). So $b_{i_0-1} > b_{i_0}$ and $q > i_0$ implies that $b_q = 0$. Since $e_{i_0}^* > f_{i_0}^*$, $e_{i_0}^* > 0$. Therefore $e_i^* + \dots + e_{i_0-1}^* < e_i^{**} = b_1^* = b_1 + \dots + b_{i_0-1} \le e_1^* + \dots + e_{i_0-1}^*$, a contradiction. Therefore the i_0 does not exist and the theorem is proved.

COROLLARY 6.12. Each product of the elementary symmetric elements is join principal in $P(a_i)$.

Proof. If A, B, and C are in $P(a_i)$ with A a product of the a_i 's, then $(AB \lor C: A) = (AB: A) \lor (C: A) = B \lor (C: A)$ since B and C are joins of join irreducibles in $P(a_i)$.

REMARK. In general if A and B are join irreducible in $P(a_i)$, A: B is not join irreducible; for example, a_2^2 : $a_1 = a_2^2 \vee a_3$ in $P(a_1, a_2, a_3)$. Of course the residual A: B is join irreducible if A = CB for some C in $P(a_i)$.

7. Principal elements in $P(a_i)$. In general a product of elementary symmetric elements in $P(a_i)$ is not a principal element in $P(a_i)$. In particular a_1 is not weak meet principal if k > 1 since from § 2 $(a_k; a_1) = a_k$ so $(a_k; a_1)a_1 = a_1a_k$ while $a_k \wedge a_1 = a_k \neq a_1a_k$. However, there is a nontrivial principal element, a_k , in $P(a_i)$ since a_k is a principal element in $RL(A_i)$. We show that a_k and its powers are the only nontrivial principal elements in $P(a_i)$.

A Π -domain is a multiplicative lattice, L', which contains a subset, S, of elements of L' which generates L' under joins such that every element of S is a product of prime elements and in which 0 is a prime element $[1, \S 4]$.

THEOREM 7.1. $P(a_i)$ is a Π -domain in which the only principal

elements are 0, a_k^t for $t \ge 1$, and I.

Proof. 0 is a prime element in $P(a_i)$ since 0 is a prime element in $RL(A_i)$. Moreover, $P(a_i)$ is a multiplicative lattice which is generated under joins by products of the elementary symmetric elements.

If A and B are joins of products of the a_i 's such that $A \leq a_j$ and $B \leq a_j$ for a fixed $j, 1 \leq j \leq k$, then there are products $\Pi a_i^{\epsilon_i}$ and $\Pi a_i^{f_i}$ in the minimal bases in $P(a_i)$ respectively such that $\Pi a_i^{\epsilon_i} \leq a_j$ and $\Pi a_i^{f_i} \leq a_j$. Then there exist $(r_i) \prec (e_i^*)$ and $(s_i) \prec (f_i^*)$ such that both (r_i) and (s_i) have fewer than j nonzero integers. By symmetry (r'_i) and (s'_j) , the monotone representatives of (r_i) and (s_i) are in the minimal bases for $\Pi a_i^{\epsilon_i}$ and $\Pi a_i^{f_i}$ respectively and $(r'_i) + (s'_i)$ has fewer than j nonzero entries. Therefore $\Pi A_i^{r_i} \cdot \Pi A_i^{s'_i} \leq a_j$ and hence $AB \leq a_j$. Hence a_j is a prime element in $P(a_i)$.

0 and I are principal elements in $P(a_i)$. The fact that any weak meet principal element in $P(a_i)$ is join irreducible follows from [1, Theorem 1.2]. So in $P(a_i)$ the only nontrivial candidates for principal elements are products of the a_i 's. Moreover, since ABprincipal implies that A is principal and $a_1 \cdots, a_{k-1}$ are not principal elements in $P(a_i)$, the only principal elements in $P(a_i)$ are powers of a_k , 0, and I.

8. Remarks (multiplicative lattices). Elements in $RL(A_i)$ and $P(a_i)$ are joins of unique products of their generators. Moreover, both of these multiplicative lattices have a partial order which naturally induces an order on k-tuples associated with their exponent k-tuples. If we define $\phi: RL(A_i) \to P(a_i)$ by sending A_i to a_i for each i and extending ϕ via products and joins, we see that ϕ is a join-morphism which preserves products, primes, and join principalness. However $RL(A_i)$ is the lattice of ideals of a semigroup while $P(a_i)$ is not [1]. The problem in $P(a_i)$ is the absence of weak meet principal generators.

In $P(a_i)$ (k > 1) every prime contains the only principal prime element, a_k .

9. Remarks (partitions of integers). Brylawski [4] has studied certain sublattices of $P(a_i)$. He defined L_k to be the lattice of monotone partitions of k of length k. Extending Brylawski's notation, we write L_n^k for the lattice of monotone partitions of n with the understanding that the last n - k entries are zero if $n \ge k$ and the last k - n entries are zero if n < k.

For $\mathfrak{B}, \mathfrak{C} \subseteq P(a_i)$, we write $\mathfrak{B} \cdot \mathfrak{C}$ for $\{AB | A \in \mathfrak{B} \text{ and } B \in \mathfrak{C}\}$.

PROPOSITION 9.1. $P(a_i)$ is the disjoint union of isomorphic

images of L_n^k , $\bigcup_{n\geq 0 \text{ or } n=\infty} \psi(L_n^k)$ where we set $L_0^k = \{(0, \dots, 0)\}$ and $L_\infty^k = \{(\infty, \dots, \infty)\}$ with $\psi(s_1, \dots, s_k) = \prod a_i^{s_i - s_{i+1}}$ and $s_{k+1} = 0$. Moreover $\psi(L_{n_1}^k) \cdot \psi(L_{n_2}^k) = \psi(L_{n_1+n_2}^k)$ if $n_1, n_2 \geq k$.

Proof. That L_n^k and $\psi(L_n^k)$ are isomorphic as lattices follows from Theorem 5.2 and the fact that dom restricted to L_n^k is simply majorization. Clearly $\psi(L_{n_1}^k) \cap \psi(L_{n_2}^k) = \phi$ for $n_1 \neq n_2$ and $\bigcup_n \psi(L_n^k) =$ $P(a_i)$ if we agree $\psi(L_0^k) = I$ and $\psi(L_\infty^k) = 0$. That $\psi(L_{n_1}^k) \cdot \psi(L_{n_2}^k) =$ $\psi(L_{n_1+n_2}^k)$ if $n_1, n_2 \geq k$ follows from the addition of exponents of the a_i 's in $P(a_i)$ under multiplication.

10. Remarks (symmetric elements). We asked whether the multiplicative sublattice of symmetric elements, \mathfrak{N} (§1) can be generated naturally by a proper subset of generators. We note here that a large subset of \mathfrak{N} does not generate \mathfrak{N} under products and joins.

If (s_i) is a k-tuple of nonzero integers then in $RL(A_i)$, $A_{i}^{s_1}$, $A_{2}^{s_2}, \dots, A_{k}^{s_k}$ is a prime sequence [6]. So $P(a_1^{(s_1)}, \dots, a_k^{(s_k)})$ is a Π domain isomorphic with $P(a_i)$ where $a_i^{(s_i)}$ is the *i*th elementary symmetric element in $A_{1}^{s_1}, \dots, A_{k}^{s_k}$. Moreover, in terms of the A_i 's, $\prod_{i=1}^{k} (a_i^{(s_i)})^{e_i} = \{ \prod A_{i}^{t_i} | t_i = s_i r_i \text{ for some } (r_i) < (e_i^*) \}$. Elements in $P(a_i^{(s_i)})$ are all symmetric. However, $\bigcup_{(s_i)} P(a_i^{(s_i)})$ generates a proper subset of \mathfrak{N} . For example, if $C = A_1^5 A_2^3 A_3$ in $RL(A_1, A_2, A_3)$, then $\bigvee_{g \in S_3} C^g$ is a symmetric element which is not the join of products of any of the $a_i^{(s_i)}$'s.

References

1. D. D. Anderson, *R-lattices*, Algebra Universalis, 6 (1976), 131-145.

2. G. Birkhoff, Lattice theory, (Third Ed.), Amer. Math. Soc., 1967.

3. K. P. Bogart, Distributive local Noether lattices, Michigan Math. J., 16 (1969), 215-223.

4. Thomas Brylawski, The lattice of integer partitions, Discrete Math., 6 (1973), 201-219.

5. D. Gale, A theorem on flows in networks, Pacific J. Math., 7 (1957), 1073-1082.

6. E. W. Johnson, and M. Detlefsen, Prime sequences and distributivity in local Noether lattices, Fund. Math., 86 (1974), 149-156.

7. H. J. Ryser, Combinatorial mathematics, Math. Assoc. Amer., 1963.

8. G. Szasz, Lattice Theory, Academic Press, 1963.

9. M. Ward, and R. P. Dilworth, *Residuated lattices*, Trans. Amer. Math. Soc., 45 (1939), 335-354.

Received June 23, 1977.

SLIPPERY ROCK STATE COLLEGE SLIPPERY ROCK, PA 16057